
734

Defence Science Journal, Vol. 75, No. 6, November 2025, pp. 734-741, DOI : 10.14429/dsj.20874 
 2025, DESIDOC

Received : 29 October 2024, Revised : 28 March 2025 
Accepted : 30 April 2025, Online published : 04 November 2025

Modeling of Terrain Awareness and Warning System (TAWS) for Fixed-Wing Aircraft

Akshat Jani*, M. Sarath Chandra and S. Charulatha
School of Aeronautical Sciences, Hindustan Institute of Technology & Science, Chennai – 603 103, India 

*E-mail: akshatjani27@gmail.com

ABSTRACT

In this paper, the Terrain Awareness and Warning System (TAWS), a system responsible for guiding aircraft safely 
into terrain, has been modeled, analyzed, and simulated using MATLAB and Simulink. Firstly, the Virtual Reality 
(VR) environment has been created by generating terrain using the elevation values extracted from an open-source 
terrain database and adding an aircraft controllable through Simulink. Secondly, an algorithm to predict the aircraft’s 
position after a specified time interval has been developed. It also extracts and returns the terrain elevation value at 
the predicted position and compares it with the aircraft’s altitude. Finally, suitable aural and visual warnings have 
been generated and displayed in the animation window based on comparison. The model can further be integrated 
into a real-time flight simulation environment serving various purposes, such as design and development, concept 
demonstration, system assessment, test and validation, and so on.

Keywords: Terrain awareness and warning system; Enhanced ground proximity warning system; Controlled flight 
into terrain; Forward-looking terrain awareness; Collision avoidance; Simulink 3D animation; Flight 
simulation

NOMENCLATURE
TAWS	 : Terrain Awareness and Warning System
VR	 : Virtual Reality
CFIT	 : Controlled Flight into Terrain
GPWS	 : Ground Proximity Warning System
EGPWS	 : Enhanced Ground Proximity Warning 	
	   System
GPS	 : Global Positioning System
FLTA	 : Forward-Looking Terrain Awareness
6-DOF	 : 6-Degrees of Freedom                                           
DEM	 : Digital Elevation Model
PNG	 : Portable Network Graphics
TIFF	 : Tagged Image File Format
MFD	 : Multi-Functional Display
VRML	 : Virtual Reality Modelling Language
USGS	 : United States Geological Survey
WRL	 : World
UAV	 : Unmanned Aerial Vehicle

1.	 INTRODUCTION
In the history of aviation, Controlled Flight into Terrain 

(CFIT) has been one of the major causes of fatal accidents. In 
response to such incidents, the industry developed the Ground 
Proximity Warning System (GPWS), which automatically 
warns pilots when the aircraft dangerously approaches the 
terrain or the ground. When an aircraft is in danger of colliding 
with terrain, the GPWS produces visual and aural warnings. 
It does this by measuring the height of the aircraft above 
the ground using a radar altimeter. It calculates the height 

based on the time difference between the transmitted and the 
received pulse of radio frequency. Since 1974, the GPWS has 
been mandated for larger airplanes, resulting in a significant 
reduction in accidents pertaining to CFIT. In the year 2000, 
the requirements have been also mandated for smaller general 
aviation aircraft. Although the GPWS system has been very 
successful as proven by the marked reduction in the accident 
rate, it has a few limitations. Firstly, it can only detect the 
terrain right underneath the aircraft, meaning it has a small 
terrain-capturing range. Generally, it has a height span ranging 
from 20 feet to 1500 feet. Suppose there is a sharp change 
in terrain (for instance, an increase in terrain elevation), it 
cannot detect this until it is too late for the crew to react. Even 
during landing(s) & takeoff(s), the GPWS is unable to provide 
forward terrain awareness due to which pilots have to rely on 
visual navigation during those phases. 

To overcome the limitations of GPWS, a more advanced 
technology, named Enhanced Ground Proximity Warning 
System (EGPWS), has been introduced. It makes use of the 
worldwide digital terrain database to produce a virtual 3D map 
of the terrain around the aircraft. It integrates the aircraft’s 
navigation system (ideally, Global Positioning System - GPS) 
with the terrain database. The aircraft’s instantaneous position 
provided by the GPS is compared with the earth’s coordinates 
from the terrain database and, if any discrepancy is found after 
comparing, suitable cautions and warnings according to the 
nature of the hazard are provided to the pilots. The EGPWS 
is generically known as the Terrain Awareness and Warning 
System (TAWS). It extends the GPWS features by providing 
a wider range of focus as well as forward terrain awareness 
(conventionally known as Forward Looking Terrain Awareness 
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as shown in Fig. 1), which facilitates pilots even during the 
critical flight phases, such as landing (it can provide warning 
coverage even up to runway threshold) and takeoff. 

In the current study, a representative model of TAWS 
for a generic aircraft has been developed using MATLAB & 
Simulink. There are very few previous works that simulate 
various guidance and navigation systems for aircraft using 
the aforesaid tools. Hence, the aim is to model, analyze, test, 
and simulate the system by blending MATLAB code with 
simplified Simulink block diagrams. Along with section 1, 
which is the ‘Introduction’, this paper is divided into five main 
sections: 

Section 2: It describes the steps involved in the generation 
of the terrain into MATLAB 3D World Editor using the 
Terrain-Elevation grid (sample values) taken from the Terrain 
Visualization example from the MATLAB library. It can be 
done in two different approaches. The first way is through 
the MATLAB code, and the other is through 3D World Editor 
by creating a virtual world using different nodes. Using the 
nodes, many features of the virtual world, such as appearance, 
geometry, sensors, navigational information, and so on, can be 
specified. This section also describes the process of integrating 
the aircraft model from the MATLAB library template with the 
terrain in the same editor window. 

Section 3: This section emphasizes the ideas, logic, and 
processes behind the development of the algorithm for the 
prediction of aircraft’s position and altitude and compares the 
same with the terrain’s altitude. The output from the Algorithm 
Subsystem is later fetched into the display subsystem to 
generate appropriate warnings. This section is further divided 
into two sub-parts: 

Section 3.1: It provides a brief description of the concept 
and steps involved in developing the code for estimating the 
predicted position of the aircraft based on the initial aircraft 
coordinates. It also highlights a few simplified formulas, which 
are used in the code. 

Section 3.2: The predicted position coordinates of the 
aircraft are further used in the second part of the algorithm to 
fetch out terrain elevation data at that point. Once the terrain 
elevation is extracted, the aircraft’s predicted altitude and 
terrain elevation are compared using the comparator block to 
return binary output (1-high for any discrepancy or 0-low for 
no discrepancy). 

Section 4: The output, as described in Section 3.2 of the 
algorithm, is taken as an input to the display subsystem where 

multiple switches are used to activate various loops for aural 
and visual warnings, whenever the input is high (value is 1) 
in case of warnings. The output from the display system is 
fetched into the VR Sink block where the real-world dynamic 
simulations are produced after the computations. The suitable 
warnings are then displayed in the animation so that the viewer 
can get a concise idea about the system. The final output is the 
3D animation of the real-world scenario where the aircraft flies, 
surrounded by terrain and intended aural and visual warnings, 
are generated based on the algorithm.

Section 5: This section provides a brief overview of 
the procedure to integrate the present Simulink Model into a 
real-time flight simulation environment for development and 
testing purposes.

The motivation to develop a Forward-Looking Terrain 
Awareness (FLTA) has been taken from Honeywell Inc. pilot’s 
guide for EGPWS1 and Xiao2, et al.. The function used for 
generating the contour map described in Mullins3, et al. has 
been slightly modified, and colormaps are generated. Moreover, 
Mullins3, et al. represent the overview of TAWS, which has 
been taken as a reference (blueprint) to develop the block 
diagrams. The format of a terrain-elevation grid corresponding 
to the latitude/longitude of the region, as conceptualized by 
Gellerman4, et al., has been extended and implemented in 
MATLAB code in a more simplified way. Various terrain-
generating algorithms, as described in Raj5, et al., represent 
the 3-dimensional maps generated using MATLAB. A similar 
idea is applicable in the MATLAB 3D World Editor, where the 
generated terrain is used for the animations.

This model can be considered as the experimental test 
bench, which provides an enhanced version of Mode-2 alerts6 
using the FLTA algorithm.  This paper also forms the basis 
for developing other complex modes of EGPWS (up to Mode-
6)6 with necessary add-ons. From the discussion on suitability 
between cluttered and less-cluttered cockpit displays7 and 
composite display design8, the paper illustrates the integrated 
3-dimensional maps with a miniature aircraft changing its color 
during warnings, as presented in Simulink Visualization Block 
resembling Multi-Functional Display (MFD) of the cockpit. 

The results from this paper suggest the integration of this 
model into real-time aircraft systems or flight simulators with 
necessary programming, enhancing the processing/storage 
capacity and the computation time of the onboard flight 
computers. A similar example is the implementation of the 
Simulink Model into NASA’s Vertical Motion Flight Simulator 
(VMS)9. This experimental test bench can be incorporated in 
such simulators for concept demonstration and testing, which 
can include assessments of handling qualities, flight control 
systems design, guidance and displays, and so on. The FLTA 
algorithm implemented in this model assumes a straight line 
ahead of the aircraft to predict the terrain and the aircraft’s 
coordinates. However, in future studies, the authors plan 
to make it more resilient by modifying the boundary of the 
forward-looking alarm area such that it remains trapezoidal 
when the aircraft is flying straight and becomes pipe-shaped10 
when the aircraft is rolling left or right, thus making the 
algorithm more robust. 

Figure 1. Schematic of FLTA in Comparison with GPWS.
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2.	 CREATING A VIRTUAL REALITY (VR) 
ENVIRONMENT 
The data required for the terrain generation is primarily 

the elevation data corresponding to the 2-dimensional 
coordinates (latitude and longitude). In this case, the elevation 
values corresponding to the respective VRML (Virtual Reality 
Modelling Language) coordinates have been assigned. The 
sample elevation values have been taken from the Terrain 
Visualisation example by The MathWorks Inc. Moreover, 
according to one’s choice, the elevation data for any region of 
the world can be found in one of the databases as mentioned in 
the Simulink Mapping Toolbox User Guide. 

In this case, the sample elevation values taken from 
the MATLAB example are extracted from the United States 
Geological Survey (USGS) database whose specifications can 
be found in Table 1.

Table 1. Specifications of USGS-DEM File

Dataset Digital Elevation Model (DEM)
Scale 1:24,000 
Spatial resolution 1-arc sec. (~30 m)
Units of elevation M 
Region Nearby San Francisco 

The scale of 1:24,000 means for every 1-meter distance 
covered on the map generated, approximately 24,000 m are 
covered on the ground in a real-time scenario. The spatial 
resolution depicts the spacing of 30 m between the tiles 
(elevation values are indexed every 30 m in X and Z directions, 
starting from the origin). Further details about indexing can be 
found in Section 2.1. 

Since the primary aim of this paper lies in the design 
and implementation of the algorithm and display system, 
for simplicity, the code for the terrain generation has been 
referenced from the MATLAB built-in example called “Terrain 
Visualization”. The steps for importing and generating 
the terrain as implemented in this paper are as follows  
Algorithm 1.

Algorithm 1. Terrain Elevation Data Generation
1.	 Unzip (Graphical Zip File) the DEM data file to a 

temporary directory
2.	 Read every point of the 1:24,000 file in the standard 

format using the suitable MATLAB function.
3.	 Delete the temporarily created unzipped file.
4.	 Prepare the data for the creation of a Virtual World by 

modifying it.
5.	 Assign spacing of 30 m in X and Z directions.
6.	 Bring up the sample template from the MATLAB library 

and create a handle for the node that will contain the DEM 
data.

7.	 Create necessary node fields for configuring the shape, 
appearance, material, and so on of the terrain.

8. 	 Using the appropriate MATLAB function, create a texture 
for the given elevation data and scale it if required. 

9.	 Save the texture file in the .PNG format in the working 
directory. 

10.	 Assign the texture to the appearance field of the terrain 
node.

11.	 Save the terrain file in “.wrl” format. 

Once the code is completed, the file is saved with an 
extension of .wrl (Virtual Reality Modelling Language 
format). The file is opened and further modification is done 
in MATLAB 3D World Editor, an addon built specifically to 
create or edit the VR models to be used for simulations. The 
terrain is generated in the tessellated form (shape patterns that 
fit perfectly with each other without any gap). 

2.1	 Indexing of the Elevation Values 
The indexing operation can be performed using the 

“ElevationGrid” node feature of the Editor. It is useful for 
a variety of purposes, such as creating terrain landscapes, 
building squared-off walls of rooms of the house, and so on. 
It maps a surface function of two sampled input values after 
taking the rectangular 2D array as an input (elevation values 
in this case).  As stated in Brutzman and Daly (2007)11, the 
Elevation Grid is sized by xDimension and zDimension fields. 
Hence, the elevation (height) field must always contain the 
(xDimension × zDimension) number of values. The values 
in the xSpacing and zSpacing determine how many m apart 
each point is placed in the X and Z directions. Thus, the 
overall footprint of the ElevationGrid node is (xDimension × 
xSpacing) by (zDimension × zSpacing) m squared.

2.2	 Adding the Aircraft in the VR Environment

Algorithm 2. Add a Miniature Aircraft to the Map
1.	 Open the WRL file containing the terrain in 3D World 

Editor. 
2.	 Import the suitable aircraft files from the inline models 

present in the MATLAB/Simulink library.
3.	 Store the aircraft data in a transformation node such 

that its sub-nodes contain data (geometry, appearance, 
material, and so on) for aircraft parts and rename it. 

4.	 Scale up the aircraft by a factor of 30 in all three 
dimensions to make it visible in the terrain. (However, 
real-life scenarios may be different).

5.	 Add a viewpoint node as a sub-node to the parent node 
containing the aircraft data.

6.	 Tune the data for the viewpoint node such that it acts as 
a camera following the aircraft during simulation.

7.	 Look for sub-nodes containing the data of fuselage 
(geometry, appearance, and material) in the parent node.

8.	 Configure the fuselage appearance such that it changes 
its color on getting the intended input from the Simulink 
model (in case of warnings) (Fig. 6).

9.	 Close the Editor and save the file in “.wrl” format. 

2.3	 Input from User
Static input is given to the aircraft model using constant, 

moment, and slider blocks, which provide constant forces and 
moments that allow the aircraft to fly as per the values provided. 
The flight parameters data, such as position, Euler orientation, 
velocity, and mass, are assigned in block parameters of 
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the 6-DOF (Euler angles) block, which remains the same 
throughout the computation. This simplifies the algorithm for 
predicted path calculation and interpolation of elevation data 
from the terrain. As shown in Fig. 2, the 6-DOF block takes 
the input from the INPUT subsystem and static input values 
from the data provided in the block parameters dialog box; a 
schematic of the same is shown in Table 2.

2.4 	Six (6)-DOF Block with Euler Angles	
The 6-DOF (Euler angles) block implements the Euler 

angle representation of the equations of motion for six degrees 
of freedom. 6-DOF (Euler angles) block takes into account the 
rotation of the body’s fixed coordinate system (Xb, Yb, Zb) 
around the earth’s flat reference system (Xe, Ye, Ze). 

Table 2. 	 Block parameters dialog box (tabular view) with 
input values

Block parameters Value
Units Metric (MKS)
Mass type Fixed
Representation Euler angles
Initial position in inertial axes [Xe, Ye, Ze] [8500 0 -850]
Initial velocity in body axes [U,v,w] [0 -75 0]
Initial Euler orientation    [roll, pitch, yaw]: [-0.05 0.1 -0.1]
Initial body rotation rates [p,q,r] [0 0 0]
Initial mass 1.0
Inertia Eye(3)

The origin of the body’s fixed coordinate system is the 
center of gravity of the aircraft. Assuming the body is rigid, 
this assumption does not need consideration of the forces 
acting between the different mass elements. The flat earth 
reference frame is considered to be inertial. The 6-DOF block 
considers the forces/moments acting on the aircraft along with 
the flight parameters data as input and gives inertial velocity, 
body velocity, and Euler angles (psi, theta, phi) as output, 
which are stored in outport (6-DOF data) in the form of signals 
in the Simulink. 

2.5	 Transformation of Coordinates and Orientation
The Euler angles and position coordinates are converted 

into axis angles and VR coordinates (compatible with the 
created VR Environment) using Euler to Axis Angle and Xe to 
Xe VR blocks taken from MATLAB example of  NASA HL-20 
model.

Euler to Axis angles: It transforms the 6-DOF position 
coordinates into VR coordinates.	     

 Xe to Xe VR axes: It transforms the Euler angles suitably 
to VR axis angles.     			              

VR Sink Block: It produces animation based on the 
inputs given from the Simulink model.  

From the 6-DOF data, flight parameters such as climb/
descent rate (for example, vertical speed), position, heading, 
and airspeed are computed. All the parameters are in the SI 
units. These values are stored in the flight parameters block and 
are given as input to the Algorithm Subsystem block, which 
contains the MATLAB function block, interpreted MATLAB 
function block, comparator, and so on. The algorithm 
subsystem calculates the aircraft’s predicted position/altitude 
and the terrain’s altitude (at the predicted aircraft’s position). 
A detailed review of the Algorithm Subsystem and Warning/
Display Subsystem is described briefly in the succeeding 
sections. The overview of the subsystems mentioned is shown 
in Fig. 3. 

3. 	 Developing the Algorithm 
As stated in the introduction part, the algorithm is 

divided into two subsections. The first subsection contains 
detailed information related to the calculation for the aircraft’s 
predicted position, while the second section describes briefly 
the logic and method to fetch the terrain’s altitude from the 
terrain elevation grid at the points corresponding to the 
aircraft’s predicted position coordinates. The ‘MATLAB 
Function Block’ and ‘Interpreted Function Block’ are used 
for integrating the MATLAB code into the Simulink model.  
Figure 4 represents the block diagram inside the Algorithm 
Subsystem block.

Figure 2. 	 Simulink block diagram consisting of input, 6-DOF 
block, and visualisation (output) subsystem. Figure 3. 	 Overview of various subsystems forming the part of 

TAWS.

Figure 4. Block diagram of the algorithm subsystem.
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3.1	 Predicting the Aircraft’s Position
Some specific flight parameters, such as position, 

airspeed, heading, and vertical speed, are extracted from the 
Flight Parameters block and used as input into the MATLAB 
function block. Before writing the code, it is necessary to 
provide the number of inputs and outputs information using the 
syntax: function(output1, output2, output3, …., outputN) = 
fcn(input1, input2, input3, …., inputN). Here, the inputs are 
the flight parameters as described earlier, and the output is the 
aircraft’s predicted position and predicted altitude assigned to 
two variables named “ppred” and “palt”. The predicted altitude 
is extracted by indexing the value at the third position from the 
“ppred” variable (predicted coordinates). 

A few assumptions are taken in the calculation of 
the predicted position of the aircraft. One of them is the 
consideration of the aircraft to be a rigid mass so that the 
environmental and other external effects are neglected for the 
time being. The motion of the aircraft is assumed to be linear.  
Moreover, the flight parameters are assumed to be constant over 
the entire computation time. Hence, the initial velocity is taken 
to be 75 m/s. Also, it is assumed that the predicted position 
is calculated every 30 seconds (time interval). Applying the 
generic distance-velocity equations (distance = velocity*time), 
it is found that the predicted position is calculated for 
approximately 2250 m (2.25 km) ahead of the aircraft’s initial 
position at every timestep. It has been found quite reasonable 
since the dimension of the terrain tile in the MATLAB 3D 
World Editor remains 13.89 km * 11.1 km.  However, the size 
of the terrain tile and the look-ahead distance are scaled down 
compared to the real-life scenario to reduce the computation 
time and complexity in configuring the VR environment. The 
important formulas used for the predicted position calculations 
are as follows. 

(i) [𝑃𝑓𝑥, 𝑃𝑓𝑦, 𝑃𝑓𝑧] = [𝑃𝑖𝑥, 𝑃𝑖𝑦, 𝑃𝑖𝑧] ± [Δ𝑡 × (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)] 
(ii) [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] = [𝑔𝑠 × 𝑐𝑜𝑠𝜃, 𝑔𝑠 × 𝑠𝑖𝑛𝜃, 𝑣𝑠] 
(iii) 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ± Δ𝑃 
(iv) Δ𝑃 = 𝑡𝑖𝑚𝑒 × [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] 
where, 
𝑃𝑓 = Final (Predicted) Position 
𝑃𝑖 = Initial Position 
Δ𝑡 = Time Interval 
𝑔𝑠 = Ground Speed 
𝑣𝑠 = Vertical Speed
𝜃 = 90 – Heading Angle
vx,vy,vz = Inertial velocities of aircraft in x, y and z directions, 
respectively

NOTE: Suffixes x, y & denote the values in the x, y, and z 
directions, respectively. 

The MATLAB code12  in the form of an easily understandable 
flow chart along with steps is shown in Algorithm 3. Moreover, 
the code follows the syntax of MATLAB function block and 
MATLAB script. The longitudinal and lateral velocities are 
calculated by taking the components of ground speed in X and 
Z directions, respectively. The value of the heading angle stored 
in a variable named “hdg” is used for this purpose. The rate of 
change of altitude of the aircraft is calculated by multiplying 

the vertical component of the velocity with the time interval. 
The vertical velocity is the sine of the climb angle times the 
ground speed “gs”. 

Algorithm 3. Calculate the Aircraft’s Predicted Position 
and Altitude

1.	 Read the inputs from SIMULINK in MATLAB Function 
Block.

	 function [ppred, palt] = fcn(p0,gs,hdg,vs)
2.	 Calculate the angle made by the aircraft in the horizontal 

direction
	 theta = 90-hdg;
3. 	 Calculate the velocities in all the three directions. 
	 v = [-gs*cosd(theta), gs*sind(theta), vs];
4.	 Calculate the predicted position for the time interval of  

30 sec. 
	 ppred = p0 - (30*v); 
5.	 Calculate the predicted altitude from the initial altitude 

and vertical speed. 
	 palt = -p0(3) + (vs*30); 

NOTE: The sign of the velocity vector is based on the 
predicted position in either direction from the current position.  

3.2 	Terrain Data Extraction 
Once the terrain elevation data is imported into MATLAB, 

a separate grid for the X and Z coordinates is generated by 
taking a combination of suitable X and Z values so that the 
terrain data can be allocated to them in the later stages. The 
terrain generation code is further extended to accomplish this 
task. The X grid contains all the X coordinate values indexed 
in the horizontal sequence. Similarly, the Z grid contains all 
the Z-coordinate values. The arrays of X and Z coordinates are 
concatenated to form the coordinate combinations for the grid. 
Further, the elevation values are assigned to every combination, 
and, hence, the terrain elevation database is developed, which 
is adaptable with the 3D Editor coordinates. The MATLAB 
code developed for the said purpose is also briefly described 
in Algorithm 4. 

3.2.1 Code for Terrain Data Extraction
Algorithm 4. Generating Terrain Database and Retrieving 

Elevation Values from It
1.	 Convert all the rows of the elevation grid into columns and 

assign them to a variable. 
	 E1 = Z(:);
2.	 Fill the missing values(NaN) in the grid with the constant 

value “0”. Here, the missing value (NaN) represents that 
the terrain’s elevation is the same as the Mean Sea Level 
(MSL). Hence, “0” is appropriate for this purpose.
E1 = fillmissing(E1,’constant’,0),

3.	 Generate the grid with the following formulations. The 
initial position to start the indexing of elevation points 
is assumed to be (0,0). Considering 30m spacing and the 
number of points equal to “nz” (in the case of X direction), 
the last point will be located at a distance of (nz-1)*30 
from the origin. The same holds true for the Z direction by 
replacing “nz” with “nx”. Further, the transposes of both 
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arrays are taken and assigned to new variables.
X1 = [0:30:(nz-1)*30]; 
Z1 = [0:30:(nx-1)*30]; 
X1 = X1’; Z1 = Z1’;

4.	 Using repmat() & repelem() functions, the matrix and 
elements of X1 and Z1 matrices are repeated according to 
the number of points in the X and Z directions, respectively. 
X1 = repmat(X1, 371, 1); 
Z1 = repelem(Z1, 464, 1); 

5.	 Convert all the elements of the rows into columns to 
facilitate concatenation at last. 
X1 = X1(:); 
Z1 = Z1(:); 

6.	 Generate a terrain data grid F by concatenating all three 
arrays X1, Z1, and E1.
F = [X1, Z1, E1];

Since in the terrain data grid, only the points at 30 m 
spacing have elevation values, the “scatteredinterpolant()” 
function is used to interpolate and return the nearest elevation 
values at the points, which do not have the elevation data. It 
is used to interpolate and return the values in case a of two-
dimensional or a three-dimensional grid. Further, the grid 
is saved in the “.mat” file extension, which is further called 
out using the Interpreted MATLAB Function block during 
the compilation in Simulink. There are several interpolation 
methods, which include “linear interpolation”, “natural 
interpolation” and “nearest interpolation”. As the values 
corresponding to the nearest neighbour can be easily retrieved, 
“nearest interpolation” has been found to serve the purpose. 
The code for defining the interpolation function and saving it 
is as follows.

  
f = scatteredInterpolant(X1, Z1, E1, ‘nearest’); 
save(‘grid.mat’); 

Here, f is a scatteredInterpolant function containing 
the arrays X1, Z1, and E1. The predicted coordinate values 
are passed through the function, and interpolated terrain 
elevation value(s) corresponding to the predicted coordinates 
are returned.  When the compilation (simulation) is started, 
the Interpreted MATLAB Function block initializes the 
function “f”, which takes the predicted X (“xp”) and Z 
(“zp”) coordinates of the aircraft as an input and returns the 
corresponding elevation value (“ep”) as the output. The terrain 
database can be used as a template to develop more complex 
databases as the obstacle system demonstrated in Yamamoto13, 
et al., which operates on stereo pair satellite images capturing 
the topological information and man-made obstacles. 

3.2.2	 Comparison Between the Aircraft’s Altitude and 
Terrain’s Elevation

Once the terrain elevation value (“ep”) is returned 
from the Interpreted MATLAB Function block, it is fetched 
into the  comparator block and compared with the aircraft’s 
predicted altitude. It makes use of a relational operator and 
gives the output in the binary form. If the aircraft’s predicted 
altitude is equal to or lower than the terrain’s altitude, it returns 

the output as 1 (high), and, in other cases, it will return 0 (low). 
The output from the comparator block is further fed into the 
Warning and Display subsystem, which is discussed in the 
following section. For this purpose, the output is stored in the 
in-port. 

4. 	 WARNING AND DISPLAY SYSTEM 
The output value from the signal of the comparator block 

that is stored in the in-port block is fed (from the out-port) as 
an input to the switches, which forms the Warning and Display 
sub-system, as depicted in Fig. 5. 

Figure 5. Block diagram of warning and display subsystem.

The output from the first switch is fed into the node, which 
contains the data for the fuselage geometry and appearance. 
If the input to the warning system turns high (value becomes 
1), it activates the circuit that turns the color of the aircraft 
“red” as seen in the display window (Fig. 6). This indicates 
that the aircraft’s altitude is unsafe relative to the terrain 
along its predicted path for the next 30 sec. If the input to 
the warning block is low (value becomes 0), the circuit with 
grey color (which is the original color of the fuselage) coding 
values is activated, keeping the color of the fuselage intact. 
The “constant” blocks contain the color code for the intended 
colors to be fetched into the switch when it gets activated. 

The second switch is connected to the HUD text node of 
the VR Sink block. The HUD text node helps to display the 
text stored in the form of a string in the pre-defined region 
in the animation window. If the comparator block returns the 
value “1” (TRUE), the circuit with the string block containing 
the warning message “TERRAIN…TERRAIN” gets activated, 
and it further passes the signal to the VR Sink block to display 
the message in the VR animation window. If the output from 
the comparator block is “0”, the circuit remains grounded. 
Hence, no message will be displayed as the aircraft is expected 
to fly safely above the terrain at the predicted position (in the 
upcoming 30 sec.).

The third switch contains the circuit for the audio 
warning. The Simulink block, named “From Multimedia File”, 
is used to read multimedia files containing audio, video, and 
so on. As soon as the comparator returns the value “1”, the 
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circuit containing the sound file is activated and transmits the 
signal to the Audio Device Writer, which produces the “Beep” 
sound through the system’s built-in speakers or headphones 
signifying the potential discrepancy in aircraft’s altitude in 
comparison to terrain. In all other cases, the comparator value 
will be “0”, and there will not be any aural warnings since the 
circuit remains grounded. 

The VR Sink block plays a very significant role when it 
comes to displaying the simulation of the system. It contains 
the data for the Virtual Reality (VR) World (terrain geometry 
and aircraft in this case). Moreover, it also contains the input 
ports connected to the nodes of various objects in VR World 
to perform multiple actions based on the data transmitted from 
the Simulink blocks in the form of signals. These systems and 
subsystems (of Simulink) are solely responsible for the control 
of the objects in the VR World using various static inputs given 
by the user or the inputs embedded beforehand. In this way, the 
aural and visual warnings are produced to represent the real-
time terrain awareness scenario to the user. Figure 6 shows the 
animation representing the entire system that can be seen as the 
final output by the users. The same simulation can be depicted 
on the Multi-Functional Displays (MFDs) in the cockpit to 
make the pilots aware more quickly compared to the visual 
warnings with 2D maps.  

modeled, analyzed, and simulated using MATLAB and 
Simulink. The algorithm has been designed in such a way 
that it detects the terrain in the environment by extracting the 
elevation points in the grid along the aircraft’s path and provides 
visual and aural warnings to the pilots to avoid accidents. 
The final simulation has been carried out in the Simulink 
3D Animation window, which illustrates the working of this 
system in a real-time environment. This system can be used 
in a wide range of applications, such as UAVs, drones, and so 
on. The model can also be integrated with flight simulators for 
a variety of purposes. Moreover, the existing two-dimensional 
maps in the cockpit displays can be modified into 3-D maps 
along with improvised visual warnings, as discussed in the 
preceding sections. However, this paper mainly considers 
static input where flight parameters remain uniform with time. 
Also, it provides collision detection in a straight line along the 
flight path. Further improvisations have to be done to provide 
dynamic input options (such as control stick, yoke, and so on), 
collision detection along a region (for example, a trapezoidal 
boundary) in front of the aircraft instead of a straight line, 
and providing the capability for automated actions based on 
warnings (self-correcting the attitude) to avert the collision.
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