
734

Defence Science Journal, Vol. 75, No. 6, November 2025, pp. 734-741, DOI : 10.14429/dsj.20874
 2025, DESIDOC

Received : 29 October 2024, Revised : 28 March 2025
Accepted : 30 April 2025, Online published : 04 November 2025

Modeling of Terrain Awareness and Warning System (TAWS) for Fixed-Wing Aircraft

Akshat Jani*, M. Sarath Chandra and S. Charulatha
School of Aeronautical Sciences, Hindustan Institute of Technology & Science, Chennai – 603 103, India

*E-mail: akshatjani27@gmail.com

ABSTRACT

In this paper, the Terrain Awareness and Warning System (TAWS), a system responsible for guiding aircraft safely
into terrain, has been modeled, analyzed, and simulated using MATLAB and Simulink. Firstly, the Virtual Reality
(VR) environment has been created by generating terrain using the elevation values extracted from an open-source
terrain database and adding an aircraft controllable through Simulink. Secondly, an algorithm to predict the aircraft’s
position after a specified time interval has been developed. It also extracts and returns the terrain elevation value at
the predicted position and compares it with the aircraft’s altitude. Finally, suitable aural and visual warnings have
been generated and displayed in the animation window based on comparison. The model can further be integrated
into a real-time flight simulation environment serving various purposes, such as design and development, concept
demonstration, system assessment, test and validation, and so on.

Keywords: Terrain awareness and warning system; Enhanced ground proximity warning system; Controlled flight
into terrain; Forward-looking terrain awareness; Collision avoidance; Simulink 3D animation; Flight
simulation

NOMENCLATURE
TAWS	 : Terrain Awareness and Warning System
VR	 : Virtual Reality
CFIT	 : Controlled Flight into Terrain
GPWS	 : Ground Proximity Warning System
EGPWS	 : Enhanced Ground Proximity Warning 	
	 System
GPS	 : Global Positioning System
FLTA	 : Forward-Looking Terrain Awareness
6-DOF	 : 6-Degrees of Freedom
DEM	 : Digital Elevation Model
PNG	 : Portable Network Graphics
TIFF	 : Tagged Image File Format
MFD	 : Multi-Functional Display
VRML	 : Virtual Reality Modelling Language
USGS	 : United States Geological Survey
WRL	 : World
UAV	 : Unmanned Aerial Vehicle

1.	 INTRODUCTION
In the history of aviation, Controlled Flight into Terrain

(CFIT) has been one of the major causes of fatal accidents. In
response to such incidents, the industry developed the Ground
Proximity Warning System (GPWS), which automatically
warns pilots when the aircraft dangerously approaches the
terrain or the ground. When an aircraft is in danger of colliding
with terrain, the GPWS produces visual and aural warnings.
It does this by measuring the height of the aircraft above
the ground using a radar altimeter. It calculates the height

based on the time difference between the transmitted and the
received pulse of radio frequency. Since 1974, the GPWS has
been mandated for larger airplanes, resulting in a significant
reduction in accidents pertaining to CFIT. In the year 2000,
the requirements have been also mandated for smaller general
aviation aircraft. Although the GPWS system has been very
successful as proven by the marked reduction in the accident
rate, it has a few limitations. Firstly, it can only detect the
terrain right underneath the aircraft, meaning it has a small
terrain-capturing range. Generally, it has a height span ranging
from 20 feet to 1500 feet. Suppose there is a sharp change
in terrain (for instance, an increase in terrain elevation), it
cannot detect this until it is too late for the crew to react. Even
during landing(s) & takeoff(s), the GPWS is unable to provide
forward terrain awareness due to which pilots have to rely on
visual navigation during those phases.

To overcome the limitations of GPWS, a more advanced
technology, named Enhanced Ground Proximity Warning
System (EGPWS), has been introduced. It makes use of the
worldwide digital terrain database to produce a virtual 3D map
of the terrain around the aircraft. It integrates the aircraft’s
navigation system (ideally, Global Positioning System - GPS)
with the terrain database. The aircraft’s instantaneous position
provided by the GPS is compared with the earth’s coordinates
from the terrain database and, if any discrepancy is found after
comparing, suitable cautions and warnings according to the
nature of the hazard are provided to the pilots. The EGPWS
is generically known as the Terrain Awareness and Warning
System (TAWS). It extends the GPWS features by providing
a wider range of focus as well as forward terrain awareness
(conventionally known as Forward Looking Terrain Awareness

JANI, et al.: MODELING OF TERRAIN AWARENESS AND WARNING SYSTEM (TAWS) FOR FIXED-WING AIRCRAFT

735

as shown in Fig. 1), which facilitates pilots even during the
critical flight phases, such as landing (it can provide warning
coverage even up to runway threshold) and takeoff.

In the current study, a representative model of TAWS
for a generic aircraft has been developed using MATLAB &
Simulink. There are very few previous works that simulate
various guidance and navigation systems for aircraft using
the aforesaid tools. Hence, the aim is to model, analyze, test,
and simulate the system by blending MATLAB code with
simplified Simulink block diagrams. Along with section 1,
which is the ‘Introduction’, this paper is divided into five main
sections:

Section 2: It describes the steps involved in the generation
of the terrain into MATLAB 3D World Editor using the
Terrain-Elevation grid (sample values) taken from the Terrain
Visualization example from the MATLAB library. It can be
done in two different approaches. The first way is through
the MATLAB code, and the other is through 3D World Editor
by creating a virtual world using different nodes. Using the
nodes, many features of the virtual world, such as appearance,
geometry, sensors, navigational information, and so on, can be
specified. This section also describes the process of integrating
the aircraft model from the MATLAB library template with the
terrain in the same editor window.

Section 3: This section emphasizes the ideas, logic, and
processes behind the development of the algorithm for the
prediction of aircraft’s position and altitude and compares the
same with the terrain’s altitude. The output from the Algorithm
Subsystem is later fetched into the display subsystem to
generate appropriate warnings. This section is further divided
into two sub-parts:

Section 3.1: It provides a brief description of the concept
and steps involved in developing the code for estimating the
predicted position of the aircraft based on the initial aircraft
coordinates. It also highlights a few simplified formulas, which
are used in the code.

Section 3.2: The predicted position coordinates of the
aircraft are further used in the second part of the algorithm to
fetch out terrain elevation data at that point. Once the terrain
elevation is extracted, the aircraft’s predicted altitude and
terrain elevation are compared using the comparator block to
return binary output (1-high for any discrepancy or 0-low for
no discrepancy).

Section 4: The output, as described in Section 3.2 of the
algorithm, is taken as an input to the display subsystem where

multiple switches are used to activate various loops for aural
and visual warnings, whenever the input is high (value is 1)
in case of warnings. The output from the display system is
fetched into the VR Sink block where the real-world dynamic
simulations are produced after the computations. The suitable
warnings are then displayed in the animation so that the viewer
can get a concise idea about the system. The final output is the
3D animation of the real-world scenario where the aircraft flies,
surrounded by terrain and intended aural and visual warnings,
are generated based on the algorithm.

Section 5: This section provides a brief overview of
the procedure to integrate the present Simulink Model into a
real-time flight simulation environment for development and
testing purposes.

The motivation to develop a Forward-Looking Terrain
Awareness (FLTA) has been taken from Honeywell Inc. pilot’s
guide for EGPWS1 and Xiao2, et al.. The function used for
generating the contour map described in Mullins3, et al. has
been slightly modified, and colormaps are generated. Moreover,
Mullins3, et al. represent the overview of TAWS, which has
been taken as a reference (blueprint) to develop the block
diagrams. The format of a terrain-elevation grid corresponding
to the latitude/longitude of the region, as conceptualized by
Gellerman4, et al., has been extended and implemented in
MATLAB code in a more simplified way. Various terrain-
generating algorithms, as described in Raj5, et al., represent
the 3-dimensional maps generated using MATLAB. A similar
idea is applicable in the MATLAB 3D World Editor, where the
generated terrain is used for the animations.

This model can be considered as the experimental test
bench, which provides an enhanced version of Mode-2 alerts6
using the FLTA algorithm. This paper also forms the basis
for developing other complex modes of EGPWS (up to Mode-
6)6 with necessary add-ons. From the discussion on suitability
between cluttered and less-cluttered cockpit displays7 and
composite display design8, the paper illustrates the integrated
3-dimensional maps with a miniature aircraft changing its color
during warnings, as presented in Simulink Visualization Block
resembling Multi-Functional Display (MFD) of the cockpit.

The results from this paper suggest the integration of this
model into real-time aircraft systems or flight simulators with
necessary programming, enhancing the processing/storage
capacity and the computation time of the onboard flight
computers. A similar example is the implementation of the
Simulink Model into NASA’s Vertical Motion Flight Simulator
(VMS)9. This experimental test bench can be incorporated in
such simulators for concept demonstration and testing, which
can include assessments of handling qualities, flight control
systems design, guidance and displays, and so on. The FLTA
algorithm implemented in this model assumes a straight line
ahead of the aircraft to predict the terrain and the aircraft’s
coordinates. However, in future studies, the authors plan
to make it more resilient by modifying the boundary of the
forward-looking alarm area such that it remains trapezoidal
when the aircraft is flying straight and becomes pipe-shaped10
when the aircraft is rolling left or right, thus making the
algorithm more robust.

Figure 1. Schematic of FLTA in Comparison with GPWS.

DEF. SCI. J., VOL. 75, NO. 6, NOVEMBER 2025

736

2.	 CREATING A VIRTUAL REALITY (VR)
ENVIRONMENT
The data required for the terrain generation is primarily

the elevation data corresponding to the 2-dimensional
coordinates (latitude and longitude). In this case, the elevation
values corresponding to the respective VRML (Virtual Reality
Modelling Language) coordinates have been assigned. The
sample elevation values have been taken from the Terrain
Visualisation example by The MathWorks Inc. Moreover,
according to one’s choice, the elevation data for any region of
the world can be found in one of the databases as mentioned in
the Simulink Mapping Toolbox User Guide.

In this case, the sample elevation values taken from
the MATLAB example are extracted from the United States
Geological Survey (USGS) database whose specifications can
be found in Table 1.

Table 1. Specifications of USGS-DEM File

Dataset Digital Elevation Model (DEM)
Scale 1:24,000
Spatial resolution 1-arc sec. (~30 m)
Units of elevation M
Region Nearby San Francisco

The scale of 1:24,000 means for every 1-meter distance
covered on the map generated, approximately 24,000 m are
covered on the ground in a real-time scenario. The spatial
resolution depicts the spacing of 30 m between the tiles
(elevation values are indexed every 30 m in X and Z directions,
starting from the origin). Further details about indexing can be
found in Section 2.1.

Since the primary aim of this paper lies in the design
and implementation of the algorithm and display system,
for simplicity, the code for the terrain generation has been
referenced from the MATLAB built-in example called “Terrain
Visualization”. The steps for importing and generating
the terrain as implemented in this paper are as follows
Algorithm 1.

Algorithm 1. Terrain Elevation Data Generation
1.	 Unzip (Graphical Zip File) the DEM data file to a

temporary directory
2.	 Read every point of the 1:24,000 file in the standard

format using the suitable MATLAB function.
3.	 Delete the temporarily created unzipped file.
4.	 Prepare the data for the creation of a Virtual World by

modifying it.
5.	 Assign spacing of 30 m in X and Z directions.
6.	 Bring up the sample template from the MATLAB library

and create a handle for the node that will contain the DEM
data.

7.	 Create necessary node fields for configuring the shape,
appearance, material, and so on of the terrain.

8. 	 Using the appropriate MATLAB function, create a texture
for the given elevation data and scale it if required.

9.	 Save the texture file in the .PNG format in the working
directory.

10.	 Assign the texture to the appearance field of the terrain
node.

11.	 Save the terrain file in “.wrl” format.

Once the code is completed, the file is saved with an
extension of .wrl (Virtual Reality Modelling Language
format). The file is opened and further modification is done
in MATLAB 3D World Editor, an addon built specifically to
create or edit the VR models to be used for simulations. The
terrain is generated in the tessellated form (shape patterns that
fit perfectly with each other without any gap).

2.1	 Indexing of the Elevation Values
The indexing operation can be performed using the

“ElevationGrid” node feature of the Editor. It is useful for
a variety of purposes, such as creating terrain landscapes,
building squared-off walls of rooms of the house, and so on.
It maps a surface function of two sampled input values after
taking the rectangular 2D array as an input (elevation values
in this case). As stated in Brutzman and Daly (2007)11, the
Elevation Grid is sized by xDimension and zDimension fields.
Hence, the elevation (height) field must always contain the
(xDimension × zDimension) number of values. The values
in the xSpacing and zSpacing determine how many m apart
each point is placed in the X and Z directions. Thus, the
overall footprint of the ElevationGrid node is (xDimension ×
xSpacing) by (zDimension × zSpacing) m squared.

2.2	 Adding the Aircraft in the VR Environment

Algorithm 2. Add a Miniature Aircraft to the Map
1.	 Open the WRL file containing the terrain in 3D World

Editor.
2.	 Import the suitable aircraft files from the inline models

present in the MATLAB/Simulink library.
3.	 Store the aircraft data in a transformation node such

that its sub-nodes contain data (geometry, appearance,
material, and so on) for aircraft parts and rename it.

4.	 Scale up the aircraft by a factor of 30 in all three
dimensions to make it visible in the terrain. (However,
real-life scenarios may be different).

5.	 Add a viewpoint node as a sub-node to the parent node
containing the aircraft data.

6.	 Tune the data for the viewpoint node such that it acts as
a camera following the aircraft during simulation.

7.	 Look for sub-nodes containing the data of fuselage
(geometry, appearance, and material) in the parent node.

8.	 Configure the fuselage appearance such that it changes
its color on getting the intended input from the Simulink
model (in case of warnings) (Fig. 6).

9.	 Close the Editor and save the file in “.wrl” format.

2.3	 Input from User
Static input is given to the aircraft model using constant,

moment, and slider blocks, which provide constant forces and
moments that allow the aircraft to fly as per the values provided.
The flight parameters data, such as position, Euler orientation,
velocity, and mass, are assigned in block parameters of

JANI, et al.: MODELING OF TERRAIN AWARENESS AND WARNING SYSTEM (TAWS) FOR FIXED-WING AIRCRAFT

737

the 6-DOF (Euler angles) block, which remains the same
throughout the computation. This simplifies the algorithm for
predicted path calculation and interpolation of elevation data
from the terrain. As shown in Fig. 2, the 6-DOF block takes
the input from the INPUT subsystem and static input values
from the data provided in the block parameters dialog box; a
schematic of the same is shown in Table 2.

2.4 	Six (6)-DOF Block with Euler Angles	
The 6-DOF (Euler angles) block implements the Euler

angle representation of the equations of motion for six degrees
of freedom. 6-DOF (Euler angles) block takes into account the
rotation of the body’s fixed coordinate system (Xb, Yb, Zb)
around the earth’s flat reference system (Xe, Ye, Ze).

Table 2. 	 Block parameters dialog box (tabular view) with
input values

Block parameters Value
Units Metric (MKS)
Mass type Fixed
Representation Euler angles
Initial position in inertial axes [Xe, Ye, Ze] [8500 0 -850]
Initial velocity in body axes [U,v,w] [0 -75 0]
Initial Euler orientation [roll, pitch, yaw]: [-0.05 0.1 -0.1]
Initial body rotation rates [p,q,r] [0 0 0]
Initial mass 1.0
Inertia Eye(3)

The origin of the body’s fixed coordinate system is the
center of gravity of the aircraft. Assuming the body is rigid,
this assumption does not need consideration of the forces
acting between the different mass elements. The flat earth
reference frame is considered to be inertial. The 6-DOF block
considers the forces/moments acting on the aircraft along with
the flight parameters data as input and gives inertial velocity,
body velocity, and Euler angles (psi, theta, phi) as output,
which are stored in outport (6-DOF data) in the form of signals
in the Simulink.

2.5	 Transformation of Coordinates and Orientation
The Euler angles and position coordinates are converted

into axis angles and VR coordinates (compatible with the
created VR Environment) using Euler to Axis Angle and Xe to
Xe VR blocks taken from MATLAB example of NASA HL-20
model.

Euler to Axis angles: It transforms the 6-DOF position
coordinates into VR coordinates.	

 Xe to Xe VR axes: It transforms the Euler angles suitably
to VR axis angles. 			

VR Sink Block: It produces animation based on the
inputs given from the Simulink model.

From the 6-DOF data, flight parameters such as climb/
descent rate (for example, vertical speed), position, heading,
and airspeed are computed. All the parameters are in the SI
units. These values are stored in the flight parameters block and
are given as input to the Algorithm Subsystem block, which
contains the MATLAB function block, interpreted MATLAB
function block, comparator, and so on. The algorithm
subsystem calculates the aircraft’s predicted position/altitude
and the terrain’s altitude (at the predicted aircraft’s position).
A detailed review of the Algorithm Subsystem and Warning/
Display Subsystem is described briefly in the succeeding
sections. The overview of the subsystems mentioned is shown
in Fig. 3.

3. 	 Developing the Algorithm
As stated in the introduction part, the algorithm is

divided into two subsections. The first subsection contains
detailed information related to the calculation for the aircraft’s
predicted position, while the second section describes briefly
the logic and method to fetch the terrain’s altitude from the
terrain elevation grid at the points corresponding to the
aircraft’s predicted position coordinates. The ‘MATLAB
Function Block’ and ‘Interpreted Function Block’ are used
for integrating the MATLAB code into the Simulink model.
Figure 4 represents the block diagram inside the Algorithm
Subsystem block.

Figure 2. 	 Simulink block diagram consisting of input, 6-DOF
block, and visualisation (output) subsystem. Figure 3. 	 Overview of various subsystems forming the part of

TAWS.

Figure 4. Block diagram of the algorithm subsystem.

DEF. SCI. J., VOL. 75, NO. 6, NOVEMBER 2025

738

3.1	 Predicting the Aircraft’s Position
Some specific flight parameters, such as position,

airspeed, heading, and vertical speed, are extracted from the
Flight Parameters block and used as input into the MATLAB
function block. Before writing the code, it is necessary to
provide the number of inputs and outputs information using the
syntax: function(output1, output2, output3, …., outputN) =
fcn(input1, input2, input3, …., inputN). Here, the inputs are
the flight parameters as described earlier, and the output is the
aircraft’s predicted position and predicted altitude assigned to
two variables named “ppred” and “palt”. The predicted altitude
is extracted by indexing the value at the third position from the
“ppred” variable (predicted coordinates).

A few assumptions are taken in the calculation of
the predicted position of the aircraft. One of them is the
consideration of the aircraft to be a rigid mass so that the
environmental and other external effects are neglected for the
time being. The motion of the aircraft is assumed to be linear.
Moreover, the flight parameters are assumed to be constant over
the entire computation time. Hence, the initial velocity is taken
to be 75 m/s. Also, it is assumed that the predicted position
is calculated every 30 seconds (time interval). Applying the
generic distance-velocity equations (distance = velocity*time),
it is found that the predicted position is calculated for
approximately 2250 m (2.25 km) ahead of the aircraft’s initial
position at every timestep. It has been found quite reasonable
since the dimension of the terrain tile in the MATLAB 3D
World Editor remains 13.89 km * 11.1 km. However, the size
of the terrain tile and the look-ahead distance are scaled down
compared to the real-life scenario to reduce the computation
time and complexity in configuring the VR environment. The
important formulas used for the predicted position calculations
are as follows.

(i) [𝑃𝑓𝑥, 𝑃𝑓𝑦, 𝑃𝑓𝑧] = [𝑃𝑖𝑥, 𝑃𝑖𝑦, 𝑃𝑖𝑧] ± [Δ𝑡 × (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)]
(ii) [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] = [𝑔𝑠 × 𝑐𝑜𝑠𝜃, 𝑔𝑠 × 𝑠𝑖𝑛𝜃, 𝑣𝑠]
(iii) 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ± Δ𝑃
(iv) Δ𝑃 = 𝑡𝑖𝑚𝑒 × [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]
where,
𝑃𝑓 = Final (Predicted) Position
𝑃𝑖 = Initial Position
Δ𝑡 = Time Interval
𝑔𝑠 = Ground Speed
𝑣𝑠 = Vertical Speed
𝜃 = 90 – Heading Angle
vx,vy,vz = Inertial velocities of aircraft in x, y and z directions,
respectively

NOTE: Suffixes x, y & denote the values in the x, y, and z
directions, respectively.

The MATLAB code12 in the form of an easily understandable
flow chart along with steps is shown in Algorithm 3. Moreover,
the code follows the syntax of MATLAB function block and
MATLAB script. The longitudinal and lateral velocities are
calculated by taking the components of ground speed in X and
Z directions, respectively. The value of the heading angle stored
in a variable named “hdg” is used for this purpose. The rate of
change of altitude of the aircraft is calculated by multiplying

the vertical component of the velocity with the time interval.
The vertical velocity is the sine of the climb angle times the
ground speed “gs”.

Algorithm 3. Calculate the Aircraft’s Predicted Position
and Altitude

1.	 Read the inputs from SIMULINK in MATLAB Function
Block.

	 function [ppred, palt] = fcn(p0,gs,hdg,vs)
2.	 Calculate the angle made by the aircraft in the horizontal

direction
	 theta = 90-hdg;
3. 	 Calculate the velocities in all the three directions.
	 v = [-gs*cosd(theta), gs*sind(theta), vs];
4.	 Calculate the predicted position for the time interval of

30 sec.
	 ppred = p0 - (30*v);
5.	 Calculate the predicted altitude from the initial altitude

and vertical speed.
	 palt = -p0(3) + (vs*30);

NOTE: The sign of the velocity vector is based on the
predicted position in either direction from the current position.

3.2 	Terrain Data Extraction
Once the terrain elevation data is imported into MATLAB,

a separate grid for the X and Z coordinates is generated by
taking a combination of suitable X and Z values so that the
terrain data can be allocated to them in the later stages. The
terrain generation code is further extended to accomplish this
task. The X grid contains all the X coordinate values indexed
in the horizontal sequence. Similarly, the Z grid contains all
the Z-coordinate values. The arrays of X and Z coordinates are
concatenated to form the coordinate combinations for the grid.
Further, the elevation values are assigned to every combination,
and, hence, the terrain elevation database is developed, which
is adaptable with the 3D Editor coordinates. The MATLAB
code developed for the said purpose is also briefly described
in Algorithm 4.

3.2.1 Code for Terrain Data Extraction
Algorithm 4. Generating Terrain Database and Retrieving

Elevation Values from It
1.	 Convert all the rows of the elevation grid into columns and

assign them to a variable.
	 E1 = Z(:);
2.	 Fill the missing values(NaN) in the grid with the constant

value “0”. Here, the missing value (NaN) represents that
the terrain’s elevation is the same as the Mean Sea Level
(MSL). Hence, “0” is appropriate for this purpose.
E1 = fillmissing(E1,’constant’,0),

3.	 Generate the grid with the following formulations. The
initial position to start the indexing of elevation points
is assumed to be (0,0). Considering 30m spacing and the
number of points equal to “nz” (in the case of X direction),
the last point will be located at a distance of (nz-1)*30
from the origin. The same holds true for the Z direction by
replacing “nz” with “nx”. Further, the transposes of both

JANI, et al.: MODELING OF TERRAIN AWARENESS AND WARNING SYSTEM (TAWS) FOR FIXED-WING AIRCRAFT

739

arrays are taken and assigned to new variables.
X1 = [0:30:(nz-1)*30];
Z1 = [0:30:(nx-1)*30];
X1 = X1’; Z1 = Z1’;

4.	 Using repmat() & repelem() functions, the matrix and
elements of X1 and Z1 matrices are repeated according to
the number of points in the X and Z directions, respectively.
X1 = repmat(X1, 371, 1);
Z1 = repelem(Z1, 464, 1);

5.	 Convert all the elements of the rows into columns to
facilitate concatenation at last.
X1 = X1(:);
Z1 = Z1(:);

6.	 Generate a terrain data grid F by concatenating all three
arrays X1, Z1, and E1.
F = [X1, Z1, E1];

Since in the terrain data grid, only the points at 30 m
spacing have elevation values, the “scatteredinterpolant()”
function is used to interpolate and return the nearest elevation
values at the points, which do not have the elevation data. It
is used to interpolate and return the values in case a of two-
dimensional or a three-dimensional grid. Further, the grid
is saved in the “.mat” file extension, which is further called
out using the Interpreted MATLAB Function block during
the compilation in Simulink. There are several interpolation
methods, which include “linear interpolation”, “natural
interpolation” and “nearest interpolation”. As the values
corresponding to the nearest neighbour can be easily retrieved,
“nearest interpolation” has been found to serve the purpose.
The code for defining the interpolation function and saving it
is as follows.

f = scatteredInterpolant(X1, Z1, E1, ‘nearest’);
save(‘grid.mat’);

Here, f is a scatteredInterpolant function containing
the arrays X1, Z1, and E1. The predicted coordinate values
are passed through the function, and interpolated terrain
elevation value(s) corresponding to the predicted coordinates
are returned. When the compilation (simulation) is started,
the Interpreted MATLAB Function block initializes the
function “f”, which takes the predicted X (“xp”) and Z
(“zp”) coordinates of the aircraft as an input and returns the
corresponding elevation value (“ep”) as the output. The terrain
database can be used as a template to develop more complex
databases as the obstacle system demonstrated in Yamamoto13,
et al., which operates on stereo pair satellite images capturing
the topological information and man-made obstacles.

3.2.2	 Comparison Between the Aircraft’s Altitude and
Terrain’s Elevation

Once the terrain elevation value (“ep”) is returned
from the Interpreted MATLAB Function block, it is fetched
into the comparator block and compared with the aircraft’s
predicted altitude. It makes use of a relational operator and
gives the output in the binary form. If the aircraft’s predicted
altitude is equal to or lower than the terrain’s altitude, it returns

the output as 1 (high), and, in other cases, it will return 0 (low).
The output from the comparator block is further fed into the
Warning and Display subsystem, which is discussed in the
following section. For this purpose, the output is stored in the
in-port.

4. 	 WARNING AND DISPLAY SYSTEM
The output value from the signal of the comparator block

that is stored in the in-port block is fed (from the out-port) as
an input to the switches, which forms the Warning and Display
sub-system, as depicted in Fig. 5.

Figure 5. Block diagram of warning and display subsystem.

The output from the first switch is fed into the node, which
contains the data for the fuselage geometry and appearance.
If the input to the warning system turns high (value becomes
1), it activates the circuit that turns the color of the aircraft
“red” as seen in the display window (Fig. 6). This indicates
that the aircraft’s altitude is unsafe relative to the terrain
along its predicted path for the next 30 sec. If the input to
the warning block is low (value becomes 0), the circuit with
grey color (which is the original color of the fuselage) coding
values is activated, keeping the color of the fuselage intact.
The “constant” blocks contain the color code for the intended
colors to be fetched into the switch when it gets activated.

The second switch is connected to the HUD text node of
the VR Sink block. The HUD text node helps to display the
text stored in the form of a string in the pre-defined region
in the animation window. If the comparator block returns the
value “1” (TRUE), the circuit with the string block containing
the warning message “TERRAIN…TERRAIN” gets activated,
and it further passes the signal to the VR Sink block to display
the message in the VR animation window. If the output from
the comparator block is “0”, the circuit remains grounded.
Hence, no message will be displayed as the aircraft is expected
to fly safely above the terrain at the predicted position (in the
upcoming 30 sec.).

The third switch contains the circuit for the audio
warning. The Simulink block, named “From Multimedia File”,
is used to read multimedia files containing audio, video, and
so on. As soon as the comparator returns the value “1”, the

DEF. SCI. J., VOL. 75, NO. 6, NOVEMBER 2025

740

circuit containing the sound file is activated and transmits the
signal to the Audio Device Writer, which produces the “Beep”
sound through the system’s built-in speakers or headphones
signifying the potential discrepancy in aircraft’s altitude in
comparison to terrain. In all other cases, the comparator value
will be “0”, and there will not be any aural warnings since the
circuit remains grounded.

The VR Sink block plays a very significant role when it
comes to displaying the simulation of the system. It contains
the data for the Virtual Reality (VR) World (terrain geometry
and aircraft in this case). Moreover, it also contains the input
ports connected to the nodes of various objects in VR World
to perform multiple actions based on the data transmitted from
the Simulink blocks in the form of signals. These systems and
subsystems (of Simulink) are solely responsible for the control
of the objects in the VR World using various static inputs given
by the user or the inputs embedded beforehand. In this way, the
aural and visual warnings are produced to represent the real-
time terrain awareness scenario to the user. Figure 6 shows the
animation representing the entire system that can be seen as the
final output by the users. The same simulation can be depicted
on the Multi-Functional Displays (MFDs) in the cockpit to
make the pilots aware more quickly compared to the visual
warnings with 2D maps.

modeled, analyzed, and simulated using MATLAB and
Simulink. The algorithm has been designed in such a way
that it detects the terrain in the environment by extracting the
elevation points in the grid along the aircraft’s path and provides
visual and aural warnings to the pilots to avoid accidents.
The final simulation has been carried out in the Simulink
3D Animation window, which illustrates the working of this
system in a real-time environment. This system can be used
in a wide range of applications, such as UAVs, drones, and so
on. The model can also be integrated with flight simulators for
a variety of purposes. Moreover, the existing two-dimensional
maps in the cockpit displays can be modified into 3-D maps
along with improvised visual warnings, as discussed in the
preceding sections. However, this paper mainly considers
static input where flight parameters remain uniform with time.
Also, it provides collision detection in a straight line along the
flight path. Further improvisations have to be done to provide
dynamic input options (such as control stick, yoke, and so on),
collision detection along a region (for example, a trapezoidal
boundary) in front of the aircraft instead of a straight line,
and providing the capability for automated actions based on
warnings (self-correcting the attitude) to avert the collision.

REFERENCES
1. 	 Helicopter–Enhanced Ground Proximity Warning System

Pilot’s Guide. Rev. C ed., Honeywell.
2. 	 Xiao, G., He, F. & Wu, J. Research on an EGPWS/TAWS

simulator with forward-looking alerting function. In
IEEE/AIAA 33rd Digital Avionics Systems Conference
(DASC). IEEE Xplore, 2014.

	 doi:10.1109/DASC.2014.6979554.
3. 	 Mullins, M., Foerster, K. & Kaabouch, N. Incorporating

Terrain Avoidance into a Small UAS Sense and Avoid
System. Infotech@Aerospace, 2012.

	 doi:10.2514/6.2012-2596.
4. 	 Gellerman, N., Kaabouch, N. & Semke, W. A Terrain

Avoidance Algorithm Based on the Requirements
of Terrain Awareness and Warning Systems. IEEE
Aerospace, 2015.

	 doi:10.1109/AERO.2015.7119101.
5. 	 Raj, S., Rastogi, P. & Kushvah, B.S. Matrix-Based

Method for Terrain Generation. Int. J. Comput. Sci. Inf.
Technol., 2016, 7(3).

6. 	 Lee, J. (2012). Modeling terrain awareness and warning
systems for airspace and procedure design. 2012 IEEE/
AIAA 31st Digital Avionics Systems Conference (DASC),
pp.2B2-9.

 	 doi: 10.1109/dasc.2012.6382283.
7. 	 Nyenke, C. and Qu, S., 2003. Development of Advanced

Terrain Awareness & Warning Display System.
8. 	 Hui, H., 2024, September. Research on forward-looking

warning algorithm and synthetic scene integrated
simulation system of TAWS. In International Conference
on Automation Control, Algorithm, and Intelligent
Bionics (ACAIB 2024) (Vol. 13259, pp. 716-723). SPIE.

9. 	 Lewis, E. and Vuong, N., 2012. Integration of MATLAB
Simulink® Models with the Vertical Motion Simulator.
In AIAA Modeling and Simulation Technologies

Figure 6. Simulink 3D animation window simulating the system.

5. 	 INTEGRATION OF THE SIMULINK MODEL
INTO REAL-TIME FLIGHT SIMULATORS
Over the years, MathWorks products, such as MATLAB

and Simulink, have been used extensively in the aerospace
industry, allowing the testing of complex systems before
the implementation of actual hardware. Hence, integrating
the models directly into simulators or cockpits instead of
reprogramming them can significantly reduce the programming
errors and bring down the simulation implementation and
validation time.

The process was developed for integrating the Simulink
models into a real-time flight simulator environment by Lewis et
al. (2012)9. This procedure makes use of Real-Time Workshop
(RTW), a MathWorks utility that generates C code from the
Simulink block diagrams with the external code resources
being handled through MATLAB’s S-function mechanism.
This procedure has been proven to be very efficient, maintains
the integrity of the function provided by the model, and gives
flexibility to the researchers to continue the development work
in the MATLAB environment.

6. 	 CONCLUSION
The terrain awareness and warning system has been

JANI, et al.: MODELING OF TERRAIN AWARENESS AND WARNING SYSTEM (TAWS) FOR FIXED-WING AIRCRAFT

741

Conference (p. 4797).
10. Chen, R. and Zhao, L., 2022. A resilient forward-

looking terrain avoidance warning method for
helicopters. Aerospace, 9(11), p.693.

11. 	 Brutzman, D. & Daly, L. X3D: Extensible 3D Graphics
for Web Authors. Elsevier, Amsterdam, Boston, 2007.
doi:10.1016/B978-0-12-373676-3.X5000-4.

12. 	 Rose, W. Controlled Flight Into Terrain (CFIT). [online]
Available at: https://in.mathworks.com/matlabcentral/
answers/1780440-controlled-flight-into-terrain-
cfit#answer_1027805 [Accessed on 22 December 2022].

13. Yamamoto, H., Homma, K., Gomi, H., Kitagata, S.,
Kumasaka, K. and Oikawa, T., 2003, March. Geographical
information system for flight safety. In Remote Sensing
for Environmental Monitoring, GIS Applications, and
Geology II, 4886, pp. 543-550. SPIE.

14. 	 USGS - U.S. Geological Survey. EarthExplorer. [online]
Available at: https://earthexplorer.usgs.gov/ [Accessed on
12 January 2023].

CONTRIBUTORS

Mr Akshat Jani is a postgraduate student at IIT-Kanpur in
the Department of Aerospace Engineering, specializing in
Aerodynamics. His area of research is Computational fluid

dynamics and in flight guidance, navigation, and control domain.
In the current study, he has conceptualized and developed
MATLAB algorithms for terrain data generation and extraction
and aircraft position prediction and comparisons with terrain
elevation. Moreover, he has also contributed to designing the
Simulink subsystems to make the algorithm work.

Mr M. Sarath Chandra is a postgraduate student in the
Department of Aerospace Engineering at Embry-Riddle Aeronautical
University, USA. His area of research include: Systems and
controls.
In the current study, he has brainstormed many ideas to
implement the feature of forward-looking terrain awareness.
He has also conceptualized how the warning and display
subsystem generates warnings in case of potential hazards.
He has made a notable contribution to developing and testing
various blocks in Simulink.

Dr S. Charulatha is an Associate Professor in the Department
of Aeronautical Engineering at Hindustan Institute of Technology
& Science, Chennai. Her area of specialization include: Avionics
and satellite remote sensing.
In the current study, she has helped in implementing the entire
collision avoidance algorithm through suitable mathematical
formulations, concepts from avionics and aircraft systems, and
so on. She has also helped to simplify the complex algorithm
to load, generate, and extract the terrain elevation data.

