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ABSTRACT

This paper introduces an Adaptive Wavelet-Based Correlation (AWC) model to enhance Digital Image Correlation 
(DIC) in complex noise and deformation conditions. Traditional DIC methods, such as Zero-mean Normalized Cross-
Correlation (ZNCC), often struggle with robustness in high-noise environments and intricate deformation patterns. The 
AWC model leverages wavelet transforms to improve local image analysis, offering increased accuracy and stability. 
Extensive validation demonstrates that AWC outperforms ZNCC in both precision and computational efficiency. In 
particular, the model proves valuable for structural health monitoring, material testing, and high-strain experimental 
mechanics, where accurate deformation tracking under noisy conditions is critical. The proposed methodology is 
implemented in MATLAB, and the full code is available for replication and further research.
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1. INTRODUCTION
Digital Image Correlation (DIC) has emerged as a 

cornerstone in non-contact deformation measurement 
techniques, widely utilized in fields such as material science, 
structural health monitoring, and geotechnical engineering. DIC 
offers precise, real-time insights into the deformation behavior 
of materials and structures by analyzing digital images captured 
before and after deformation. The traditional implementation of 
DIC heavily relies on Zero-mean Normalized Cross-Correlation 
(ZNCC) to match image subsets and compute displacement 
fields. ZNCC has been recognized for its computational 
efficiency and accuracy, particularly in scenarios involving 
linear and continuous deformations. However, its robustness is 
often challenged in the presence of noise, complex deformation 
fields, and discontinuities such as cracks and voids1-3. Recent 
advancements in DIC technology have sought to address these 
limitations by enhancing the precision, speed, and adaptability 
of the correlation algorithms4-5. For instance, Duan6, et al. 
proposed a convolutional neural network (CNN)-based DIC 
framework, known as DIC-Net, which eschews traditional 
correlation criteria in favor of a more robust pyramidal structure 
that can handle complex deformation fields. This approach 
significantly reduces the need for iterative computations, 
thus enhancing efficiency and potentially enabling real-time 

processing capabilities. Similarly, Chang7, et al. introduced 
a novel acceleration approach for ZNCC, implementing it on 
embedded GPUs, which demonstrated a 2X speed increase 
over traditional methods without compromising accuracy. This 
method utilized zigzag scanning to optimize data transmission 
and on-chip register utilization, achieving real-time 
performance on mobile platforms. In addition to improvements 
in computational speed, researchers have also focused on 
refining the accuracy of DIC measurements under challenging 
conditions. Zhu8, et al. explored the impact of varying subset 
shapes on the accuracy of strain measurements in airship 
envelopes, proposing a subset adaptive algorithm that adjusts 
the aspect ratio of subsets to enhance precision in different 
strain directions. This work underscores the importance 
of adaptive methods in improving measurement accuracy 
without altering the subset size. Furthermore, Baldi tackled 
the challenges posed by displacement discontinuities within 
the DIC framework9. By integrating the RANSAC algorithm, 
Baldi’s method selectively processes the largest domain within 
a subset, thus improving the robustness of the correlation in the 
presence of cracks and shear bands. The need for high-speed 
and accurate DIC techniques has also driven innovations in 
hardware acceleration. Zaripov and Renfu introduced a high-
speed technique based on parallel projection correlation, which 
accelerates ZNCC computation by up to 28.8 times, making 
it suitable for time-resolved measurements in high-speed 
applications10. Blug11, et al. developed a GPU-based 2D-DIC 
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system capable of achieving strain sampling rates of 1.2 kHz, 
with sub-millisecond latency, thereby facilitating real-time 
strain measurements in fatigue testing of materials such as steel 
and aluminum. In the realm of structural health monitoring, 
Azizi12, et al. applied DIC to monitor the vibrations of aging 
civil structures. The method allowed for the accurate extraction 
of vibration frequencies and mode shapes, even in the presence 
of damage, by analyzing displacement time histories. This 
application highlights the growing importance of DIC in non-
destructive evaluation and infrastructure monitoring, where 
traditional sensors may fall short. Despite these advancements, 
the inherent limitations of ZNCC—particularly its sensitivity 
to noise and inability to handle complex deformation patterns-
necessitate the exploration of alternative approaches. Variable 
subset algorithms, as proposed by Ma13, et al., and multi-
scale DIC techniques developed by Mehdikhani14, et al., 
offer promising directions by introducing more flexibility 
and precision in measuring discontinuous displacements and 
capturing deformation at multiple scales. 

These innovations are particularly relevant in the context 
of composite materials, where matrix cracks and voids play a 
critical role in the material’s mechanical behavior. Moreover, 
the integration of visual dimension measurement methods with 
DIC, as explored by Zhou15, et al., expands the applicability 
of DIC beyond traditional fields. By leveraging multi-camera 
systems and M-array coding, high-precision measurements 
with large fields of view can be achieved without mechanical 
movement, thus increasing both accuracy and speed. Given 
these developments, there is a clear motivation to introduce 
a more adaptive and robust approach to DIC-one that can 
maintain accuracy in the presence of complex noise patterns 
and varying deformation fields. 

The Adaptive Wavelet-Based Correlation (AWC) 
model, proposed in this work, addresses these challenges by 
utilizing wavelet transformations to analyze local changes in 
image structures at multiple scales and orientations. Unlike 
traditional DIC methods that are often limited by their reliance 
on linear correlation metrics, AWC leverages both phase and 
amplitude correlation of wavelet coefficients, providing a more 
comprehensive and resilient measure of image similarity. This 
approach is particularly effective in detecting subtle changes in 
speckle patterns and maintaining the integrity of the analysis 
under high noise conditions, such as those simulated by Lorenz 
noise. 

The entire methodology is implemented in the MATLAB 
software environment, utilizing advanced numerical techniques 
for wavelet decomposition and correlation computation. The 
complete code for the AWC model, including all necessary 
scripts and functions, is available for download at allowing 
for replication and extension of the work presented in this 
manuscript16. 

The objective of this study is to develop and validate 
the AWC model as a robust enhancement to DIC, ensuring 
greater accuracy in the presence of complex noise patterns and 
deformation fields. This advancement is particularly relevant 
for applications such as structural health monitoring, precision 
material testing, and biomechanical motion analysis, where 
traditional correlation methods face significant limitations.

2. METHODOLOGY
Traditional DIC algorithms, such as Zero Normalized 

Cross-Correlation (ZNCC), rely on the correlation between 
a reference and deformed image to compute displacement 
vectors. Although ZNCC provides a certain degree of 
accuracy,17 it is often susceptible to interference in the presence 
of complex deformations, noise, and lighting variations. This 
limits its applicability in demanding engineering and scientific 
applications where precision and robustness are critical. To 
overcome some of these limitations, this manuscript introduces 
an AWC model, which utilizes wavelet transforms for local 
image analysis across different scales and orientations. This 
methodology enhances the detection and measurement of 
deformations, particularly in the presence of noise and complex 
image changes, significantly improving the accuracy of DIC. 

Noise: 0.01, Deformation: 1.00 Noise: 0.01, Deformation: 3.25 Noise: 0.01, Deformation: 5.50

Noise: 10.00, Deformation: 1.00 Noise: 10.00, Deformation: 3.25 Noise: 10.00, Deformation: 5.50
(a) (b) (c)

(d) (e) (f)
Figure 1. Test images: (a) Noise: 0.01, Deformation: 1.00; 

(b) Noise: 0.01, Deformation: 3.25; (c) Noise: 0.01, 
Deformation: 5.50; (d) Noise: 10.00, Deformation: 
1.00; (e) Noise: 10.00, Deformation: 3.25; and  
(f) Noise: 10.00, Deformation: 5.50.

The AWC model uses wavelet transforms to analyze 
local image changes, decomposing images into frequency 
components while retaining spatial-temporal information. This 
makes it ideal for studying speckle patterns before and after 
deformation. Reference and deformed images with varying 
noise and deformation levels were generated to simulate 
real-world conditions, assessing the model’s accuracy and 
robustness. Both ZNCC and AWC methods were applied to 
evaluate their performance, with key results illustrated in  
Fig. 1, highlighting structural changes under noise and 
deformation.

2.1 Discrete Wavelet Transform
The Discrete Wavelet Transform (DWT) uses wavelet 

functions localized in time and space to analyze signals or 
images across multiple scales. Unlike the Continuous Wavelet 
Transform (CWT), DWT operates on discrete scales and 
positions, reducing computational complexity and enabling 
faster processing. It applies to both one-dimensional signals 
and two-dimensional image analysis. Mathematically, the 
DWT for a signal f(t) is expressed as:
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where, WI(j,kx,ky)- are the wavelet coefficients at scale j and 
positions kx and ky, I(m,n)- represents the pixel intensity of the 
image at coordinates m and n, yh and yv- are the horizontal 
and vertical wavelet functions used to decompose the image in 
two directions, and M and N- are the dimensions of the image. 
The DWT decomposes the image into different frequency 
bands, enabling the local analysis of changes within the 
image. At each scale, the image is split into approximations 
(low-frequency components) and details (high-frequency 
components), allowing for separate analysis of the horizontal, 
vertical, and diagonal components of the image.
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This formula represents a combination of phase and 
amplitude correlation of the wavelet coefficients from the 
reference image ys(k) and the deformed image fs(k) across 
different scales s. The parameters α and β are weighting factors 
that allow for the adjustment of the contributions of phase 
and amplitude correlation depending on the specific analysis 
conditions. Phase correlation measures the similarity of the 
phase components of the wavelet coefficients between the 
two images. This enables the detection of spatial translations 
and displacements, which is particularly useful in the case 
of complex deformations. Amplitude correlation, on the 
other hand, measures the similarity of the wavelet coefficient 
amplitudes, helping to identify changes in image intensity and 
contrast. By combining these two components, the AWC model 
provides a more robust and accurate measure of similarity 
between images. 

The unique advantage of the AWC model lies in the ability 
of wavelet transform to decompose an image into different 
frequency components, allowing for local-level analysis. This 
local analysis enables the detection of subtle changes in speckle 
patterns that are often invisible at the global level. Moreover, 
the wavelet transform retains spatial-temporal localization, 
ensuring that detected changes are precisely associated with 
the corresponding parts of the image. The AWC model is 
designed to be resilient to various types of noise and complex 
deformations. The optimization of the weighting factors α and 

β allows for the model’s adaptation to specific conditions, such 
as varying levels of noise or changing lighting.

2.2 Phase and Amplitude Correlation
The wavelet coefficients of an image provide information 

about the image’s frequency content across different scales and 
orientations. In the AWC model, we utilize these coefficients 
to compare the reference image and the deformed image 
through phase and amplitude correlation. Phase correlation 
measures the similarity of the phase components of the wavelet 
coefficients between the two images. The mathematics of phase 
correlation can be expressed as:
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where, 
1
( , , )IW x y s  and 

2
( , , )IW x y s  represent the wavelet 

coefficients of the reference and deformed images at scale  
s respectively, and “*” - represent the complex conjugate 
operation. Phase correlation is particularly effective for 
detecting translations between two images, as phase changes 
are directly associated with spatial shifts.

Amplitude correlation, on the other hand, measures the 
similarity of the amplitudes of the wavelet coefficients between 
the two images. The mathematics of amplitude correlation can 
be expressed as follows:
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s
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By combining phase and amplitude correlation, we can 
achieve a more robust measure of similarity that is resistant 
to noise and deformations. The combined correlation can be 
expressed as follows:

total phase amplitude( , ) ( , ) ( , )C x y C x y C x ya b= ⋅ + ⋅           (6)
where, 𝛼 and 𝛽 are weighting factors that determine the 
contribution of the phase and amplitude components in the 
overall correlation. 

2.3 Mathematical Optimization of Coefficients
The optimization of coefficients 𝛼 and 𝛽 is essential for 

achieving maximum performance of the Amplitude-Weighted 
Correlation (AWC) model. To optimize these coefficients, 
the Least Squares Method is employed, which minimizes the 
difference between actual and predicted deformation values. 
Mathematically, the objective is to minimize the error function:
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where, dtrue(i)  represents the true deformation values 
for the i-th sample, and Cphase and Camplitude are the phase and 
amplitude components of the correlation for the i-th sample. 
Optimization is achieved by minimizing the error function 
E(a,b) using numerical methods, such as gradient descent or 
other optimization algorithms.

2.4 Practical Implementation of the AWC Model
The practical implementation of DWT in the AWC model 

utilizes the MATLAB function wavedec2, which performs a 
2D DWT decomposition of the image at a specified number 
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of levels. Each decomposition level breaks down the image 
into approximation and detail coefficients (horizontal, 
vertical, and diagonal components). For example, a three-
level decomposition of the image I(x,y) can be represented as 
follows:

[ ], wavedec2( , , )cfs s I L y=                                         (8)
where, cfs - represents the wavelet coefficients of the 
image, s - is the structure containing information about the 
dimensions of the decomposed components at each level, L - 
is the number of decomposition levels, and y- is the wavelet 
function. The wavelet coefficients are then used to compute 
the phase and amplitude correlation between the reference and 
deformed images. After decomposing both images (reference 
and deformed), the phase and amplitude correlations are 
calculated using the coefficients. These correlations are then 
combined using the optimized values of a and b to obtain the 
final similarity measure between the images. The combined 
correlation, Ctotal(x,y) , serves as a metric for detecting 
deformations between the two images. The final phase 
correlation between images 𝐼1 and𝐼2 is defined as follows:

total
final

( , )( , )
s

C x yC x y
N

=
                           

(9)

where Ns is the total number of scales. This normalized 
correlation, Cfinal(𝑥,𝑦), is used for an accurate comparison of 
similarity between the reference and deformed images.

3. RESULTS & DISCUSSION
In the context of this study, the focus is on testing the 

performance and validating the optimized AWC model, which 
has been developed as a superior alternative to the traditional 
Zero Normalized Cross-Correlation (ZNCC) model. To verify 
its robustness and superiority under challenging conditions, 
Lorentzian noise, a complex form of disturbance, was used. 
The testing results are presented across several graphs, each 
providing insight into various performance aspects of the AWC 
model compared to the ZNCC model.

3.1 Use of Lorentzian Noise in Testing
Lorentzian noise, derived from the Lorenz system of 

differential equations, is highly chaotic and ideal for testing 
imaging systems under real-world, unpredictable conditions. 
Its sensitivity to initial conditions makes it valuable for 
assessing algorithm robustness. In DIC, Lorentzian noise tests 
a model’s resilience to irregular disturbances that complicate 
speckle pattern identification and deformation measurement. 
Incorporating this noise in validation reveals a model’s 
ability to tackle challenges common in industrial and natural 
environments.

3.2 Model Validation and Testing
The AWC model was validated through experiments with 

varying levels of Lorentzian noise (0.01–20) and complex 
deformations such as translation, rotation, and scaling, 
simulating real-world conditions. Performance metrics, 
including Mean Squared Error (MSE), Structural Similarity 
Index (SSIM), and Pearson’s Correlation Coefficient, were 
calculated to compare AWC with ZNCC, alongside execution 

time measurements to evaluate efficiency. Results demonstrated 
that AWC consistently achieved greater accuracy, precision, 
and computational efficiency, particularly under high-noise and 
complex deformation scenarios. This makes AWC a reliable 
and effective choice for advanced industrial and scientific 
applications requiring robust deformation detection.

3.3 Analysis of Test Results
The validation and testing results of the optimized AWC 

model are presented through a series of graphs, each illustrating 
key performance aspects of the model in comparison with the 
ZNCC model. As distributions of Lorenz noise increase, the 
AWC model demonstrates consistent improvement, reaching 
nearly a 15 % enhancement at a spatial noise distribution level 
of 20 %. This result indicates that the AWC model significantly 
outperforms the ZNCC model in handling images with high 
distributions of Lorenz noise. This improvement is attributed 
to the AWC model’s ability to more effectively analyse local 
changes in speckle patterns due to the wavelet transform 
employed in image analysis.
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Figure 2.  MSE comparison between AWC and ZNCC under 
varying levels of lorentzian noise.

In Fig. 2, which illustrates the Mean Squared Error (MSE) 
for the optimized AWC and ZNCC models, it can be observed 
that the MSE for the AWC model increases linearly from 0 to 
approximately 67 across a range of 0 % to 20 % Lorentzian 
noise. In contrast, the ZNCC model shows a constant MSE 
value of approximately 1 throughout the entire range of the 
analysis. This difference in behavior can be explained by the 
following aspects:
• Frequency component analysis: The AWC model uses 

wavelet transforms to break images into frequency 
components, retaining key details even as Lorentzian 
noise increases. This raises MSE due to noise-affected 
components but preserves critical deformation 
information. In contrast, ZNCC shows little MSE change, 
sacrificing accuracy

• Noise robustness: AWC’s rising MSE reflects resilience to 
higher noise levels, maintaining accuracy under complex 
conditions. ZNCC’s constant MSE reveals limited noise 
handling, leading to less reliable results in precision-
demanding applications.
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• Lower MSE values indicate better correlation accuracy. 
The AWC model maintains stable performance even under 
increasing Lorentzian noise, while ZNCC exhibits higher 
sensitivity to noise.

The AWC model maintains an almost constant Pearson 
coefficient value slightly above 3, whereas the ZNCC 
model shows negative values ranging between -2.5 and -3 
across the entire range of Lorentzian noise. This difference 
has significant implications:

• Linear relationship: The AWC model’s high, stable Pearson 
coefficient shows it maintains a strong linear relationship 
between original and reconstructed images, even in high-
noise conditions, due to effective speckle pattern analysis 
via wavelet transforms.

• Negative values for ZNCC: ZNCC’s negative Pearson 
coefficients indicate failure to preserve linearity, leading 
to errors in deformation measurement and unsuitability for 
high-noise, complex scenarios.

In Fig. 5, which shows the Structural Similarity 
Index (SSIM) values for both models, the AWC model 
maintains an almost constant SSIM value around 0.011, 
which slightly increases linearly to 0.013 across the range 
of 0 % to 20 % spatial distribution of Lorentzian noise. 
In contrast, the ZNCC model shows an SSIM value of 
0 throughout the entire noise range. This difference 
highlights several important aspects:

• Image structure preservation: SSIM measures the similarity 
between two images in terms of luminance, contrast, and 
structure. The high and stable SSIM values for the AWC 
model indicate that it successfully preserves key structural 
characteristics of the image, even under high-noise 
conditions. This is due to the wavelet transform, which 
enables detailed analysis and preservation of important 
image features, whereas the ZNCC model fails to maintain 
these characteristics, resulting in zero SSIM values.

• Significance for accurate measurements: Preserving 
structural characteristics is essential for precise deformation 
measurements. The high SSIM values of the AWC model 
provide confidence that the images are reconstructed in a 
way that enables accurate measurements, even in high-
noise conditions.
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Figure 3.  Execution time comparison of AWC and ZNCC across 
different noise distribution.

In Fig. 3, which shows the execution time for both models, 
we observe that the ZNCC model begins with an initial value 
of 0.26 seconds at 0 % noise, then slightly decreases to 0.23 
sec. at 5 % noise, maintaining this value for the remainder 
of the analysis. The AWC model, on the other hand, starts 
at a significantly lower initial value of 0.09 sec., drops to 
0.05 seconds at 5 % noise, and then maintains an almost 
constant execution time throughout the analysis. This result 
demonstrates several key advantages of the AWC model:
• Processing efficiency: The AWC model processes images 

faster than ZNCC across all noise levels, thanks to its 
optimized wavelet transformation. Its processing time 
remains stable even at higher noise levels, unlike ZNCC, 
which struggles to optimize under such conditions.

• Stability maintenance: The AWC model’s consistent 
execution time under high noise ensures predictability, 
making it ideal for real-world applications requiring 
efficient and reliable performance.
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Figure 4.  Comparative pearson correlation coefficient for AWC 
model and ZNCC model.

• Figure 4, which displays the Pearson correlation 
coefficient between the original and reconstructed images, 
clearly demonstrates the superiority of the AWC model. 
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Figure 5.  SSIM for optimized AWC model and ZNCC model.

Figure 6 shows the correlation dependence on deformation 
and distributions of Lorenz noise for the AWC and ZNCC 
models. The AWC model (Fig. 6(a)) demonstrates exceptional 
stability across various Lorentzian noise distributions, 
including the most complex conditions. Regardless of the 
increase in deformation and noise intensity, the AWC model 
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maintains high correlation accuracy, underscoring its advantage 
in speckle pattern analysis. In contrast, the ZNCC model  
(Fig. 6(b)) exhibits significant fluctuations and a loss of 
accuracy, further confirming the superiority of the AWC 
approach in demanding environments.
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Figure 6. Dependence of correlation on deformation and 
distribution of noise for: (a) AWC model; and (b) 
ZNCC model.
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4. CONCLUSIONS
This study introduces the Adaptive Wavelet-Based 

Correlation (AWC) model as an enhancement to Digital 
Image Correlation (DIC), particularly for analyzing 
complex deformations in the presence of noise. By utilizing 
wavelet transforms for phase and amplitude correlation 
analysis, the AWC model provides improved accuracy and 
stability compared to traditional ZNCC-based approaches. 
Experimental validation under Lorenzian noise demonstrates 
that the AWC model yields more consistent results according 
to key metrics such as Mean Squared Error (MSE), Structural 
Similarity Index (SSIM), and Pearson’s correlation coefficient. 

In addition to its advantages in image analysis, practical 
considerations such as computational efficiency and 
parameter selection must be addressed to facilitate real-world 
implementation. The potential applications of the AWC model 
include structural health monitoring, material testing, and 
biomechanical motion analysis, where reliable deformation 
tracking in noisy environments is crucial. Future research may 
focus on further optimization, including hardware acceleration 
and adaptive parameter selection, to enhance its applicability. 
The full MATLAB implementation of the AWC model is 
available for replication and further development.
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