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ABSTRACT

The choice of the right industrial robot is a crucial step in the development of the manufacturing firm because of
its impact on the production rate, output, and income-generating capacity of the firm. In the last decades, people have
started using tools from Multi-Criteria Decision Making (MCDM) to help them make better decisions. Nevertheless,
many questions remain unanswered in the literature regarding the usability of these methods in industrial robot
selection. To enhance the ability to evaluate and select industrial robots, this study introduces two new methods of
MCDM, which are named Sum Weighted Information (SWI) and Sum Weighted Exponential Information (SWEI).
The SWI method is developed from the Weight Information method, and the SWEI method is synthesized by the
Exponential Weight Information method. These approaches enhance decision-making accuracy in complex scenarios
where criteria weighting is crucial. Results indicate that SWI and SWEI provide robust, interpretable rankings,
facilitating well-informed decisions across various domains. The robustness of the proposed method was assessed
through a sensitivity analysis and further validated by comparing the ranking outcomes with those obtained using
the MOORA MCDM approach. The results demonstrate that the final rankings remain consistent, thereby confirming
the stability and reliability of the proposed approach.
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NOMENCLATURE
MCDM : Multi-criteria decision-making

SWEI : Sum weighted exponential information

SWI : Sum weighted information

SAW : Simple additive weighting

MEW : Multiplicative exponent weighting

ELECTRE : ELimination and choice expressing
reality

DMIM : Decision making by information measure

IDM : Information decision matrix

AHP : Analytic hierarchy process

TOPSIS : Technique for order preference by
similarity to ideal solution

MOORA : Multi-objective optimization method by

ratio analysis

1. INTRODUCTION

Examining a standard measurement is frequently not
sufficient to resolve the complex and disorganized nature of
real-world decision-making problems, which would lead to
the best outcome. Working in the marketplace necessitates an
understanding of the factors that lead to crisis circumstances
and insolvency. It is vital to know the parameters that determine
the creation and failure of viable alternatives. The analyst uses
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many criteria techniques to create a single criteria that capture
all the essential components of the situation. The decision-
maker must balance several competing goals. All fresh ideas
and prospective decision variations must be compared using a
variety of criteria. A decision-maker evaluates a finite number
of options to determine the best and rank them from finest to
nastiest, classify them into established homogenous groups,
or explain how well each alternative fulfills all the criteria at
the same time. There are a variety of approaches for rating
a collection of options based on a set of choice criteria. The
analyst uses a multi-criteria technique to construct different
criteria from various points of view. MCDM is a commonly
used decision methodology in scientific knowledge, industry,
and government that is founded on the concept of a complex
system and can assist in enhancing decision performance
and making decision-making clear, more logical, and more
effective.

In the actual world, a decision-maker must first
comprehend and articulate the circumstances. This step entails
determining and assessing stakeholders, various options for
possible activities, a huge number of diverse, relevant decision
criteria, information kind and superiority, and so on. It appears
to be the defining feature of decision-making as a ceremonious
methodology. The rules, metrics, and standards that guide
decision-making are known as the decision criteria described
by Demir, et al.'. Ye, et al.? suggested a broad definition of
criteria as a tool for comparing options based on a certain
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viewpoint. When developing criteria, the analyst should
take into consideration that all participants in the decision-
making process must agree on the evaluations that will be
drawn from the method. Criteria are metrics, norms, and
standards that influence decision-making, as well as a model
of preferences between the parts of a collection of actual or
fake acts (quite accurate but generally contradictory). Discrete
MCDM challenges, which involve choosing between multiple
investment projects, people rating difficulties, and financial
categorization problems, and are decision-support-focused, are
typical types of MCDM problems.

1.1 Motivation for the Study

To explicitly state the increasing role of industrial robots
in defense operations and the need for robust decision-making
tools to evaluate robot alternatives under multiple conflicting
criteria and uncertainty. The introduction highlights the gap in
current literature, where many models overlook probabilistic
or information-theoretic perspectives in such high-stakes,
high-precision environments.

1.2 Practical and Methodological Aims

This subsection now outlines both the practical goal-
supporting defense organizations in selecting suitable
industrial robots—and the methodological aim—developing
and applying entropy-based probabilistic MCDM models (SWI
and SWEI) that integrate uncertainty through information
theory principles.

1.3 Contributions of the Study
The main contributions in the study are:

*  Proposing and applying two entropy-based probabilistic
decision models (SWI and SWEI)

*  Demonstrating their effectiveness in ranking industrial
robot alternatives for defense systems

*  Comparing results with the MOORA MCDM to evaluate
the robustness of the proposed method

* Offering a probabilistic framework that reduces
dependence on subjective inputs.

The structure of the study consists of six sections.
Section 2 contains the literature review. The methodology of the
study and the approaches of the new SWI and SWEI methods
are presented in Section 3. The application of the proposed
study is provided in Section 4. The discussion and applicability
of the innovative SWI and SWEI methods are demonstrated in
Section 5. Finally, the conclusion and limitations of the study
are given in Section 6, where the results are summarized.

2. LITERATURE REVIEW

Many even complex questions have been explored
in partnership with experts from other fields of research
(e.g., mathematics), as Kaplinski®. Techniques and planning
approaches, as well as decision-making processes, evolve
with time Peldschus*; Zavadskas, et al.’>; Jakimavicius and
Burinskiene®; Ozkan, Baris, and Bulkan’; Ecer®; Biswas, et al.’;
Weil'% Tao'l, et al.; Stevic, et al.'?; Kannan, et al.'>; Brunelli
and Rezaei'.

MacCrimmon was the first to understand the need to
associate MCDM approaches, the importance of selected
difficulties, and the proposed classification of MCDM
approaches. Various comparison studies have been provided
in scientific studies. Brown, ef al.'® presented an analysis of
several similarity metrics that suggested logic-based (additive)
measures as suitable operational decisions. Guitoni and
Martel'® provided an operational method for determining
which MCDM technique is best for a given decision-making
circumstance. A comparison of MCDM approaches can be used
to make the decision. Zanakis, et al.'” tested the eight MCDM
approaches, including SAW, ELECTRE, and Multiplicative
Exponential Weighting (MEW), and found that MEW and
SAW achieved the best results. The outcome of the evaluation
is dependent on both the choice of the utility function and its
parameters, according to computations in many cases. The
taxonomy of MCDM approaches to rendering the information
type may be done in a variety of ways. One of the groups can
be used to classify approaches based on quantitative measures
and systems based on multicriteria utility theory.

The MCDM techniques have been gainfully important
in solving decision issues which entail many criteria, these
being in most cases conflicting. Such approaches can be
utilized especially in the area of strategic planning, like
infrastructure development, economic evaluation, and resource
allocation, where quantitative and qualitative variables are to
be considered on a structured basis. Biswas, et al.?* in their
study of infrastructure planning in an institutional environment
by use of MCDM-based strategy involving a girls’ hostel in
a university campus have outlined how MCDM techniques
can be applied to optimization of placing facilities. The
research study integrated a list of clear-cut criterion-including
accessibility, safety, the vicinity around academic buildings,
the availability of utilities, and environmental factors, to
compare and prioritize the possible sites that can be used in
building a girls’ hostel.

The methods, such as AHP and TOPSIS, were integrated
to give way to subjective preference aggregation and objective
decision-making. The paper indicated how it is possible to
improve the decision-making process of spatial planning within
the university setting using MCDM approaches, which would
offer a clear and repeatable process of stakeholder engagement.
Likewise, to a multi-criteria ranking of the Balkan countries by
the index of economic freedom, the paper by Puska, et al®
developed a new MCDM-based ranking model to rank the
countries.

This paper concentrated on assessing and comparing
economic performance and governmental arrangements of
the Balkan nations by creating a composite index based on
sub-indicators, including the property rights, freedom of
trade, health of fiscal systems, and integrity in government.
Fuzzy logic and hybrid weighting approaches, which were
employed, allowed the model to accommodate uncertainties
and vaguenesses that characterise socio-political data. The
comparative ranking method was not only indicative of the
financial status of the respective country, but it also made
forthcoming suggestions on how to make policy decisions and
regional development strategies.
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3. METHODOLOGY

A pair of approaches is suggested in this section for
decision-making scenarios: the SWI method and the SWEI
method. Both approaches are thoroughly described in the
subsection that follows.

3.1 Concepts of Information Measures

In the context of information theory, an information
measure is a method of quantifying the quantity of information
included in a message or an event. Information theory
is an applied mathematics field that studies information,
communication, and data transfer. It offers a rigorous
framework for measuring and analyzing the level of ambiguity
or surprise connected with various events or messages. The
“bit,” which represents the basic unit of information, is the
fundamental idea in information theory. A bit can have one of
two values: 0 or 1.

The goal of information measurements is to express
the quantity of information in bits or other relevant units.
Communication systems, cryptography, data compression,
error correction, machine learning, and computational
intelligence are all uses of information theory. The study of
Dwivedi and Sharma'® provides a ‘useful’ Renyi information
rate in terms of information measure. The study conducted
by Khan®, et al. investigates threats to data states in data loss
prevention using the concept of complex linear Diophantine
fuzzy relations.

In information theory, there is a direct relation between
the amount of information conveyed by an event or outcome
and its probability. Specifically, more information is associated
with less probable events, and less information is associated
with more probable events. Here is a simple way to understand
this concept:

3.1.1 High Information, Low Probability

When an event is improbable or rare, it is more surprising
and carries a higher amount of information. These events stand
out precisely because they are unexpected. For instance, a total
solar eclipse occurring in a specific location is a rare event and
conveys a significant amount of information when it happens.

3.1.2 Low Information, High Probability

On the other hand, when an event is highly probable, it
means that it is expected and not surprising. In such cases,
the event carries very little new information because it was
already anticipated. For example, the sun rising in the east each
morning is highly probable and does not provide much new
information.

This relationship is formalized by Claude Shannon’s
entropy formula, which measures the information content
of a random variable or event. The entropy increases as the
probability of an event decreases, indicating that rarer or less
probable events carry more information.

In summary, in the context of information theory, events
with a higher probability are associated with lower information
content because they are less surprising, while events with a
lower probability are associated with higher information
content because they are more unexpected. This fundamental
principle underpins the quantification of information and is
widely applicable in fields such as communication, statistics,
and decision theory.

According to information theory, information decreases
uncertainty (also known as entropy). The increase in likelihood
upon message receipt serves as the unit of information
measurement. We obtain the quantity of information (bits) in
the sense of Shannon’s entropy theorem?, if we accept the 4
information that we may anticipate with the probability P(4),
then it can be expressed in the amount of information by /(4)
as follows:

I1(A) = log, (L)

P(4)

If we wuse Shannon’s theorem to quantify the
amount of information, /(4) will be true. For example,
A,4,4,...... A, are the set of 9 alternatives and let their
probabilities of coming first rank be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, and 0.9, respectively. Then the amount of information
for these probabilities will be 3.332, 2.322, 1.737, 1.322,
1.000, 0.737, 0.515, 0.322, and 0.152, respectively. For the
alternatives, the relationship between probability and the
amount of information is illustrated in Fig. 1. It can also be
seen from Fig. 1 that when the amount of information about an
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Figure 1. The relation between probability and the amount of information.
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Table 1. The relation between probability and the amount of information

Criteria — Cq C, C3 C,
Alternative | Max or Min Max or Min Max or Min Max or Min
A, IDM, DM, , IDM, 5 DM, ,
A, DM, DM, , DM, 5 IDM,,,
As IDMs DM, DM 5 . DM,
A IDM,y, 1 DMy, IDM,y, 5 IDM,y, .,
Sum YR,IDM;y =1 Y2, IDM;, =1 X7, 1DM;3=1 ¥, IDM;; =1
alternative increases, the probability of that alternative coming 3.3.1 Step 1

first decreases; similarly, as the amount of information about
an alternative decreases then the probability of that alternative
coming first increases.

3.2 New Algorithm

In this section, we propose two new multicriteria
decision-making methods, SWI and SWEI. These are the new
methods in the existing literature; these may also be known as
Decision Making by Information Measure (DMIM) methods
in multi-criteria tactics. These algorithms can be applied to all
decision-making challenges with their criteria. The method
can become better and be used in MCDM problems. In the
context of information theory, events with a higher probability
are associated with lower information content because they
are less surprising, while events with a lower probability are
associated with higher information content because they are
more unexpected. This fundamental principle underpins the
quantification of information and is widely applicable in fields
such as communication, statistics, and decision theory. We are
using this principle in multicriteria decision-making.

3.3 Sum-Weighted Information

The SWI method can arguably be the most practical,
particularly for issues that only have one dimension. The best
alternative is the one that meets the expression given if there are
m alternatives and »n criteria. The Sum Weighted Information
will be the name of the governing assumption for this model.
Mainly in the Sum Weighted Information, each alternative is
measured for each criterion in its logarithmic value with base 2
by multiplication with the weight of the criteria, which means
each normalized value of the information matrix is multiplied
by the corresponding criterion’s relative weight. The amount of
information was measured in bits (binary digits). Later, all the
information is added as sum-weighted information. In other
words, the sum-weighted information is provided as the sum
of all information for each criterion. The SWI can be utilized
with ease in single-dimensional scenarios when all the units
are identical (for example, dollars, feet, and seconds). When
used to solve multi-dimensional decision-making problems,
this strategy has limitations. The additive utility premise is
thus invalidated by incorporating multiple aspects, and as a
result, different units. The process SWI method involves the
following steps:

To solve the MCDM problem, the decision-maker
develops the information decision matrix (IDM) in the first
stage:

al’l al’z al‘n
a2’1 a2'2 az’n

IDM;; =1 S R (1)
am,1 Amz Amn

In the second stage, the Information Matrix assigns the
criterion in particular values of the matrix where the alternatives
are scored based on the criteria shown in (1), For the beneficial
criteria, we will use (2), and for the non-beneficial criteria, we
will use (3) and the values are normalized as follows:

L= A
IDM; ; s )
37 1/a,-,j
DM, = st 3)

The value JDM; ; shows the probability of each attribute
of i alternative in the ;j” the criterion, where the sum of all
probabilities of each alternative for the criteria will be 1, i.e.,
Y, IDM;; =1 where, i=1,2,...m (alternative rows) and
j=1,2,...n (alternative coloumns). Table 1 represents a more
generalization of JDM, ; for criteria.

3.3.2 Step 2

In this step, using the previously determined SWI, the
total amount of information for each possibility is computed
independently.

For example, if we want to calculate the amount of
information for the first alternative 4, with corresponding
attributes a,,,a,,4,5...4,, ina dec1s1on matrix IDM,, , Where
i=1,2,3,...n altematlve and j=12,3,...n criteria w1th the
probability distribution DM, ;,IDM, ,...IDM, , and the
corresponding criteria weight w,w,,w, ...w .

This might be denoted as IDM; and define it as follows:

1 1
IDM; = w; log, (1 oA 1) + -+ wy, log, <1DM1n)

Similarly, the amount of information for the remaining
alternatives can be calculated as:

1
IDM; = wy log, (IDM ) + -+ wy log, (IDM )

1 1
IDM’ = 1 |+t l ———a
" Wl og2 <IDMm,1> Wn ng <1Dan>
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Finally, the generalized amount of information for i
alternatives is denoted by IDM; and it can be written as the
following Eqn. (4):

SWI = IDM] = Y7, w; log, (ﬁ) @)
3.4 Sum-Weighted Exponential Information

The SWEI method is different from the SWI model.
The major distinction is that, as a substitute for the addition-
weighted in the model, there is an exponential-criterion
weight. Each alternative is measured for each criterion in
its logarithmic value with base 2 by exponential weight.
And later, all the information is added as sum-weighted-
exponential information. This means each normalized value
of the information matrix is raised to a power equal to the
relative weight of the corresponding criterion. Therefore, in
general, measuring the information of the alternatives can
be calculated. Both single- and multi-dimensional decision-
making issues can be solved using the SWEI. Bits are the units
used to quantify information (binary digits). This method’s
advantage of employing relative values rather than exact
values is a benefit. This is especially important in sectors such
as data compression, where understanding the expansion of
information as the number of potential symbols or messages
rises is critical for effective coding and compression techniques.

The process of the SWEI method involves the following
steps:

e The first step is the same as the SWI

*  The second step is the same as the SWI

e The total amount of information for each alternative
is computed individually based on the SWEI method
outlined earlier.

For example, if we want to calculate the amount of
information by the SWEI method for the first alternative 4, with
corresponding attributes a, .a,,.a,,...a,, in an information
decision matrix IDM,, with the probability distribution
IDMy1,IDM; ,IDM; 3 ...IDM;, and the corresponding
criteria weight w,w,,w,...w . This might be denoted as IDM]
and define it as follows:

” 1 w1 1 Wn
IDM; = (l"gz (Wu)) ot (l"gz (Wl»

Similarly, the amount of information for the remaining
alternatives can be calculated as:

" 1\ 1 O\
DMy = (1og2 (m)) ot (log2 (m))

IDM” =1lo —_— +--+1{lo —_—

" ( &2 (IDMmJ)) ( & (IDMm.n>>
Finally, the generalized amount of information for i

alternatives is denoted by IDM;’ and it can be written as the

following Eqn. (5):

wj
SWEI = IDM}' = ¥, (logz (ﬁ ))
Lj

®)

Here, a base-2 logarithm in Eqn. (4) and Eqn. (5) has a
logarithm was chosen because bits (binary digits) are used to
measure the amount of information for attributes and i=1,2,...m
and j=1,2,...n. In terms of information processing, this can be
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immediately translated as the number of bits needed to express
the criteria. After measuring the information from (4) and
(5), the calculated amount of information will be arranged in
descending order of the received amount of information. The
main reason for taking it in descending order is that a higher
amount of information about an alternative gives a lower
probability of that alternative; this means that the chances of
that alternative coming first are slim to none. And less amount
of information about any alternatives provides a higher
probability of that alternative, which means that the alternative
is most likely to come first. In Eqn. (4) and Eqn. (5), w, is the
weight of the j” criterion. The smallest amount of information
(IDM;)and (IDM I) is the best choice because the value of the
normalized data is closer to zero. The process of the SWI and
SWEI methods is demonstrated in Fig. 2.

3.4 The Entropy Method

Shannon’s entropy plays a pivotal role in MCDM by
providing a quantitative framework for managing uncertainty
and information. It is utilized to determine the weights of
criteria, ensuring that decision-makers can prioritize effectively
based on objective measures of uncertainty. Additionally,
entropy quantifies the information content of alternatives and
criteria, which is essential for developing robust decision-
making models that can handle complex and uncertain data.
This approach also aids in modeling decision-making under
uncertainty, allowing for informed choices despite the inherent
unpredictability of the data. For example, a study by*' has
applied the Entropy method combined with fuzzy VIKOR in
the selection of a supplier. The study by?* combined the Entropy
method and the Fuzzy Comprehensive method to evaluate the
operational capability of the data fabric solution selection. The
Entropy method can be summarized in 5 steps?’2’:

Step 1: As the first stage, a decision matrix (DM)
containing criteria and alternatives is created, according to (1).

Step 2: The values of the decision matrix are normalized
with the help of Eqn. (6). The S value in Eqn. (6) shows the
normalized value.

o =

LJ Zﬁl ai, j (6)

Step 3: After the normalization process, the entropy value

of each criterion is obtained using Eqn. (7). The value of H, in

the Eqn. shown below represents the entropy of the jj criterion.

Yj=15ijlogz s;j
Hj - log, m ™)
Step 4: In the last step, the weight of each criterion is
obtained with the help of Eqn. (8).
l—H]'
Wi =gr——
] 7]?=1 1-H; 3
The value of w, in Eqn. (8) represents the objective
weight of the criterion is represented. Through the application
of the entropy method, these objective criterion weights are
determined.

3.5 The MOORA Method
The Multi-Objective Optimization Method by Ratio
Analysis (MOORA) is a part of the initial introduction given
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by Brauers and Zavadskas®! in the early 2000s; the method
emerged as a strong and step-wise methodology of finding or
resolving an intricate MCDM problem. A notable early use of
MOORA was suggested in 2004 by Brauers and Zavadskas as
an advance on the classical ratio-based approaches to decision-
making, and especially as applicable to decision situations
where both benefit- and cost-type measures are to be considered.
There is a possibility of employing its use in determining the
most suitable alternative, which is assessed by some criteria
that are considered favourable and/or unfavorable™.

The application of the MOORA method includes three
basic steps:

Step 1: As the first stage, a decision matrix (DM)
containing criteria and alternatives is created, according to (1).

Step 2: The values of the decision matrix are normalized
according to (9) using vector normalization.

aj j

" aiz,j )

Vi, j

Step 3: The MOORA score for each alternative is
measured by the following Eqn.:
yi = Z§'=1 Wi j — Z}'l=t+1 W;U; (10)
where w; is the weight of the 7 alternative for j=1,2....f and
j=t+1,t+2...n criterion.

In the final ranking, alternatives with higher scores are
considered more favorable. The alternative with the highest
score is identified as the optimal choice, whereas the one with
the lowest score is regarded as the least desirable.

4. APPLICATION

We identify the top arc welding robots in this section.
Table 2 displays an information decision matrix based on
various selection criteria for arc welding robots and the source
of the data taken from the study ?'. The data on the eight robots
of arc welding was collected using the following five criteria:

average power consumption (C-1) unit k.w., mechanical
weight (C-2) unit kg, payload (C-3) unit kg, repeatability
(C-4), unit (+/-) mm, maximum reach (C-5) unit mm. The
information decision matrix is shown in Table 2. Indicators for
maximum (‘Max”) advantageous criteria and minimal (‘MIN”)
cost criteria were indicated by the improvement optimization.
The robot’s power consumption, for example, falls
within the non-beneficial criteria (a lower value is desirable
for the minimization problem). Criteria play an important
role in the selection of any arc welding robot, such as weld
quality, material compatibility, safety and environmental
considerations, productivity and efficiency, mechanical weight,
cost, payload capacity, industry standards and regulations,
future flexibility, etc. In this study, the following five important
criteria were considered while choosing an arc welding robot:
e The robot’s average power usage in kilowatts (C-1): This
relates to the average power units utilized by the robot. It
is a non-beneficial condition because it is often desired for
a robot to consume less electricity
*  Robot’s mechanical weight in kilograms (C-2): It is a
non-beneficial criterion since buyers often prefer lighter
robots, which relates to the physical weight of the robot
e The robotic payload in kilograms (C-3): This refers to
the entire weight an automated device can lift in a single

Table 2. Information Decision Matrix (IDM) for arc welding

robots.

Robots | C-1 C-2 C-3 C-4 C-5
criteria — Min Min Max Max MAX
Robo-1 1 145 12 0.02 1441
Robo-2 0.5 27 7 0.018 911
Robo-3 0.6 170 4 0.05 1500
Robo-4 34 272 20 0.04 1650
Robo-5 2 250 25 0.02 2409
Robo-6 5.6 230 10 0.05 1925
Robo-7 2.5 105 6 0.15 4368
Robo-8 5.05 215 8 0.08 1801

Create an Information Decision Matrix (IDM)
where i = 1,2, ...m alternatives (Rows) with j =
1,2, ...n criteria (Columns) where a, ,, > 0.

@11 Q12 o Qip
Qz1 Az = Ozp
IDMU =1 : : : ;

g Gm2 Amn

The total amount of information for each
alternative is calculated separately according to
SWI (Sum Weighted Information) and SWEI
(Sum Weighted Exponential Information), where
w; is criteria. Finally, lower and higher
information score got the first and last rank.

1

SWI = IDM{ = ¥.7_, w;log, (ﬁ)
iy

Hﬂ'j
SWEI = IDM]' = ¥, (log2 (ﬁ))

SWI AND SWEI METHODS FOR DECISION-MAKING

Calculation of probabilities in the Information
Decision Matrix (IDM) for the beneficial criteria,
and non-beneficial criteria with following
equations.

DM, ; = L

0 2
21:1 “i,}

Beneficial criteria

1/ay,
I, ey

IDM;; = Non-beneficial criteria

Calculate the weight of the criteria for each
alternative of information decision matrix IM;,
where i = 1,2, ...m alternatives (Rows) with j =
1,2, ...n criteria (Columns). The weight of criteria
can be evaluated with any methods that exist in the
literature where 0 < w; < 1 and X.7_, w; = 1. The
term IDM;; are the probabilities of attributes for
beneficial and non-beneficial criteria of the
information matrix where Y.7_, IDM, ; = 1.

Figure 2. Conceptual model of SWI and SWEI MCDM.
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revolution. It is a beneficial criterion because it is often
preferred to be more

*  Repeatability in millimeters (C-4): This term describes
the robot’s capacity to repeat a given job repeatedly.
Repeatability is a beneficial criterion since it is often
regarded to be higher

*  Maximum reach in millimeters (C-5): It is the average of
the maximum horizontal and vertical distance to which a
robot can extend its arms to do the task. It is a beneficial
criterion because it is typically desirable to be higher.

4.1 Entropy Method for Weight Calculation

To calculate the weight of the criterion, we apply
Shannon’s entropy method for generating the objective criteria
weights?. Dwivedi and Sharma'®*% used Shannon’s entropy
approach to derive the objective weight in the present work.
Figure 3 represents the variation of the criterion weights. It is
clear from Shannon’s entropy that the weights of the criteria
are respectively. We calculate the weight of the criterion,
such as w =0.291 for average power consumption, w,=0.130
for mechanical weight, w,=0.182 for payload, w,=0.283 for
repeatability, and w,=0.114 for maximum reach. The sum of
all these weights is one, which satisfies the condition of the
criterion weight i.e., Z;;l w; = 1, where O<wj<1.

C-5

C-4 R T YR
OSSR e S R 01182

C-2 e

C-1

0.000 0.100 0.200 0.400

Weight
Figure 3. Entropy criterion weight variation.

0.300

4.2 Alternative Ranking by SWI and SWEI

In this part, we rank the alternatives by normalizing the
original decision matrix using Eqn. (2) and Eqn. (3) for the
benefit and cost criteria, respectively. In addition, the C-1 and
C-2criteria are cost criteria (lower value better), whilst the others
are benefit criteria (higher value better). The criterion weights
are then used in the SWI and SWEI techniques to produce
ranking results that are compatible with the methodology. The
normalized values of the information decision matrix, which is
the first stage of the proposed technique, are shown in Table 3.
For example, the normalized value first robot, Robo-1, for the
attributes a,,,a,,...a, ; can be calculated for cost and benefit
criteria as follows:

e 1/a;;
DM, . = — 224
MR 1/a

1/1
141/0.5+1/0.6+1/3.4+1/2+1/5.6+1/2.5+1/5.05

IDML]_ =

562

7 1/a;;
IDM; ; = o) —
i=11/ai;

DM, | = 1

L1 7 141/0.5+1/0.64+1/3.4+1/2+1/5.6+1/2.5+1/5.05
DM, , = !

11 7 14241.667+0.294+0.500+0.179+0.400+0.198
— 1
IDM1,1 - @ - 0160
DM, , = L/145

12 7 1/145+1/2741/170+1/272+1/250+1/230+1/105+1/215
— 0.007
IDMI,Z =

0.007+0.037+0.006+0.004+0.004+0.010+0.005

IDM, , = % = 0.091

Similarly, for beneficial criteria can be calculated by

ai]-
DM, | = =l
b TiRiai;
S 12 12
IDM1'3 = = —
1247+4+20+25+10+6+8 92
IDM1’3 = 0.130
— 0.02
IDM, , =
14 ™ 0.02+0.02+0.05+0.04+0.02+0.05+0.015+0.08
S 0.02
IDM, 4 = =2 = 0.047
IDM, - = 1441
15 7 1441+911+1500+1650+2409+1925+4368+1801
ID 41 0.090
1 = U
> 716005

Similarly, other attributes for the remaining alternatives
have been calculated accordingly. The calculated value has
been tabulated in Table 3.

After calculating the normalized value for the alternative,
applying (4) and (5) to calculate the information score for
SWI and SWEI MCDM, respectively. Here we calculate the
information score for these two methods one by one. Firstly,
we calculate the information score for 1% alternative by SWI
MCDM as follows:

l 1
IDML- = 7]7=1 W]- logz <W>

! 1 _1
IDM; = 2?21 w; log, (—Wi) = wy log, (W1 1) +

1 1
w;, log, (le) +....+wslog, (W15>
IDM; = 0.291 X log, (0 160) +0.130 X
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1
log, (0.091) + 0.182 % log, ( ) + 0.283

0.130

1
% log, (0 047) +0.114 X log, <0 09())

IDM; = 0.291 x 2.641 + 0.130 x 3.462 + 0.182 x
2.639 + 0.283 x 4.426 + 0.114 x 3.473
IDM; = 0.768 + 0.450 + 0.533 + 1.251 + 0.398

IDM; = 3.401 bits.

12 n 1 Wj
IDM;" = ¥4 (logz (W”))

n L - Wl
IDM]' = %, wjlog, (mi ,-) N (log2 (Wu» ’

1 W2 1 Ws
(log2 (m» to (logz (W5)>

1 0.291 0.130
IDMy" = (Ing (0 160))

982\ 5001
1 0.182 1 0.283
(logz (0_130)) * <10g2 (0.047))
1 0.114
(IOgZ (0.090))

IDM7 = (2.641)%2" + (3.462)%13% + (2.639)%18% +
(4.426)%283 4 (3.473)0114

IDM{' = 1.327 + 1.175 + 1.216 + 1.523 + 1.153
IDM;' = 6.394 bits.

Table 3. Normalize Decision Matrix (NDM) for cost criteria
and benefit criteria

Robots | C-1 C-2 C3 C-4 C-5

criteria — Min Min Max Max Max
Robo-1 0.160 0.091 0.130 0.047 0.090
Robo-2 0.321 0.487 0.076 0.042 0.057
Robo-3 0.267 0.077 0.043 0.117 0.094
Robo-4 0.047 0.048 0.217 0.093 0.103
Robo-5 0.080 0.053 0.272 0.047 0.151
Robo-6 0.029 0.057 0.109 0.117 0.120
Robo-7 0.064 0.125 0.065 0.350 0.273
Robo-8 0.032 0.061 0.087 0.187 0.113

After normalizing the decision matrix, we calculate
the sum-weighted information by (4) and the sum-weighted
exponential information by (5) based on the information
provided regarding the factors describing the arc welding
Robots. Table 4 shows the sum-weighted information and the
sum-weighted exponential information, respectively. After
measuring the amount of information, we ranked the arc
welding Robots in descending order.

Upon examining the eight robots based on five criteria—
average power usage, mechanical weight, robotic payload,
repeatability, and maximum reach—the rankings revealed
an unexpected outcome. This suggests that Robo-7 excelled
in balancing the evaluated parameters effectively, potentially
optimizing functionality in ways beyond raw data metrics.
According to the results from Table 4, the amount of
information of Robot-7 is 2.900 bits of information by SWI
and 6.127 bits of information by SWEI, respectively. Similarly,
Robot-6 has obtained 3.836 bits of information and 6.560 bits
of information through SWI and SWEI methods, respectively,
which is more than Robot-7. Hence, Robo-7 got the first rank,
and Robot-6 was placed last in the list of robots.

This could imply inefficiencies or trade-offs in its design
that prioritize certain attributes, like payload capacity or reach,
at the expense of other critical factors such as power usage
or repeatability. Therefore, the robots taken in this study
can be grouped according to the information obtained using
SWI and SWEI methods in arc welding machinery and may
be ranked from first to last as follows: Robo-7 > Robo-2 >
Robo-3 > Robo-1 > Robo-5 > Robo-4 > Robo-8 > Robo-6.
The ranking of these alternatives may be seen in Fig. 4. The
rankings highlight the importance of holistic performance
rather than isolated strengths. Evaluating robots on multiple
criteria enables nuanced assessments, ensuring that the best-
performing robot aligns with practical, balanced operational
demands rather than simply maximizing specific metrics.

4.3 Sensitivity Analysis

A fair and impartial evaluation of the options is guaranteed
by the equal weight method’s validation of results for robot
selection in the defence industry within the MCDM area. By
recognizing each evaluation criterion as equally important in
the decision-making process, the equal weight method gives
them all the same weight. This method offers a solid foundation
for comparison and sheds light on the consistency and fairness
of the selection results. The equal weight technique enables an
unbiased aggregation of performance across various variables,

Table 4. Ranking of arc welding robots by SWI and SWEI methods

C-1 C-2 C-3 C-4 C-5 SWI SWEI
ﬁti):)eitiil_y Min Min Max Max Max Score Rank score Rank
Robo-1 0.768 0.450 0.533 1.251 0.398 3.401 4 6.394 4
Robo-2 0.477 0.135 0.675 1.294 0.473 3.055 2 6.143 2
Robo-3 0.554 0.479 0.821 0.877 0.391 3.123 3 6.234 3
Robo-4 1.282 0.567 0.400 0.968 0.375 3.593 6 6.467 6
Robo-5 1.059 0.552 0.341 1.251 0.313 3.516 5 6.430 5
Robo-6 1.492 0.536 0.581 0.877 0.350 3.836 8 6.560 8
Robo-7 1.153 0.389 0.715 0.428 0.214 2.900 1 6.127 1
Robo-8 1.448 0.523 0.640 0.685 0.361 3.657 7 6.475 7

563



DEF. SCI. J., VOL. 75, NO. 5, SEPTEMBER 2025

9 6.6
3 6.55
6.5
‘? T
6.45
6 —
\ 6.4
5 A
6.35
4
\ 6.3
3
6.25
2 6.2
1 6.15
0 6.1

Robo-1 Robo-2 Robo-3 Robo-4

0 SWI Score . 0 SWI Rank

Robo-5 Robo-6 Robo-7 Robo-8

—=—SWEI Rank —0—SWEI Score

Figure 4. Ranking illustration of arc welding robots by SWI and SWEI methods.

including power consumption, payload capacity, mechanical
weight, repeatability, and maximum reach, which are all
examined in the defence industry. To ensure a fair comparison,
each criterion is normalized to remove the impact of different
scales or units. The scores for each robot are then aggregated
to compute an overall performance index.

By employing this equal weight technique, the validation
procedure confirms if the robot that was first chosen matches
the one that is ranked highest when all criteria are given equal
weight. Potential biases in the weighting or prioritization of
criteria during the first analysis may be indicated if the equal-
weight method results show a considerable difference from
the primary decision-making results. On the other hand,
comparable outcomes demonstrate how sound the decision-
making process was and validate that the chosen robot is a
well-rounded option that can satisfy defensive specifications.

Furthermore, the equal weight technique emphasizes the
trade-offs between criteria, determining if particular robots
thrive in specific domains while underperforming in others.

This allows decision-makers to guarantee that the selected
robot performs consistently across all relevant metrics. Finally,
confirming findings using the equal weight technique lends
legitimacy to the decision-making process, guaranteeing that
the best robot is chosen for defensive applications.

The five criteria—power consumption, mechanical
weight, payload capacity, repeatability, and maximum reach—
were given equal weight to guarantee the validity of the
robot selection procedure. This approach offered an objective
baseline for comparison by giving each criterion the same
weight. All of the robots’ normalized scores were combined
to provide a thorough assessment. The reliability of the chosen
robot and the consistency of the decision-making process were
confirmed by comparing the outcomes of this method with the
initial rankings. We are taking the weight as follows:

=W .

Ipti ical weighli Wpaylaad capacityi I/Vrepeatabiliz‘y

=W =0.200

maximum reach

power ¢

The validity of the proposed methods, SWI and SWEI,

Table 5. Ranking comparison by equal weight and entropy weight method

Alternative Entropy weight approach Equal weight approach

robots SWI score SWEI score Ranking SWI score SWEI score Ranking
Robo-1 3.401 6.394 4 3.387 6.366 5
Robo-2 3.055 6.143 2 3.020 6.098 2
Robo-3 3.123 6.234 3 3.326 6.321 3
Robo-4 3.593 6.467 6 3.535 6.406 6
Robo-5 3.516 6.430 5 3.384 6.334 4
Robo-6 3.836 6.560 8 3.722 6.481 8
Robo-7 2.900 6.127 1 2.857 6.095 1

Robo-8 3.657 6.475 7 3.621 6.438 7
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Figure 5. Ranking the robots with the entropy and equal weight method.

will be checked using Eqn. (4) and Eqn. (5), respectively.
Table 5 shows the information scores and ranking for the
proposed SWI and SWEI methods with equal weights and
entropy weights for the criteria. We give a bar graph in Fig.
5, which represents the comparative information scores of the
alternative robots in a visual format. This visualization helps to
quickly identify top performers among the ranked items.

4.4 Ranking Comparison by MOORA MCDM

In this subsection, we compare the robustness of the
ranking of the proposed methods with the MOORA MCDM
method. Firstly, the decision matrix is constructed for MOORA
MCDM according to (1), in the first step from the raw data
shown in Table 2. In the second step, the data is normalized
using (9). Finally, in the third step, calculate the final score of
each alternative by (10) and rank the alternatives in descending
order. The alternative with the highest score is identified as
the optimal choice, whereas the one with the lowest score
is regarded as the least desirable. Table 6 shows the ranking
comparison of SWI and SWEI by MOORA MCDM with the
entropy weighting method. Figure 6 provides a comparison of
the ranking results.

The ranking results presented in Table 6 indicate that
Robo-7 consistently achieved the 1st rank across all evaluation
methods. Robo-2 secured the 2nd position under the proposed
method, while it attained the 4th rank using the MOORA

Table 6. Ranking by the SWI and SWEI method.

Entropy weight approach

Alternative
robots SWI SWEL Ranking MOORA Ranking
score  score score

Robo-1 3401 6394 4 0.046 5
Robo-2 3.055 6143 2 0.054 4
Robo-3 3.123 6.234 3 0.060 3
Robo-4 3.593 6.467 6 0.010 6
Robo-5 3516 6430 5 0.069 2
Robo-6 3.836  6.560 8 -0.080 8
Robo-7 2900 6.127 1 0.224 1
Robo-8 3.657 6475 7 -0.026 7

[ I T S V- )
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Figure 6. Ranking comparison of SWI and SWEI with the
MOORA method.

method. Robo-3 was ranked 3 by both the SWI and SWEI
methods, as well as by the MOORA method. Robo-1 was
placed 4" by the SWI and SWEI methods, while it received
the 5th position according to the MOORA method. Robo-5
occupied the 5" position in both the proposed methods, while
it achieved the 2™ position using the MOORA method. Robo-
4 and Robo-8 were ranked 6™ and 7%, respectively, across all
three methods with the same entropy weights. Finally, Robo-
6 consistently received the 8th (last) rank across all methods,
regardless of the weighting strategy.

5. DISCUSSION

The current analysis has shown that Robot-7 is the best
alternative out of the eight different robotic welding automated
appliances under examination. In addition, the research has
ranked several other options, assisting industrial concerns in
making decisions based on availability and available resources.
By the application of SWI, SWEIL, and Entropy MCDM
approaches, this study has fundamentally made a substantial
addition to the literature on decision-making linked to choosing
an industrial arc welding robot and assisted industrial houses
in making judgments quickly and easily. Although there is a
lot of research work available in the literature related to robot
selection, there is no study exists in the literature for robot
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selection related to information measurement. Therefore,
the purpose of this study is to select a robot selection on
information measurement.

The evaluation of eight robots using five criteria—average
power usage, mechanical weight, robotic payload, repeatability,
and maximum robot reach in millimeters—revealed intriguing
insights into their performance rankings. Notably, Robot 7
achieved the first rank with a lower information score for these
parameters, while Robot 6, with a higher information score,
was ranked last. This outcome emphasizes that performance
rankings depend not just on individual parameter magnitudes
but on the overall balance and suitability for intended
applications.

Robot 7’s success in securing the top position in entropy
weight, as well as equal weight, suggests that it may have
achieved an optimal balance among the criteria. For instance,
it could possess efficient power usage and a lightweight design,
enabling superior repeatability and functionality within a
specific operational context. This indicates that its design
likely emphasizes practicality and operational efficiency over
sheer capacity or reach, demonstrating that raw numbers alone
do not determine effectiveness.

The SWI method employs a straightforward linear
weighting scheme, providing a transparent mechanism for
prioritizing decision criteria. In contrast, the SWEI method
applies an exponential weighting function, allowing for more
refined differentiation in scenarios that are important for
nuanced criteria. Both methods offer flexibility and adaptability,
enabling decision-makers to tailor weight adjustments based
on specific requirements. To demonstrate the effectiveness
and applicability of these methods, an empirical case study in
defence systems is presented within the context of robot project
selection, a field that demands rigorous MCDM approaches.

Conversely, Robot 6’s last-place ranking, despite having
higher values, suggests potential design inefficiencies or
trade-offs. For example, its larger mechanical weight or
excessive power usage may have offset its advantages in
payload capacity or reach, making it less suitable for scenarios
requiring precision or efficiency. This outcome underscores the
importance of considering all criteria collectively rather than
focusing on maximizing individual metrics.

The results highlight the significance of tailoring robot
designs to specific use cases rather than pursuing one-size-
fits-all solutions. The interplay between factors such as
power consumption, weight, and reach should align with
the operational needs. For decision-makers, this analysis
reinforces the need to evaluate robots holistically, considering
their ability to meet practical demands rather than relying
solely on high performance in isolated criteria. This approach
ensures the selection of robots that deliver balanced, effective,
and context-appropriate solutions.

Arc welding robots are integral to the defence sector,
playing a vital role in manufacturing, maintaining, and
repairing critical equipment and structures. These automated
systems leverage advanced welding technologies to deliver
high precision, consistency, and efficiency, meeting the
stringent demands of defence applications.
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5.1 Applications of Arc Welding Robots in the Defence
Sector
5.1.1 Manufacturing of Military Vehicles and Equipment
5.1.1.1 Armored Vehicles and Tanks
Arc welding robots are used to assemble heavy armor
plating and structural components, ensuring welds are robust
and defect-free. This enhances the durability and safety of
vehicles operating under extreme conditions.

5.1.1.2 Naval Vessels

For ships and submarines, arc welding robots contribute to
constructing hulls, bulkheads, and other structural components.
They handle complex geometries and high-strength materials
required for naval applications.

5.1.2 Construction of Specialized Infrastructure

Defence infrastructure, such as missile silos, radar
stations, and protective shelters, relies on strong and precise
welding. Arc welding robots ensure these structures meet high
standards of safety and resilience.

5.1.3 Weapon Systems Fabrication

Modern weapon systems, including missiles and
artillery, involve intricate welding of components made from
advanced alloys. Arc welding robots provide the precision and
repeatability needed to meet the exacting tolerances required
for such systems.

5.1.4 Maintenance and Repair
5.1.4.1 Combat Equipment

Defence equipment faces wear and damage during
operation. Arc welding robots are employed for maintenance
tasks, such as restoring worn surfaces and repairing damaged
components, thereby extending equipment lifespan.

5.1.4.2 Naval and Aerospace Repair

These robots are particularly valuable for repairing ships
and aircraft, where downtime needs to be minimized. They
perform complex welds in confined spaces with speed and
accuracy.

5.1.5 Prototype Development and Testing

* Arc welding robots are instrumental in developing
prototypes for new defence technologies. Their ability
to produce consistent welds allows researchers to test
designs reliably and iterate quickly

e Prototypes for advanced weaponry, vehicles, and
aerospace components often require welding of exotic
materials, a task robots excel in.

5.2 Advantages of Arc Welding Robots in Defence
5.2.1 Precision and Repeatability

Robots consistently deliver high-quality welds, reducing
the likelihood of defects that could compromise safety or
performance.

5.2.2 Enhanced Productivity
Robots operate continuously at high speeds, reducing
production timelines for critical defence projects.
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5.2.3 Safety for Human Workers

Automating welding tasks in hazardous environments
minimizes exposure to risks such as intense heat, sparks, and
toxic fumes.

5.2.4 Cost-Effectiveness
Despite high initial costs, robots’ lower long-term
expenses by reducing waste, rework, and production errors.

5.3 Future Prospects

As defence technologies evolve, arc welding robots are
expected to incorporate advanced features like Al-driven
quality control, adaptive welding techniques, and improved
mobility for field repairs. These advancements will further
enhance their value in creating innovative, resilient, and
efficient defence solutions. In summary, arc welding robots
are indispensable in the defence sector, enabling high-quality
production, efficient maintenance, and rapid innovation, all of
which are crucial for national security.

6. CONCLUSION

The purpose of this research is to identify the most
suitable commercial robot for arc welding. For decision-
making, eight alternatives were chosen, and five criteria/
attributes were considered. Using the robot’s parameters, the
best robot is selected using the SWI and SWEI procedures. To
calculate the objective’s weights of relevance to the traits and
criteria, the entropy weights approach is used. According to the
results, Robot-7 was the first to be chosen using both SWI and
SWETI approaches. It has an average maximum reach of 4368
mm, and repeatability of 0.15 (+/-) mm with features like a
payload of 6 kg, mechanical weight of 105 kg, and an average
power consumption of 2.5 kW. The next alternative may be
used if the first alternative is not readily accessible on the
market. The SWI and SWEI techniques are more statistically
straightforward and have the potential to yield more precise
findings. Moreover, the robot’s product line may be expanded
to include additional characteristics and options. It is possible
to incorporate subjective weights and identical weights when
determining significant assignment weights.

The study is dedicated to the formulation, comparative
analysis of two information-theoretic, probabilistic MCDM
techniques, called the SWI and SWEI, within the concept
of the measures of information and probability theory. Such
techniques are used when particular consideration is given
to the evaluation of defense systems, and there is a need to
make critical decisions under circumstances of uncertainty and
competing goals. The principle of the SWI method rests on
the Shannon entropy and the direct weighting of information.
In the SWEI method, the exponential information content
transformation is used, which displays greater sensitivity to
differences between alternatives. The methodology entails the
fact that probability is inversely proportional to the information
content, such that the alternatives that are more uncertain or
information-rich have a greater impact on the decision-making
process.

The case in point imparts knowledge of how information
substance that runs based on criterion-level probabilities could

be used to make formidable, data-driven rankings about the
course of options of the defense systems. It indicates that
SWETI increases discrimination among close necessities in
similarly measured performances by inflating the significance
of high-information character traits, which can prove helpful
in instances of differences in performance that are slight.
Mathematical basis is subsequently provided to every
technique, extensions, as well as algorithmic procedures and
normalization schemes that increase the replicability as well as
generalizability in various fields.

The study can have some relevance to administrative
implications in the defense decision-making wherein resource
allocation, threat prioritization, as well as system selection
are performed based on multi-criteria evaluations in the light
of uncertainty. The methods follow up the traditional scoring
methods by extending them using probabilistic MCDM tools
based on the principles of information theory, where uncertainty
quantification is allowed, and weighting data and extracting
weighting data are done without subjective information. The
suggested framework will be of use to the increasing literature
in the field of entropy in decision-making, and the generalized
applicability of the framework can be found in the areas of risk
assessment, intelligent systems, and strategic planning.

6.1 Limitations of the Study

»  Data Requirements: To effectively estimate probabilities
or entropy, information measurement methods may need
a large amount of data. Obtaining sufficient data for all
requirements may be difficult in some circumstances

» It contains an excessive number of pairwise comparisons;
it may encounter issues because of the dependency
between the alternatives and the criteria

e No result may be produced if a certain value in the
initial decision matrix is zero. It is this method’s biggest
drawback.
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