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ABSTRACT 

In deploying robots for security and safety applications, the robot should fully explore one region of the 
environment, such as a room, before proceeding to other regions. To achieve such a behaviour, this article proposes 
an enhancement of the hierarchical exploration algorithm titled ‘Technology for Autonomous Robotics Exploration’ 
(TARE). The algorithm uses region predictions to select appropriate parameters, with regions being user inputs or 
algorithm outputs. The enhancement includes a new viewpoint selection algorithm which uses a region’s boundary to 
filter the viewpoint choices for local path formation, ensuring full exploration of the region before moving elsewhere. 
The algorithm is assessed by two criteria: (1) active viewpoints’ count during exploration, and (2) cumulative wait 
time for viewpoints visit i.e., from identification of a viewpoint to robot’s visit to the viewpoint. Simulations were 
conducted in Long-T and Garage environments. In Long-T and Garage environments, the proposed algorithm’s 
maximum active viewpoints were 10 and 12, versus TARE’s 37 and 60. The average time to visit a viewpoint is 43 
and 289 sec. for the proposed algorithm vs 294 and 448 sec. for TARE’s. Future work will evaluate manipulation 
actions on objects in the environment to aid exploration and coverage.
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1. 	 INTRODUCTION
Search and rescue, area coverage, and inspection of an 

unknown environment are among the common applications of 
autonomous robots1,2. These applications make exploration and 
coverage in an unknown area key capabilities of autonomous 
robots. Exploration is the capability of a system to identify 
a goal or a path to move toward the unknown region to gain 
awareness of the complete environment as soon as possible3. 
Coverage refers to sweeping the area with a sensor so that 
every point in the environment is within the sensor range 
during the traversal by the robot4.

In large-scale 3D environments, challenges include 
(i) efficiently covering the area without oscillations and 
redundancy in travel paths, (ii) managing computational load, 
and (iii) quickly covering identified sub-regions5-6. Robots are 
typically equipped with sensors e.g., 3D LiDAR and optical 
cameras etc., for navigation. They may also have payload 
sensors e.g., chemical detectors and specific cameras for object 
detection etc. which generally have shorter ranges.

In this article, the focus of the exploration and coverage 
solution is on completing coverage of sub-regions of the 
environment as soon as possible [point (iii)]. The navigation 
sensor’s perception range, being greater than a coverage 
sensor’s, is used to predict the environment’s structure (region 
type and polygonal boundaries etc.). Consider an operational 

requirement of exploration and coverage of the system in the 
identification of an object or chemical presence in an unknown 
environment. For safety, deciding early on to cover a part of 
the environment is preferred. Each detected or given part, e.g., 
a room, corridor, or bounded open region etc., should be fully 
covered before exploring another area. The TARE5 algorithm 
is one of the better-known solutions for online exploration 
and coverage. An instance of planning run with the TARE 
exploration algorithm is shown in Fig. 1.  The image shows 
the robot travelling a long corridor but not fully covering the 
side walls, which may not be desirable for some security and 
safety applications. This article proposes a solution to  prevent   
such   an   expected behaviour. The contribution made in this 
article includes a proposal for enhancement of the hierarchical 
exploration and coverage planning framework with the 
following:
•	 A viewpoint selection algorithm to prioritize the 

completion of the exploration and the coverage of a 
region. The region is assumed as input to the system.

•	 Generate local coverage paths based on the bounded 
region.

The control flow is implemented using a Behavior-Tree7 on 
ROS28. The terrain analysis module and the Garage simulation 
environment from Autonomous Exploration Development 
Environment (AEDE)9 are used. The f﻿irst claim is that the 
average wait time for a viewpoint is reduced. The wait time 
is defined as the time elapsed from selecting a viewpoint to its 
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being visited by the robot. Since the choice of a viewpoint to 
visit will increase the wait time for some other viewpoints, the 
first claim implies that the cumulative sum of wait time for all 
viewpoints will be reduced. The second claim asserts that the 
number of viewpoints yet to be visited remains minimal during 
the exploration.

Section II presents a review of the literature. Section 
III provides a formal definition of the problem. Section IV 
explains the proposed algorithm. Section V presents the results 
of the simulation study.

2. 	 LITERATURE REVIEW
Solutions to autonomous exploration and coverage 

of an unknown region have been attempted from multiple 
approaches. A brief discussion of approaches follows:

2.1 	Frontier-Based Approaches
A frontier10 defines a boundary between the known (free 

and obstacle) and unknown regions on the map. The map is 
represented as a grid of cells or voxels that are labelled as 
known or unknown. For environments in 3D, analogous to 
a frontier is known as a surface point11. A robot gains spatial 
awareness on moving through the frontier, i.e. moving from 
the known towards the unknown region. The literature focuses 
on the selection of the frontier among the candidates based on 
area or volume gain12-13 energy efficiency14, change in travel 
speed and heading15-16, or a utility function which combines 
area or volume gain and distance travel as cost components11,13 
etc. Information-theoretic approaches of frontier selection 
aim to reduce the uncertainty in the output of Simultaneous 
Localization And Mapping (SLAM) algorithms by evaluating 
the choice of a viewpoint for loop closure as part of the process. 
Such works are also known as Active-SLAM. A survey on 
Active-SLAM has been presented by Placed et. al.17.  Most 
such approaches assume the presence of one sensor for both 
exploration and coverage. In our work, the coverage of the 
environment is performed with an additional sensor, the range 
of which influences the selection of viewpoints. 

2.2 	Sampling-Based Approaches
A sampling-based approach draws a random sample for 

the next goal of exploration in the neighbourhood, checks 
whether a robot can travel to it, and arranges them in a Rapidly-

Exploring Random Tree (RRT)18 or in a Rapidly-exploring 
Random Graph (RRG)19 like data structures for selection of 
the path. The next waypoint of the path is selected based on the 
maximum information gain20, speed of travel21 etc. Approaches 
selecting goals based solely on neighbourhood samples make 
short-sighted decisions, leading to suboptimal solutions. Some 
approaches solve this problem by combining the process with 
global planning; some such works are mentioned next.

2.3 	Hierarchical Exploration Approaches
The hierarchical exploration algorithms divide the 

computation at two levels: local and global. The local 
planning keeps computation cost within bounds by solving 
the exploration at fine resolution for a sliding window region 
around the robot. Global planning is performed at the coarse 
representation of the whole environment, guiding the direction 
of local exploration. Such hierarchical approaches can 
overcome challenges arising because of short-sighted decision 
horizons. 

In GBPlanner6,16, UFOExplorer22, FAEL23 and STAGE24, 
the local planner utilizes sampling-based approaches. FAEL 
uses a utility measure combining movement distance, 
information gain and coverage to select a path for the robot 
to follow. STAGE maintains a global traversability graph to 
manage the dynamic changes in the environment, e.g., the 
closure of a pathway. In TARE5,25 as well, the local planning 
utilizes a high-resolution environment map within a moving 
window centered on the robot, called the local planning horizon 
(LPH). The viewpoints are selected within LPH from a lattice 
of candidate viewpoints based on volumetric gain. The selected 
viewpoints are arranged in a travelling salesman problem (TSP) 
path. The global plan abstracts the environment into a coarser 
grid. Each cell in a coarser grid is called a subspace. The cells 
containing the active viewpoints are arranged in the TSP path. 
This paper presents an extension to the TARE algorithm.

2.4 	Partition Area, Semantic Influence Approaches
To localize the computation of exploration paths to a 

region, many approaches divide the spatial area into multiple 
regions. A Voronoi diagram has been built from the 2D 
occupancy map of the environment to extract the rooms26, 
doors27, and layout of the environment28,29. This layout can 
be used for planning the paths. The proposed algorithm also 

Figure 1. 	 (Best viewed in colour) A snapshot of the exploration process in a simulation world. The coverage sensor range is 12 m. 
The green square shows the part of the space (called subspace) that contains one or more viewpoint positions for the robot 
to visit.
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utilizes a similar method for the prediction of regions. The 
volumetric exploration algorithm30 has used object semantics 
for concurrent environmental inspection. In this approach, the 
planner operates for a set time, selecting viewpoints to fill the 
unknown part (holes) of the map. Once holes are filled, it plans 
the inspection with a coverage sensor30. In our algorithm, the 
exploration and coverage are performed concurrently rather 
than in a time-interleave manner. In HPHS31,32, the SLAM map 
is divided into uniform-size sub-regions. As the environment 
grows, so does the size of sub-regions. Exploration follows a 
global plan dictating their order based on a revenue function 
encompassing travel distance, orientation, and information 
gains. The proposed algorithm also uses regions for bounding 
the viewpoint selection area but the region is predicted based 
on the structure of the environment rather than on uniform size 
region decomposition of the space. 

2.5 	Online Coverage Path Planning (CPP) Approaches
The papers33,34 present a detailed survey of CPP 

algorithms. Online CPP approaches perform the decomposition 
of area into multiple regions/cells which are traversed in an 
appropriate pattern or order for a coverage task.  The cell size 
could be fixed at the start or approximated and varied at run 
time35 based on the coverage tool size or robot footprint. A 
Turing machine for exploration on a two-dimensional multi-
level tape has also been used36. The tape stores the environment 
as a hierarchical multi-scale tile, one scale at one level. An 
approximate cellular decomposition-based representation of 
the environment enables completeness of coverage, even when 
a part of the cell is occupied by an obstacle37. An approach38 
abstracts the environment into convex shape sectors which 
are connected by a Hamiltonian path, providing a visitation 
order of sectors. A minimum set of viewpoints is sampled 
along the path, connected by a TSP path, for performing the 
maximum coverage. The challenge with such approaches is the 
approximation of the cell size based on the coverage sensor 
tool, which could lead to uncovered spaces in the presence of 
obstacles if the cell size is too big. 

In many security applications, it is expected that a part of 
the environment can be covered and cleared for other activities 
by the operator. The focus of most of the above-discussed 
approaches is to explore and cover the environment as soon 
as possible without the specific intention of avoiding long 
wait times for identified viewpoints or covering an identified 
part of the environment before moving to other parts of the 
environment. This article presents an extension to TARE 
which utilizes the awareness of the environment in a selection 
of waypoints to solve this problem. The viewpoint selection 
in LPH is computed such that the region is fully covered 
before moving out of it. An area is fully explored when no 
further unseen area remains. A longer-range navigation sensor 
is utilized for region prediction, while the coverage sensor is 
employed for viewpoint selection for coverage of the region. 
The local planning is performed at a fine resolution so that 
uneven surfaces and parts of the environment can be covered. 

3. 	 PROBLEM DEFINITION
Let’s assume that the robot is equipped with a 3D LiDAR-

like navigation sensor Snav with range Rnav and 360° field of 
view. The robot also has a payload coverage sensor Scov with 
range Rcov and 360° field of view. Rcov << Rnav. The following 
assumptions have been made about the sensors: (a) the sensors 
Snav and Scov do not degrade with the change in environmental 
conditions during the exploration mission, (b) the coverage 
sensor provides certain detection within its perception range, 
(c) the sensors are co-located such that they do not interfere 
with each other. The deployment region under consideration is 
a bounded volume V 

𝑉𝑉𝐿𝐿 =  ⋃ 𝐹𝐹𝑣𝑣𝑣𝑣 ∈ 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑡𝑡   1 

𝑉̅𝑉 = 𝑉𝑉 − 𝑉𝑉𝐿𝐿 ∈  𝑉̅𝑉 

𝑄𝑄𝑖𝑖 =  𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
𝑖𝑖 −  𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 , ∀𝑣𝑣𝑖𝑖   ∈ 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡  2 

𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑄𝑄𝑖𝑖,𝑛𝑛
𝑖𝑖=1   ∀ 𝑣𝑣𝑖𝑖 ∈ 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  3 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑄𝑄
|𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡  |  4 

𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚𝑚𝑚𝑚𝑚{|𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡 | |∀𝑡𝑡 ∈ {1,2, … , 𝑇𝑇} }} 5 

 

 

 

 R3, which consists of many surfaces. 
The volume V consists of free regions (Vfree) and occupied 

regions (Vocc). A viewpoint  defines the pose of 
the sensor onboard the robot so that awareness and coverage 
of an unknown environment are obtained.  
defines a set of selected viewpoints by the robot till time t. 
Lt

visited ⊂ Lt
nav defines a set of viewpoints visited by the robot 

till time t or which are no longer providing awareness about 
unknown space. The set of active viewpoints, Lt

active, consists 
of viewpoints which have not been visited by the robot i.e., 
Lt

active = Lt
nav  − Lt

visited. A viewpoint is active till it is not visited 
by the robot or the area to be seen from the viewpoint has been 
seen by the robot from some other location. Since the sensors’ 
placement is fixed w.r.t. the robot-base frame, the location of 
the sensor viewpoints is derived from the robot’s trajectory. Fv 
∈ V be the surfaces perceived by Scov sensor at a viewpoint v. 
The perceived surfaces till time t are defined as
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𝑄𝑄𝑖𝑖 =  𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
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𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑄𝑄𝑖𝑖,𝑛𝑛
𝑖𝑖=1   ∀ 𝑣𝑣𝑖𝑖 ∈ 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  3 
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𝑡𝑡 | |∀𝑡𝑡 ∈ {1,2, … , 𝑇𝑇} }} 5 

 

 

 

      	            		            (1)
=V-VL denotes the not-covered surfaces. Let’s consider 

that V consists of mutually exclusive n regions B = {B1, B2, 
B3, ..., Bn}. V = {B1 ∪ B2 ∪ B3 ∪...∪ Bn}. These regions can 
be detected in the point-cloud map created using Snav. For a 
viewpoint vi Lt

nav, q
i
start and qi

finish define the time of selection 
of a viewpoint and the time till the viewpoint is active, 
respectively.

The algorithm aims to generate a volumetric map of 
the environment using Snav i.e., all surfaces are mapped, each 
region is seen using the coverage sensor Scov and coverage is 
completed as soon as possible. A voxel is said to be visited if it 
is within the range (Rcov) from any point in the robot’s trajectory.

Problem: Given , B,   Rnav, the current pose of the 
robot probot, the set of active viewpoints Lt

active, find a path P 
= {v1,v2,...,vn} for the robot, when followed, leading to the 
observation of surfaces in V such that the cumulative wait 
time spent covering the viewpoints (denoted as Q) is reduced 
as defined in Eqn. (3) and the count (denoted as A) of active 
viewpoints i.e., size of Lt

active at any time t ∈ T, is minimal, 
where T is the time instance at which the exploration finishes. 
A is defined in Eqn. (5).
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𝑉𝑉𝐿𝐿 =  ⋃ 𝐹𝐹𝑣𝑣𝑣𝑣 ∈ 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑡𝑡   1 

𝑉̅𝑉 = 𝑉𝑉 − 𝑉𝑉𝐿𝐿 ∈  𝑉̅𝑉 

𝑄𝑄𝑖𝑖 =  𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
𝑖𝑖 −  𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 , ∀𝑣𝑣𝑖𝑖   ∈ 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡  2 

𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑄𝑄𝑖𝑖,𝑛𝑛
𝑖𝑖=1   ∀ 𝑣𝑣𝑖𝑖 ∈ 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  3 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑄𝑄
|𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡  |  4 

𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚𝑚𝑚𝑚𝑚{|𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡 | |∀𝑡𝑡 ∈ {1,2, … , 𝑇𝑇} }} 5 

 

 

 

	          (5)
Eqn. (3) and Eqn. (5) define the first and second claims, 

respectively. The algorithm which results in lower values for 
Qavg, Q and A provides better results.
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4. 	 METHODOLOGY
The methodology employs hierarchical exploration, 

where local planning computes viewpoints and coverage within 
a sliding window around the robot, and global planning retains 
non-visited viewpoints as a path to guide the local horizon. 

Figure 2. High-level diagram of the exploration system. The exploration modules are built over the open-source TARE5 source.

The local exploration planning is enhanced with predictions 
of the environmental structure, identifying if the robot is in 
an open area or a closed area e.g., such as a room or corridor 
etc. This approach improves solutions, as defined in Section 3. 
It is assumed a module can predict attributes and boundaries 
of the spatial region in which the robot is currently standing. 
The region’s class is used to select algorithm parameters like 
the Local Planning Horizon (LPH) and the minimum count of 
frontier/surface cells for considering a cell cluster as a frontier 
or surface (min_count_unknown) etc. As the robot explores, 
the algorithm identifies new viewpoints, within B, and outside 
B (but within LPH), denoted as, sets LB and LLPH−B respectively. 
Once the robot covers B, it selects a viewpoint from LLPH−B 
for further exploration. The pseudo-code is detailed in  
Algorithm 1. The system uses a timer-based ticking mechanism 
in the behaviour tree to ensure the exploration of the current 
region before processing the next. Figure 2 illustrates the 
system diagram. The modules are discussed in subsequent 
sections.

4.1	 Simultaneous Localization and Mapping (SLAM)
SLAM module provides the state-estimation i.e., current 

robot pose and aggregated map of the environment. Since the 
navigation sensor is a range sensor, an online SLAM algorithm 
with input as point-cloud data is suitable for integration. It is 
assumed that the SLAM module will provide consistent robot 
localization and registered point clouds. In our experimentation, 
registered scans from the simulators have been used.

4.2	 Navigation Modules
ROS2 is used as a framework for the development and 

integration of the modules. The modules interact using ROS2’s 
service and action interface for control and data flow. Algorithm 
1 implementation is based on Behavior-Tree7. A behaviour tree 
enables ease of composition of behaviour based on different 
conditions without changes to exploration’s core source code. 

4.3 	Computation of Semantic Class of the Region
A region class detection module is implemented based 

on earlier works27-29, which processes point-cloud data and 
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map data generated using the navigation sensor (3D LiDAR). 
Online inputs from the operator could also provide the region 
and its attributes as input to the algorithm. Identification of 
the semantic class of a region and navigation through the 
environment can also be implemented using CNN-based 
solutions40. Since detection of the region and its attributes is not 
the focus of this work, such solutions have not been explored 
in this article.

then viewpoints (from LLPH−B) are selected to cover the space 
of LPH. For each viewpoint, an information gain is calculated 
as a count of frontier cells and surface cells as visible from the 
coverage sensor (Scov). Due to sub-modularity in exploration41, 
the overlapping fields of view among multiple viewpoints 
can reduce the potential information gain of viewpoints on 
selecting a viewpoint, which necessitates an adjustment of 
information gain for remaining viewpoints. Information gain 
for a viewpoint v within B is computed considering only the 
area inside B. Figure 3 shows viewpoint vi2 seeing cells C2 
and C3 outside the boundary, which are excluded from its 
gain calculation. Frontier and unknown cells like C2 are 
seen by viewpoints (e.g., vo1) beyond the boundary. External 
viewpoints within the LPH enable coverage of other regions, 
consequent to the coverage of B. Without this, exploration 
might wrongly assume no new regions exist beyond the current 
input.

4.5 	Local Planning: Forming a Path with Viewpoints
The algorithm for composing a path with the selected 

viewpoints is listed in Algorithm 3, which is as in TARE. The 

Figure 3. 	 The figure shows the visibility of frontier cells from 
viewpoints. The dashed edges show the visibility 
of cells outside the predicted region boundary by 
viewpoint vi2.

4.4	 Viewpoint Selection
A viewpoint defines a pose (3D) of the sensor on the 

robot. If a robot visits a viewpoint, it will lead to an unfolding 
of unknown space in the environment. In this work, a set of 
viewpoints is selected to view both the frontiers and surface 
cells. This approach allows exploration and coverage of the 
large empty region i.e., which lacks the presence of 3D surfaces 
in the environment. As the robot travels to a viewpoint, the area 
in line-of-sight of the Scov sensor is marked as covered. The 
pseudo-code for the algorithm is shown in Algorithm 2.

Similar to TARE, the viewpoints are sampled from a 
uniform pattern lattice in local planning horizon LPH, and 
the predicted region (B), if available. A minimum set of 
viewpoints, LB, is selected to cover B. If LPH is bigger than B, 
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only exception is that the local planning is  restricted  to  the   
viewpoints   which  are inside the region boundary. If an input 
region boundary polygon is available, it is used to select the 
viewpoints. These viewpoints are arranged in a TSP path for 
the robot to follow.

4.6 	Global Planning
The global planning process is as in TARE. The main aim 

of global planning is to guide the direction of exploration when 
there are no viewpoints available for selection in LPH. For 
global planning, the physical space is divided into pre-defined 
size cuboid cells, which are coarser in resolution than those 
used for local planning. This choice provides computational 
efficiency advantages.

Each cuboid is known as a subspace5. Each subspace may 
contain a list of selected viewpoints. The subspace could be 
in either of the following three states: “explored”, “unknown” 
and “exploring”. If the robot has never visited or covered any 
part of the subspace, it is in an “unknown” state. If a subspace 
has viewpoints, it is in an “exploring” state. If the robot has 
visited all viewpoints i.e., completely seen the space using the 
Scov sensor, it is marked in the “explored” state. As the robot 
moves, the unseen surface could become visible, resulting in a 
change of state from “unknown” to “exploring” to “explored”. 
The global path connects subspaces which are in an “exploring” 
state using a TSP path. The connection between the global path 
and the local path is maintained as in TARE. 

5. 	 SIMULATION EXPERIMENT
Simulation experiments were conducted to evaluate 

the algorithm in travel distance, exploration time, average 
wait time Qavg, cumulative wait time for viewpoints Q and 
maximum count of active viewpoints during the exploration 
(A). The proposed algorithm was compared with the TARE5,42 

and HPHS31,32. HPHS also employs the region-based approach 
for the completion of the exploration; therefore, it is a suitable 
candidate for comparison. The TARE algorithm is used as the 
benchmark algorithm as the proposed solution extends this 
approach. 

Table 1. Results of simulation experiments

World
name Method Coverage (%) Travel

distance (m)
Exploration
time(sec)

Qavg
(sec)

Q
(sec) A

Long-T TARE 100 1083±60 647±106 294 11785 37
Proposed 100 933±120 696 ±105 43 1183 10
HPHS 34 - - - - -

Garage TARE 100 4840±260 2400±143 448 62282 60
Proposed 100 5200±400 2700±247 289 33637 12
HPHS 13 - - - - -

Figure 4. Top-down view of the long-T simulation world.

Figure 5. 	 For the Long-T simulation world:(a) Shows the 
count of active subspaces during the exploration; (b) 
Statistics for the time spent in clearing a subspace;  
(c) and (d) Shows the trajectory travelled by TARE 
and the proposed algorithm. The VIBGYOR colour 
coding has been used. The last robot pose is shown 
in violet colour and the start robot pose is in red. 

(a)

(b)

(c) (d)



DEF. SCI. J., VOL. 75, NO. 5, SEPTEMBER 2025

552

For TARE, the results have been computed for subspaces 
that are in the “exploring” state. A subspace represents a small 
volume of space and may contain one or more viewpoints that 
are planned for a visit by a robot in the future. The viewpoints 
contained inside a subspace are geometrically near, and the 
centroid of the subspace can be considered representative of 
the viewpoints in the subspace. Therefore, a subspace is a 
sufficient replacement for a viewpoint for comparison of the 
algorithm. 

The simulation test environment and script for the 
generation of simulation results from AEDE9 have been 
adapted and used. The robot is equipped with 3D LiDAR 
with a 100m range. For the coverage task, data from the same 
3D LiDAR sensor acts as a mock-up coverage sensor, with a 
detection range truncated to 12m. The skid-steer robot is set 
to travel at a top speed of 2m/sec. The cut-off time for the 
simulation experiments was set at 60 minutes or 95 per cent 
of the area covered by the environment. HPHS does not have 
provision for parametrization of the coverage sensor’s range, 
the 3D LiDAR range of 100 m is used for the mapping module. 
The presented results are the average of ten runs. Simulation 
experiments have been performed on two simulation worlds: 
Long-T and Garage9.

Figure 4 shows the images of the Long-T simulation world 
which consists of two long corridors connected to a large open 
room.  The Garage simulation world consists of a five-floor 
structure of size 140m x 110m. The size of the environment 
is much bigger than the sensor horizon of Scov and Snav, which 
makes the task challenging.

Table I lists the results of simulation experiments for both 
simulation worlds. HPHS algorithm could not complete the 
exploration as the algorithm was suffering from the following: 
(i) repeated oscillatory assignments of goals before a visit to 
the existing goal (ii) the robot indefinitely trying to reach one 
goal (iii) failure to detect any feasible frontiers. The data from 
unsuccessful runs of the HPHS has not been considered for 
analysis. 

As shown in Table I, the total travel distance and 
exploration time for the proposed method are more than 
those of the TARE algorithm. This additional travel by the 
robot is attributed to multiple turns by the robot within the B, 
completing the region before moving ahead to other unknown 
regions. This additional travel is a trade-off for lesser wait 
time for viewpoints (i.e. Qavg, Q). Fig 5(d) shows the trajectory 
plot of one run of the algorithm on the Long-T simulation 
world, which shows the turns in trajectory to cover a region. 
The turns in the robot’s trajectory also led to a reduction in 
travel speed, which resulted in additional travel time. 

TARE’s exploration path prioritizes the robot’s current 
heading, reducing turns. Because of this behaviour, the 
algorithm tends to leave some areas partially covered before 
proceeding to subsequent regions. The algorithm’s trajectory 
requires the robot to return to the start position due to earlier left 
unvisited viewpoints, which is shown in Fig. 5(c). The count 
of active subspaces, A, during the exploration, is shown in Fig. 
5(a) and Fig. 6(a). This shows that the proposed algorithm is 
better at maintaining a lesser number of active viewpoints. The 
box plots in Fig. 5(b) and Fig. 6(b) also show that the proposed 

Figure 6. 	 For the Garage world: (a) Shows the count of active 
subspaces during the exploration; (b) Statistics for 
the time spent in clearing a subspace; (c) and (d) 
Shows the trajectory travelled TARE and proposed 
algorithm.

(a)

(b)

(c) (d)

algorithm results in a shorter wait time for viewpoints. These 
results demonstrate that the proposed method prioritizes the 
visit to active viewpoints in the neighbourhood, therefore, 
covering the region much earlier.

6. 	 CONCLUSION
This article proposes an enhancement of the hierarchical 

exploration algorithm TARE to satisfy the operational 
requirement of the security agencies to cover a region before 
moving to the other regions in the deployment environment. 
The algorithm uses predictions about the class and boundary 
estimates of the perceived region to select parameters that 
influence viewpoint selection and local path formation. A 
new viewpoint selection algorithm restricts viewpoint choices 
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based on sensor coverage within the predicted region, before 
selecting viewpoints outside the region for further exploration. 
Our simulation experiments study demonstrates that the 
proposed algorithm exhibits the desired behaviour of exploring 
the current input region before moving to other regions. The 
proposed algorithm performs better than TARE on the (i) 
average and cumulative wait time of the viewpoints, and (ii) 
count of active viewpoints during the exploration process. 

7. 	 FUTURE WORK
One of the limitations of the current work is an assumption 

about the availability of the prediction of the regions in the 
environment and perfect sensors’ detections throughout the 
detection range. The proposed algorithm will perform poorly 
in case of incorrect predictions. Also, the assumption about 
sensors’ accuracy may not hold e.g., for a chemical sensor 
acting as a coverage sensor the certainty of detection will vary 
at the detection distance. In case of errors in the navigation 
sensor, a solution based on the Active-SLAM approach will be 
required. An enhancement of the existing work will be taken 
up as future activities to relax these assumptions.

In current work, the robot does not engage with the 
environment during the exploration and coverage processes, 
a consideration which may impede effective deployment in 
cluttered settings. In future, the algorithm will be augmented to 
assess the manipulation of environmental objects as an action 
choice, facilitating the creation of more efficient travel paths 
for improved coverage.
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