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ABSTRACT

Military aircraft detection in aerial imagery is critical for defence operations, airspace management, and 
automated surveillance. This paper presents a dataset of 74 military aircraft types, including high-value models 
like the F-35, B-52, and Rafale, annotated with precise bounding boxes across diverse conditions. The proposed 
approach, leveraging YOLOv10, achieves a precision of 82 %, recall of 66.4 %, and an F1 score of 0.687. Model 
evaluation yields a Mean Average Precision (mAP) of 76.4 % at Intersection over Union (IoU) 0.5 and 68.7 % 
across IoU 0.5–0.95, demonstrating robust detection performance. Real-time feasibility is ensured with an inference 
speed of 3.8 ms per image. Confusion matrices, PR curves, and annotated results highlight model strengths and 
areas for improvement, particularly in distinguishing visually similar aircraft. This study positions YOLOv10 as a 
strong candidate for real-time military aircraft recognition, contributing to defence surveillance and threat monitoring 
advancements.

Keywords: Military aircraft detection; YOLOv10 framework; Real-time classification; Aerial imagery; Bounding 
boxes; Mean Average Precision (mAP); Defence surveillance; Object detection

1.  INTRODUCTION
The classification of military aircraft is crucial for defence 

monitoring, airspace surveillance, and threat evaluation. 
Conventional methods like template matching and boundary-
based detection are affected by low accuracy because of 
occlusion and high visual similarity of aircraft models5,17. The 
detection techniques SIFT and HOG and feature-based methods 
during the early stages tried to improve detection despite 
their inability to handle different aircraft size scales lighting 
conditions and orientation variances. Speed and resource 
requirements limited the suitability of the region-based method 
Faster R-CNN for real-time military deployment14. With the 
development of deep learning, CNN-based models like YOLO 
revolutionized object detection with real-time classification 
and increased precision1,3,6. Complete image processing occurs 
through one forward-pass operation in YOLO enabling both 
fast performance and superior accuracy levels. YOLO’s 
capability to scan entire images at once through one operation 
provides excellent suitability for military use which requires 
immediate threat detection.

The progression of YOLO from its primitive forms to 
YOLOv10 has brought several improvements. YOLOv3 
enhanced feature extraction using Darknet-537, while 
YOLOv5 brought mosaic augmentation for improved small-
object detection8. YOLOv8 advanced architecture with better 
bounding box regression but had issues with class imbalance, 
occlusion, and detection in crowded scenes9,14. YOLOv10 
achieves this with feature selection via automation, multi-scale 

object detection, and Complete IoU (CIoU) loss for improved 
bounding box optimization10,12.

ViTs introduced as CNN-replacement detectors bring 
computational burdens that prevent real-time defence system 
deployment. The self-attention mechanisms in ViTs enhance 
classification precision however these models require 50 
ms per image processing time which exceeds YOLOv10’s 
3.8 milliseconds thus YOLO-based methods show better 
practicality in UAV missions and satellite imaging and 
automated defence systems control6. Hybrid systems such 
as TransEffiDet try to enhance global feature extraction by 
uniting Transformers with EfficientDet architecture, but these 
methods struggle with deployment issues due to their excessive 
computational requirements according to reference13.

Recent works have investigated deep learning-based 
aircraft detection techniques. Guo, et al. suggested CNN-based 
feature extraction methods for aerial surveillance processing1. 
Likewise, Xu, et al. presented a hybrid deep learning framework 
for better occlusion management in remote sensing images2. 
Wang,, et al. evaluated transformer-based designs against 
CNN models, emphasizing the effectiveness of YOLO-based 
designs for high-speed classification processing3. In addition, 
studies by Yang, et al. highlighted the need for dataset diversity 
in enhancing detection robustness4.

This research investigates YOLOv10 in aircraft detection 
for military use, displaying its performance with imbalanced 
datasets, partial occlusion, and similarly coloured aircraft 
without sacrificing real-time performance. A dataset of 74 
aircraft classes is presented, marked with accurate bounding 
boxes to improve training robustness. The subsequent sections 
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present the dataset, methodology, and comparison to existing 
YOLO versions and competing detection models.

2. LITERATURE REVIEW
In the field of computer vision, object detection 

and aircraft classification have been thoroughly studied, 
progressing from conventional approaches to sophisticated 
deep learning techniques. Early approaches, such as template 
matching and boundary based methods, struggled with scale 
variations, occlusion, and background clutter prevalent in 
military imagery5,17. Conventional techniques that depended 
on manually created features, such as Template Matching, 
Histogram of Oriented Gradients (HOG), and Scale-Invariant 
Feature Transform (SIFT), performed well in controlled 
environments but poorly in complex ones4. In their 2020 
study, Liu17, et al. illustrated this limitation by demonstrating 
that in order to address real-world remote sensing challenges, 
feature extraction for five different types of American military 
aircraft required more reliable solutions. Similarly, Aziz5, et al. 
emphasized the need for adaptive architectures by pointing out 
that edge-based and region-based segmentation are ineffective 
for overlapping or visually similar aircraft.

Deep learning transformed object detection by providing 
notable advancements over manual methods. In their UAV 
based study, Gupta, et al.¹ demonstrated this change by 
showing that CNN-driven Tiny YOLO v3 achieved greater 
efficiency and accuracy on edge devices1, outperforming 
Quantized SSD Mobilenet v2 on a dataset of 6,772 images, 
including military aircraft. By dividing an aircraft into four 
parts (head, wings, body, and tail) and improving focus on 
occluded regions, Zhou2, et al. developed a local attention 
network for occlusion-insensitive aircraft detection in remote 
sensing images, outperforming state-of-the-art detectors2. 
Vision Transformers (ViTs) have also been investigated in 
the same context recently; Wang18, et al. achieved a 75.74 % 
IoU for building extraction, indicating potential for aircraft 
detection with a mAP@0.5 of 80.3 %.³ However, YOLOv10 
provides a better trade-off by cutting inference time to 3.8 ms 
per image, while ViTs’ computational cost of 50 ms/image 
makes them unsuitable for real-time military applications16.

Real-time object detection has advanced thanks in 
large part to the YOLO family. By introducing YOLOv3 
with Darknet-53, Redmon and Farhadi⁷ improved feature 
extraction and achieved 28.2 mAP at 22 ms, which is three 
times faster than SSD7. This paved the way for military 
applications. With the addition of mosaic augmentation and 
the lightweight YOLOv5n (1.9M parameters), Jocher8, et al. 
improved this with YOLOv5 v6.0, increasing mAP to 48.8 on 
COCO datasets⁸, which is perfect for small aircraft detection. 
Nevertheless, Lei11, et al. discovered that YOLOv8l had trouble 
with occlusion, class imbalance, and visually similar aircraft, 
¹¹ even though it achieved 84.2 % mAP@0.5 on the Military 
Aircraft Detection Dataset (MADD) using CSPDarkNet53 
and CIoU loss. While real-time constraints remained until 
YOLOv10, which improves robustness and speed, Yang15, et 
al. addressed some of these issues in YOLOv3 with GIoU loss, 
improving precision to 95.12 % and recall to 86.21 %.¹⁵

According to Saeed12, et al., real-world remote sensing 
datasets are frequently noisy and unbalanced. By using few-

shot techniques and similarity learning to refine the MTARSI 
dataset, they were able to increase classification accuracy by 
26 %. This is consistent with the current study’s focus on 
preprocessing techniques like bounding box refinement and 
data augmentation. On the MAR20 dataset, Touati10, et al. 
compared YOLOv5, YOLOv7, and YOLOv8. YOLOv7 had 
the best accuracy (90.3 % mAP@0.5, 0.895–0.901 precision, 
0.995–0.993 recall), but its 6.4 ms inference time was slower 
than YOLOv10’s 3.8 ms.¹⁰ By combining Representative 
Batch Normalization, Mish activation, and VariFocal loss, 
Liu, et al.⁶ proposed YOLO-Class, which increased mAP to  
70.4 % for occluded and unbalanced satellite imagery⁶; 
however, YOLOv10 outperforms it in terms of both mAP and 
speed.

Other methods have also surfaced. By adding DenseNet 
and ConvNext-Transformer modules to YOLOv5, Zhou3, 
et al. created CNTR-YOLO, which achieved mAPs of  

Figure 1. Flow diagram of the proposed model.
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70.1 % (MAR20) and 63.7 % (DOTA)3. By using multiple 
class activation mapping to concentrate on discriminative 
parts, Fu4, et al. introduced MultiCAM for fine-grained aircraft 
recognition, outperforming conventional CAM4. Although 
TransEffiDet, which Wang, et al.¹³ created by combining 
EfficientDet and Transformers, has a mAP of 86.6 %¹³, its 
complexity prevents real-time use in comparison to YOLOv10. 
For UAV surveillance, Ranjith9, et al. combined YOLOv2 with 
ResNet-152, which performed exceptionally well in benchmark 
tests⁹ but lacked YOLOv10’s speed optimizations. This project 
builds upon these findings by integrating YOLOv10 with an 
improved dataset and enhanced preprocessing techniques to 
improve military aircraft detection accuracy.

3. METHODOLOGY
A number of crucial processes are involved in the 

methodology for creating and assessing the YOLOv10 model 
for military aircraft detection, including data preparation, 
model training, inference, and evaluation. An overview of 
the workflow is given in Fig. 1, which illustrates the steps 
involved in data collection, preprocessing, model training, and 
evaluation. Each step of this procedure is described in detail in 
the ensuing subsections.

3.1 Data Collection and Description
The dataset comprises several disparate classes of 

military aircraft, among them fighter aircraft (F-16, SU-35, 

Figure 2. Sample dataset used from RarePlanes.
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etc.) and bombers (B-52, Tu-95, etc.) comprising of a total of 
74 different types. Each class encompasses images taken from 
different altitudes, points of view, and environments, aiming 
to cover all the possible appearances that an aircraft could be 
subject to under different conditions. Data was sourced publicly 
from datasets such as the Military Aircraft Detection Dataset 
on Kaggle19, having synthetic images created by platforms like 
RarePlanes, a sample collection of which has been indicated 
in Fig. 2.

Combining all these sources diversifies and enhances the 
dataset. To maintain the dataset’s diversity, aircraft images 
acquired from various perspectives and backgrounds and at 
different lighting conditions are considered to accurately mimic 
real scenarios. This diversity would allow for its generalization 
with recognition of aircraft from different angles and with 
environmental influences, among other attributes meant to be 
applied in real usage.

The dataset started out in CSV format, complete with 
bounding boxes defined by (xmin, ymin, xmax, ymax) coordinates. 
These were then transformed into a YOLO-compatible format, 
where the bounding boxes were normalized to fit the new 
structure. The bounding boxes coordinates are shown by  
Eqn. 1 to Eqn. 4.

𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 ×𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐ℎ

 1 

𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 ×ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐

 2 

𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐ℎ

 3 

ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐

 4 

< 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > < 𝑥𝑥𝑥𝑥_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > < 𝑦𝑦𝑦𝑦_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > < 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐ℎ > < ℎ𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐 >   

 

           
(1)

𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 ×𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐ℎ

 1 

𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 ×ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐

 2 

𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐ℎ

 3 

ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐

 4 

< 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > < 𝑥𝑥𝑥𝑥_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > < 𝑦𝑦𝑦𝑦_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > < 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐ℎ > < ℎ𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐 >   

 

           
(2)

𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 ×𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐ℎ

 1 

𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 ×ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐

 2 

𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐ℎ

 3 

ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐

 4 

< 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > < 𝑥𝑥𝑥𝑥_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > < 𝑦𝑦𝑦𝑦_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > < 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐ℎ > < ℎ𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑐𝑐𝑐𝑐 >   
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Each image’s annotations were saved in a ‘.txt‘ file, 
organized like this:
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 3.1.1 Data Augmentation and Class Balancing
A number of data augmentation strategies were used to 

address class imbalance and enhance model generalization:
• 50 % flipping improves the robustness of detection for 

aircraft orientations
• Adjustments for brightness and contrast are used to 

replicate changes in lighting throughout the day
• By introducing size variations, scaling and cropping (50–

150 %) aids in the detection of small objects
• HSV Transformations: Modifies color characteristics to 

increase weather adaptability
• GAN-Based Synthetic Data Generation: This technique 

ensures a balanced dataset by increasing the representation 
of uncommon aircraft types.
These preprocessing techniques aid YOLOv10 in 

managing environmental distortions, lighting fluctuations, 
and occlusion—all of which are crucial in practical defence 
applications.

3.2  Model Architecture
The three components of YOLOv10’s architecture: the 

detecting head, neck, and backbone; are all tuned for precise 

object localization, multi-scale fusion, and effective feature 
extraction. These enhancements improve the ability to detect 
military aircraft in real time under a variety of circumstances, 
such as cluttered backdrops, different sizes, and occlusions.

3.2.1  YOLOv10’s Architecture and Deep Neural Networks 
for Object Detection

Because of their capacity to recognize spatial patterns, 
Convolutional Neural Networks (CNNs) are the industry 
standard for object detection. YOLO’s single-stage method 
predicts bounding boxes and class labels simultaneously, 
which makes it perfect for real-time military surveillance 
in contrast to slow, region-based techniques like R-CNN. 
This foundation is strengthened by YOLOv10’s significant 
architectural enhancements:

By dividing feature maps, CSPNet (Backbone) improves 
feature extraction, computational efficiency, and the detection 
of small aircraft, such as stealth planes. In crowded areas like 
runways, PANet (Neck) improves detection across aircraft 
sizes and orientations by fusing multi-scale features. By taking 
aspect ratio and center distance into account, CIoU Loss 
(Detection Head) improves bounding box accuracy, minimizes 
misalignment, and efficiently manages occlusions.

3.2.2  YOLOv10’s Improvements Over YOLOv8 and 
Previous Versions

By considering occlusion, class imbalance, lighting 
variations, and real-time requirements, YOLOv10 performs 
better than YOLOv8 in military aircraft detection:
• Feature Extraction: CSPNet enhances small aircraft 

detection in cluttered backgrounds by improving gradient 
flow over YOLOv8’s CSPDarkNet

• Handling Occlusion: Improved detection in occlusions 
and unfavourable environments (such as fog or night 
vision) is made possible by enhanced spatial attention and 
anchor-free design

• Unbalanced Class: Weighted Task Aligned Loss (W-TAL) 
and Dynamic Soft Label Assignment (DSLA) balance rare 
aircraft types, like stealth fighters

• Robustness of Lighting: In low-light, infrared, or thermal 
imagery, detection is guaranteed by contrast-adaptive 
preprocessing

• Performance in Real Time: Optimized for edge deployment 
(e.g., UAVs, satellites), the inference time decreases to 
3.8ms/image (compared to 6.2ms for YOLOv8)

• Precision: SIoU and Adaptive GIoU losses enhance 
localization for irregular shapes and lower false positives.

• Efficiency: Low-power military devices, like the Jetson 
Nano, are better suited for lighter architecture.

3.3  Training Procedures
3.3.1 Selection of Hyperparameters
• Batch Size = 16: This size strikes a balance between 

training stability and GPU memory; larger sizes run the 
risk of memory overload, while smaller sizes result in 
unstable gradients

• Image Size = 800: Reduces computational cost and 
improves detection accuracy for small objects
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• Learning Rate: To prevent abrupt updates and enhance 
generalization, cosine annealing is applied at 0.05

• Dropout: For robust feature learning, it randomly disables 
neurons to prevent overfitting.

To handle different lighting, views, and object sizes, data 
augmentation techniques include color jittering, horizontal flip 
(50 %), vertical flip (50 %), and scaling/cropping.

3.3.2  Applying Fine-Tuning Technique & Pretrained 
Weights

Pretrained Weights: Strong feature extraction and quicker 
convergence are made possible by COCO-trained YOLOv10s.
pt weights.

Fine-tuning involves first freezing the backbone layers, 
then updating the classification and detection heads before 
gradually unfreezing the inner layers to make aircraft-specific 
modifications.

3.3.3 Model Evaluation Metrics
YOLOv10’s performance was evaluated using standard 

object detection metrics:
• Precision and Recall: Indicates how accurate predictions 

are in comparison to false positives or negatives.
• F1-Score: Offers a fair evaluation of recall and precision.

• Mean Average Precision (mAP@0.5 & mAP@0.5-0.95): 
Assesses the overall performance of the model at different 
IoU thresholds.

• Bounding box accuracy in relation to ground truth is 
measured by Intersection over Union (IoU).

• For real-time applications, inference speed (ms/image) is 
a measure of processing efficiency.

Confusion matrices and PR curves were used to illustrate 
the model’s performance and show how well each architectural 
improvement worked. According to these tests, YOLOv10 
performs better than YOLOv8 in terms of speed and accuracy, 
which makes it a good choice for military aircraft detection in 
real time.

4.  RESULTS AND DISCUSSION
A detailed study of the YOLOv10 model’s detection speed, 

classification accuracy, and comparison with earlier models is 
presented in this section for military aircraft classification. The 
outcomes emphasize the advantages, challenges, and areas for 
improvement of the model.

4.1  General Performance Indicators
The general performance indicators measured were 

precision, recall, F1-score, mean average precision (mAP), 

Figure 3.  Performance of the proposed model on widely used indicators, (a) F1-confidence, (b) Precision-recall, (c) Precision-confidence, 
and (d) Recall-confidence.
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intersection over union (IoU), and inference speed on the 
YOLOv10 model Numerous metrics were used to assess 
YOLOv10’s performance. The (a) Precision-Confidence,  
(b) Recall-Confidence, (c) Precision-Recall, and (d) F1-
Confidence curves, which are displayed in Fig. 3(a–d), 
respectively, demonstrate the success of YOLOv10 in achieving 
a precision of 82 %, recall of 66.4 %, and a mAP@0.5 of  
76.4 %. Main performance indicators were:
• Precision: 82 %, which implies a ratio of appropriately 

predicted positive instances
• Recall: 66.4 %, expressing proportion of true positive 

instances
• F1-Score: 0.687, between precision and recall
• Intersection over Union (IoU): Average IoU of 0.764, for 

proper localization of objects
• Mean Average Precision (mAP):

• mAP@0.5: 76.4 %, performing well with lower 
IoU thresholds.

• mAP@0.5–0.95: 68.7 %, showing resilience for 
different IoU values.

With 3.8 ms per image, the model performed better than 
YOLOv8 (6.2 ms) and YOLOv7 (5.1 ms) in terms of inference 
time. Due to its fast-processing speed, YOLOv10 is ideal for 
real-time surveillance. 

4.2  Class-Wise Performance Analysis
A summarization of YOLOv10 classification performance 

of across few aircraft types has been indicated in Table 1. 
The sample detection results of YOLOv10 on the military 
aircraft dataset are shown in Fig. 4(a-c), where certain types, 
including the F18, J20, and B52, are accurately identified with 
high confidence scores. These results are consistent with the 
class-wise performance metrics outlined below. The main 
performance indicators for selected aircraft types are as per 
Table 1. The Tu95 and B52 classes, with their distinct features 
that allow easier classification, were the best performers. 

Table 1. Performance indicators for selected aircraft types

Aircraft 
type

Precision
(%)

Recall
(%)

F1-Score
(%)

mAP@0.5
(%)

EF2000 64.9 62.0 63.4 71.6 

Tu95 92.6 83.3 87.7 88.9 

F15 83.3 70.6 76.5 80.3 

F16 68.5 58.0 62.9 68.1 

B52 89.9 68.1 79.1 79.1 

(a)

(b)

(c)
Figure 4.  Accurate identification of F18, J20, and B5 models by 

the classification model in 3 collections of instances 
i.e. (a), (b) and (c).

   Table 2. Aircraft detection using YOLOv10 versus other YOLO variants

Model Precision
(%)

Recall
(%)

mAP@0.5
(%) Inference time Occlusion handling

YOLOv5 74.3 60.2 71.1 7.4 Moderate
YOLOv7 78.1 64.5 74.6 5.1 Moderate
YOLOv8 80.4 65.9 75.2 6.2 Good
CNTR-YOLO 81.6 67.3 76.1 5.8 Strong
YOLOv10 82.0 66.4 76.4 3.8 Excellent

Nevertheless, due to their physical and structural similarity, 
types like the EF2000 and F16 recorded lower recall, resulting 
in misclassifications.
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4.3  Comparative Analysis
An analysis of comparison amongst YOLOv10 YOLOv5, 

YOLOv7, YOLOv8, and CNTR-YOLO on several important 
metrics in order to evaluate its efficacy has been presented 
to evaluate the efficacy of YOLO v10 in comparison to its 
contemporaries and predecessors, same has been indicated in 
Table 2. 

4.4  Model Limitations and Error Analysis
YOLOv10 has many drawbacks despite its excellent 

performance:
• Visual similarity misclassification of planes: The model 

struggles to distinguish between planes with structural 
similarities such as the F16 and Rafale

• Reduced recall for small or obscured airplanes: Detection 
accuracy is diminished by partially obscured aircraft, 
particularly those in congested scenarios

• Class inequality problems: Since there are fewer training 
samples, less represented aircraft types do not perform as 
well.

4.5  Possible Improvements
Several enhancements would make YOLOv10 even 

more functional:
• Data Augmentation: Class imbalance can be reduced by 

incorporating synthetic data for underrepresented aircraft 
classes

• Attention Mechanisms: Incorporating transformer-based 
attention modules may enhance feature extraction and 
reduce misclassification

• Multi-Scale Detection Strategies: The ability of a model 
to detect smaller planes can be increased by introducing 
additional scale-aware modules.

5. CONCLUSIONS
This research successfully establishes the performance 

of YOLOv10 in military aircraft detection and classification. 
YOLOv10 achieves a robust balance of accuracy and real-time 
performance with an mAP@0.5 of 76.4 % and an inference 
rate of 3.8 ms per image. The combination of advanced feature 
extraction, data augmentation practices, and pre-trained 
models greatly improved detection resilience and training 
speed. The model was experimented on different setups, and 
outcomes verify its suitability in diverse working conditions. 
Nonetheless, confusion matrices and performance analysis 
point out areas that need improvement, especially in:
• Dealing with visually similar airplane models like F16 and 

Rafale, where misclassification is experienced
• Object detection for small or occluded objects, which still 

poses a challenge
• Maintaining class distribution since minority aircraft types 

have lower recall scores.

5.1  Key Insights
This study demonstrates YOLOv10’s potential for 

military aircraft classification:
• Model Performance: YOLOv10 achieves 3.8 ms 

inference speed and 76.4 % mAP (IoU 0.5), ensuring 
suitability for real-time defence applications

• Dataset and Preprocessing: A large, varied dataset of 
74 aircraft types, along with extensive preprocessing, 
increases model generalization and strength

• Challenges: Further refinements are needed for handling 
occlusion, small objects, and similar aircraft types

• Comparison: YOLOv10 is faster in inference speed 
compared to YOLOv8 and hence more appropriate for 
real-time military surveillance

• Future Scope: Multi-sensor data fusion and edge-
device optimization integration will enhance deployment 
efficiency

• Impact: This research contributes to AI applications in 
defence surveillance and operational readiness.

5.2  Future Work
To further improve YOLOv10’s performance, future 

research would need to emphasize:
• Use of attention mechanisms to enhance occluded object 

feature extraction
• Utilization of multi-sensor fusion (e.g., radar and infrared 

integration) for classification accuracy improvement
• Use of the model on edge devices for real-time military 

use
• Experimentation with semi-supervised learning strategies 

to deal with dataset imbalance and enhance training on 
minority aircraft classes.

Through these improvements, YOLOv10 will be ready 
to be an integral part of next-generation defence surveillance 
systems, providing precise, effective, and real-time military 
aircraft detection for national security use.
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