
263

Defence Science Journal, Vol. 75, No. 2, March 2025, pp. 263-268, DOI : 10.14429/dsj.20751
 2025, DESIDOC

Received : 02 December 2024, Revised : 05 February 2025
Accepted : 06 February 2025, Online published : 24 March 2025

Partitioned Cache Aware Dynamic Scheduling for Real-Time Applications on
Multicore Processors

 Balakrishnan P.#,*, Rajesh M.$ and Rajesh R.!

#Cochin University of Science and Technology, Kochi - 682 022, India
$National Institute of Electronics and Information Technology, Calicut - 673 601, India

!DRDO-Naval Physical and Oceanographic Laboratory, Kochi - 682 021, India
*E-mail: bala.hema.bala@gmail.com

ABSTRACT

Efficient task partitioning and scheduling on multicore processors are critical for optimizing performance and
resource utilization in real-time systems. This paper explores a dynamic approach to task partitioning and scheduling,
leveraging Intel Cache Allocation Technology (CAT) and pseudo-locking to enhance predictability and reduce inter-
core interference. By dynamically allocating cache resources to critical tasks, partitioning high-frequency tasks into
a separate cluster and isolating them from contention, the system achieves improved schedulability. Additionally, an
adaptive Earliest Deadline First (EDF) scheduling algorithm is introduced, which allocates the tasks to free cores
in real time based on workload variations and resource availability. The proposed techniques are validated through
typical applications in signal processing and other similar systems, where high throughput, low latency, and strict
timing constraints are paramount. Experimental results of the Modified-EDF approach demonstrated a reduction
of 4.6 % in Worst-Case Execution Time (WCET) compared to SCHED_FIFO and a decrease of 2.3 % in CPU
utilization Similarly, it achieved a 4.2 % improvement in WCET over SCHED_RR and a 2.3 % improvement over
SCHED_DEADLINE., highlighting its efficiency gains through deadline sensitivity and cache-awareness, thus
making this approach highly suitable for safety-critical and high-performance computing environments.

Keywords: EDF; Signal processing; Real-Time; Linux; Cache allocation technology

NOMENCLATURE
CLOS : Classes of service
LLC : Last-level cache
CAT : Cache allocation technology
RTOS : Real-time operating system
CBM : Capacity bit mask
EDF : Earliest deadline first
WCET : Worst case execution time
MSR : Memory specific register
OS : Operating system
FFT : Fast fourier transform

1. INTRODUCTION
Multicore Processors are used extensively for the

implementation of real-time embedded systems for defence
applications like radar, sonar, missiles, etc. With the advent
of multicore processors, they are extensively used in systems
where massive computation and better response with low
power consumption are required1,3,9. A complex application
is partitioned into smaller blocks by the developer to run on
multiple cores but had synchronisation issues between the
various cores to meet critical timelines of system2,4-5.

 Linux being open source is used in multicore processors as
an Operating System(OS)6,8,11. The OS handles the scheduling

of tasks depending on the scheduling policy selected by the
application developer. To achieve the real-time characteristics
of the system, the developer has to go through several iterations,
which leaves a great burden on him. This paper discusses the
issues and their solutions in the implementation of a complex
real-time embedded system on multicore processors, a typical
sonar signal processor is considered as a reference.

2. METHODOLOGY
A partitioned scheduling technique is developed for

real-time embedded applications implemented on Multicore
processors. The existing scheduler in Linux is modified
and Intel’s cache allocation technology is used for cache
partitioning and locking.

2.1 Typical Multicore Architecture
In homogeneous multicore processors, multiple identical

cores share common resources like memory, IO devices7,10,14,16,
etc. Each core has a dedicated L1 instruction & data cache
and L2 cache. But L3, the Last Level Cache (LLC) has a large
capacity and is shared by the cores of the multicore processor.
A typical multicore processor architecture is shown in Fig 1.
The cores of the processor share common resources leading to
contention which affects the processing Time leads to deadline
misses, not tolerable in critical real-time systems like sonar and
radar.

DEF. SCI. J., VOL. 75, NO. 2, MARCH 2025

264

Application developers had to resort to an iterative
approach to partition the tasks to cores, and this may lead to
errors, resulting in situations where certain critical tasks may
miss the deadlines and overall effect of deadline misses is the
equipment failure. This paper discusses the issues and the
solutions in the development of complex real-time systems on
multicore processors in the Linux environment.

2.1.1 Multicore Utilisation (Ui)
Consider a multicore processor with N cores

(M1,M2,M3,…..MN) and a task set consisting of m independent
tasks (t1,t2,…..tm) of any real-time signal processor application
software. Each task i is shown as a quadruple:

 1

 2

 3

 4

 5

 6

 7

 (1)
where, Ci is the Worst-Case Execution Time, Di is the deadline,
Ti is the period and li is interference encountered by the task ti.
Pioh is defined as the pre-emption overhead incurred by the ith
task. Pre-emption occurs when a high-priority task as compared
to the running tasks is ready for execution. Interference li is due
to the read-write operations to the shared cache by co-running
tasks; the effect of both interferences and pre-emptions is in
the enhancement of Ci. The hyper period of any task set, H, is
defined as the least common multiple (LCM) of the periods of
all the periodic tasks of the task set: 1

 2

 3

 4

 5

 6

 7

 (2)
Oi is the number of occurrences of the task ti in the hyper

period H:

 1

 2

 3

 4

 5

 6

 7

(3)

Due to interferences by the read-write operations of co-

running tasks, the Ci of any task will be Ci+li. The interference
li is different from one instance of the task to the next, as
the co-running tasks on other cores will be different. With
Interference,

 1

 2

 3

 4

 5

 6

 7

(4)

When task pre-emptions are allowed, the overhead due
to pre-empting any task, cache evictions, and context switches
result in an increase in execution time12. With task pre-emptions
and interferences,

 1

 2

 3

 4

 5

 6

 7

(5)

With no pre-emptions or interferences from Linux tasks
or other tasks, CPU utilisation is

 1

 2

 3

 4

 5

 6

 7

(6)

The execution time of the task depends on the core
operating frequency and the core architecture13. Estimation of
li and Pioh is a difficult problem due to its random nature, it
depends on the multicore architecture, and hence the design of
the signal processor system should take care of the effects of
these unpredictable sources18,20.

A typical frequency domain beam former is shown in
Fig. 2. The data samples from the M sensors are subjected
to N point FFT. A typical submarine sonar will have arrays
with thousands of sensors, and the data samples from all the
sensors to be processed. The input data is normally received on
high-speed interfaces like Ethernet. The processing hardware
configuration of any sonar system should be capable of handling
high-frequency interrupts and large-size data processing. The
context diagram of a typical sonar signal processor is given in
Fig 3.

Figure 1. Typical 4 core multicore architecture.

256 pt
FFT

N pt FFT

N pt FFT

Inner
Product N-pt IFFT

Beam
Data

Y1

YM

Bin KS

Bin KE

Sensor M

Sensor MT

Beamformer -1

Beamformer - MT

256 pt
FFT

Sensor M-1

S1

Inner
Product

1+− SE KKS

&
Averaging

(TC sec)

PC1

Sensor 1
(NB Samples

with NV overlap)

Steering Vector Matrix

∑
=

=
2

1

2
1

K

Ki
iYP

Figure 2. Typical frequency domain beam former.

Figure 3. Context diagram of a typical sonar signal processor.

The tasks of sonar signal processor are categorised into
three (1) Input task (2) output task processed data to display
(3) Processing task (4) control task. The input data received
by way of interrupts occur at regular intervals. The input task
occurs at fast rates, processing time is small.

For example, in an array with 5,000 sensors sampled at
50 KHz, using a 24-bit sigma-delta ADC, the data size is 15
KB in 20 microsec. The 15 KB of data will be received as
Ethernet packets each with 1536 bytes, the data reception time
of each Ethernet packet is approx. 12 microsec. for a Gigabit
link. There will be approx.1000 occurrences (15 kb / 1536)) of

BALAKRISHNAN, et al.: PARTITIONED CACHE AWARE DYNAMIC SCHEDULING FOR REAL-TIME APPLICATIONS ON MULTICORE

265

input task during the execution of any processing task shown
in the signal processing system (Fig. 2). Every occurrence of
input task will give rise to interferences and pre-emptions. So
the execution time of the task Ci in the isolated condition is less
than Ci in the actual condition,

 1

 2

 3

 4

 5

 6

 7

(7)

implies that the core utilisation Ui increases and will lead
to deadline misses.

2.1.2 Grouping of Tasks Into Clusters
The characteristics of the tasks of any sonar signal

processor are analysed, and classified into two clusters, one
having low Ci & Ti and the other having higher Ti. The input
tasks and control tasks are assigned higher priority and have a
higher frequency of occurrence. The input tasks in the example
above, if assigned to the same core running processing tasks,
will lead to a large no of pre-emptions and interferences to
the processing tasks leading to increased execution time. The
larger the execution time of any processing task, the higher
will be the number of pre-emptions. Hence high frequency
tasks may be grouped into one cluster and the processing tasks
into another cluster.

2.1.3 Issues in Using Multicore Processors
The major issues in using a multicore processor with an

operating system like Linux are (1) As Input tasks occur at fast
rates of the order of a few micro-seconds, task pre-emptions
of processing tasks will increase; disabling pre-emptions will
lead to deadline misses of high-frequency tasks (2) Lack of
efficient schedulers to meet the critical timelines of the real-
time signal processor.

The solution suggested in Fig. 4 divides the cores into
two clusters, one to handle high frequency & high priority
tasks like input tasks, control tasks and output tasks. The core
affinity and task priority can be set in the application program.
Another cluster is formed for processing tasks where a global
scheduling policy may be adopted.

Intel Xeon Board with the following specifications as given
below in Table 1.

The main limitation of the SCHED_DEADLINE policy is
due to the inaccurate run-time of the tasks fed into the application
program. The run time is inaccurate as it is estimated when the
task is run in isolation. But when the task is running along with
other tasks on different cores, the execution time is different
from that estimated in isolation. In the modified scheduler, the
worst-case estimation time of each task is measured online
when all tasks/threads of the application program are running
on all the cores of the multicore processor. In every instance of
the task, if the measured execution time is higher, it replaces
the existing value. After a few iterations worst-case execution
time of all the tasks is obtained.

In the modified scheduler, a new task is assigned to any
free core only after estimating the ratio of and hyper-period
(H) of all tasks already assigned to that core. The ratio is again
estimated after including the Ci of the new task and the new
task is assigned to that core only if the ratio is less than ONE.
This ensures maximum utilisation of the cores and eliminates
deadline misses.

2.2.1 Cache Partitioning and Locking Implementation
Intel’s Cache Allocation Technology (CAT) is a resource

management feature that provides fine-grained control over the
last-level cache (LLC). It allows software to determine, limit
the amount of cache allocated to specific threads, applications,
virtual machines, or containers 15. This capability is especially
useful in environments like data centre’s, where managing
resource contention among multiple workloads is critical.

CAT operates by introducing Classes of Service (CLOS)
and Capacity Bitmasks (CBMs), enabling flexible cache
allocation. CLOS acts as a resource control tag, grouping
threads or applications, while CBMs define how much cache
can be allocated to a specific CLOS. This technology is realised
by Model-Specific Registers (MSRs) and they are read/written
by using ordinary CPU instructions such as CPUID.

2.2.2 Pseudo-Locking
Pseudo-locking in Intel Cache Allocation Technology

(CAT) is a method applied to provide cache regions in
the shared Last-Level Cache (LLC) for predictable and
performance-critical applications. This reduces cache conflicts
as workloads are grouped to a specific portion of the cache
and predictability is also improved. The cache contention is
reduced by giving higher priority to important workloads.
Nevertheless, it does not imply changes at the hardware
level, but it builds on existing CAT functionality. Unlike the
dynamic nature of true locking, the cache partitions must be
configured manually according to the workload. If the reserved
cache region is under-utilised, it can lead to inefficient use of

Figure 4. CPU clustering.

The scheduling policies available in Linux for real-time
applications are SCHED_FIFO, SCHED_RR and SCHED_
DEADLINE. The SCHED_DEADLINE is generally not used
due to its limitations in meeting deadlines. The developer has
to feed the “runtime” of all tasks/threads and should have a
good understanding of the processor architecture, cache
configuration etc.

2.2 Modified SCHED_DEADLINE
An adaptive scheduler developed eliminates the limitations

of the existing SCHED_DEADLINE policy. The scheduler
and the task partitioning techniques were implemented on an

Table 1. Intel xeon board specification

CPU Max
freq. L1D L1I L2 L3 No. of

Cores
Intel Xeon
D-1548@
2.0 GHz

2.3
GHZ

32 KB 32
KB

256
KB

2
MB 8

DEF. SCI. J., VOL. 75, NO. 2, MARCH 2025

266

LLC resources. Intel CAT allows partitioning of the LLC into
regions using Capacity Bit Masks (CBMs). Pseudo-locking
exploits this feature to “lock” specific regions of the cache for
critical workloads.

2.2.3 Pseudo-locking-Working Principle
A specific region of the LLC is defined using CAT.

Data are accessed by the application to load it into specified
cache lines. Once the region is initialized, the application
operates primarily out of the reserved region 17,19. Coherency
transactions reduce cache misses and interferences from
other applications thereby achieving high determinism. One
additional feature of pseudo-locking is the ability to map out
other workloads to prevent them from removing reserved data
from the cache.

Memory-centric scheduling is a technique used in RTOS
to enhance and manage memory operations of a memory-
centric scheduler. In this, each thread is partitioned between
the memory-computation cycle and the execution cycle.
Every time a thread executes an operation in the memory, it
needs permission from the scheduler and is called memory
prefetching. During the pre-fetch phase, it uses Intel’s Cache
Allocation Technology (CAT) and the pseudo-locking concept,
securing the memory region to a given thread. This also leads
to private cache and helps to reduce cache conflict. In case
multiple threads try to pre-fetch, the current thread trying to
pre-fetch is forced to wait until the lock is given back by the
other thread. After the memory pre-fetch phase is complete the
thread moves into the compute phase and creates the lock. This
process dramatically decreases the cases in which one thread
has to contend for access to the cache with another one. The
memory pre-fetch in combination with Intel’s pseudo-locking
is explained in the algorithm 1 & 2 and the pseudo-code is
given in Algorithm 1 & Algorithm 2 respectively.

Algorithm 1: for Memory Pre-fetch into Cache and
Computation
Input:

• lock_table: Table to track the lock status of memory
regions.

• Queue: Queue to hold threads waiting to access memory
regions.

• thread_id: ID of threads requesting memory access.
• memory_region: Memory-region accessed by thread.

Output:
• Controlled access to memory regions for threads with pre-

fetching and computation phases.

Highlights:
• Global variables lock_table and queue maintain the lock

status and manage threads waiting for memory access
• Memory-access requests are either granted or queued

depending on the lock status of the requested memory
region

• Thread releases lock after its computation phase, allowing
the next waiting thread in the queue to gain access

• The memory prefetching phase ensures data is ready in
the cache for computation.

Algorithm 1: Memory pre-fetch into cache and computation

Algorithm 2: Kernel-based memory lock management with
prefetching and computation

Algorithm 2: For Kernel-Based Memory Lock Management
with Prefetching and Computation
Input:

• kernel_lock_table: Tracks lock status of memory regions.
• kernel_queue: Queue to manage threads waiting for

memory-region access.

BALAKRISHNAN, et al.: PARTITIONED CACHE AWARE DYNAMIC SCHEDULING FOR REAL-TIME APPLICATIONS ON MULTICORE

267

• thread_id: Identifier for requesting thread.
• memory_region: Memory-region for which access is

requested.

Output:
• Controlled access to shared memory regions for threads,

including memory pre-fetching and computation phases.

Highlights:
• Mutual Exclusion: Use of kernel_lock ensures that the

kernel_lock_table and kernel_queue are accessed safely
in a concurrent environment

• Thread Management: Threads denied access are queued
and put to sleep, minimizing memory contention

• Efficient Memory Access: Pre-fetching memory into
cache before computation reduces latency

• Fairness: Threads in kernel_queue are processed in FIFO
order, ensuring equal access to shared resources.

3. RESULTS
This section analyses the performance of various

scheduling mechanisms, including SCHED_FIFO, SCHED_
RR, SCHED_DEADLINE, and Modified-EDF, based on
metrics such as WCET (worst-case Case Execution Time),
CPU utilisation, and adherence to deadlines. The target
application selected for benchmarking was a typical signal
processing application involving a mix of threads that are
compute-intensive with memory-access operations. These
threads represent typical real-time workloads with varying
computational demands (Table 2).

principles, offers significant improvements as compared to
the other two policies achieving better WCET, lower CPU
utilisation and less deadline misses. The Modified-EDF
enhances schedulability, prevents deadline misses, and reduces
cache evictions by incorporating the pseudo-locking facility of
Intel CAT for cache partitioning. In Modified-EDF execution
time of tasks is constantly monitored to arrive at the worst-
case execution time and this value is used to decide the task
allocation to free cores. This reduces the throttling time
observed in EDF scheduling. Compared to SCHED_FIFO, the
Modified-EDF approach reduces worst-case execution time
(WCET) by approximately 4.6 % (from 1.803 to 1.72), lowers
CPU utilization by around 2.3 % (from 38.961 % to 38.067 %).
Against SCHED_RR, WCET improved by 4.2%, and against
SCHED_DEADLINE it improved by 2.3 %.

5. CONCLUSIONS
This paper presented a comprehensive study on Task

Partitioning and Scheduling of signal processing software
on Multicore Processors for complex real-time defence-
related applications. The existing scheduling policies, viz,
SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE,
were compared with Modified-EDF and their effectiveness in
managing computationally intensive and memory-bound tasks,
which are characteristic of complex real-time signal processing
systems, were analysed. Modified-EDF, combined with Intel’s
pseudo-locking features, demonstrated promising results,
significantly reducing WCET and enhancing CPU utilisation
while ensuring optimal task schedulability. The integration
of cache partitioning and online estimation of execution time
resulted in reducing resource contention, and improving
schedulability, making Modified-EDF well-suited for high-
performance real-time defence applications where efficient
resource utilization and strict deadlines are critical. The
findings of this study highlight the importance of combining
hardware-aware scheduling with adaptive task management to
meet the demanding performance and reliability requirements
of defence signal processing applications.

REFERENCES
1. Bo, Z.; Qiao, Y.; Leng, C.; Wang, H.; Guo, C. &

Zhang, S. Developing real-time scheduling policy by
deep reinforcement learning. IEEE 27th real-time and
embedded technology and applications symposium
(RTAS), Nashville, TN, USA, 2021, 131-142.

 doi: 10.1109/RTAS52030.2021.00019
2. Bhuiyan, A.; Liu, D.; Khan, A.; Saifullah, A.; Guan, N.

& Guo, Z. Energy-efficient parallel real-time scheduling
on clustered multi-core. IEEE Transact. Parallel and
Distributed Syst., 2020, 31(9), 2097-2111.

 doi: 10.1109/TPDS.2020.2985701.
3. Zeng, L.; Xu, C. & Li, R. Partition and scheduling of the

mixed-criticality tasks based on probability. IEEE Access,
2019, 7, 87837-87848.

 doi: 10.1109/ACCESS.2019.2926299
4. Sheikh, S.Z. & Pasha, M.A. Energy-efficient cache-aware

scheduling on heterogeneous multicore systems. IEEE
Transact. Parallel and Distributed Syst., 2022, 33(1) 206-

Table 2. Comparison of test results in terms of schedulability
improvements

Scheduler
Execution
time
(units)

Deadline
(units)

WCET
(Ci)

CPU
utilisation
(%)

Key
observations

Sched_
FIFO 1.75 NA 1.803 38.961

Predictable
but suffers
from resource
contention.

Sched_RR 1.75 NA 1.795 38.995

Fair scheduling
but higher
context-
switching
overhead.

Sched_
Deadline 1.75 4.5 1.761 38.693

Deadline-aware
but lacks cache
optimisation.

Modified-
EDF 1.75 4.5 1.72 38.067

Cache-aware,
deadline-
sensitive,
and reduced
throttling.

The results compare the different scheduling mechanisms
in managing tasks with mixed criticality. SCHED_FIFO and
SCHED_RR provide predictable execution times but suffer
from deadline misses and higher CPU utilisation due to
context-switching overhead and resource contention.

4. DISCUSSION
Existing SCHED_DEADLINE in Linux, based on EDF

DEF. SCI. J., VOL. 75, NO. 2, MARCH 2025

268

217.
 doi: 10.1109/TPDS.2021.3090587.
5. Krishnakumar, A.; Arda, S.E.; Goksoy, A.A.; Mandal,

S.K.; Ogras, U.Y.; Sartor, A.L. & Marculescu, R. Runtime
task scheduling using imitation learning for heterogeneous
many-core systems. IEEE Transact. Comput.-Aided
Design of Integrated Circuits and Syst., 2020, 39(11),
4064-4077. doi: 10.1109/TCAD.2020.3012861.

6. Saranya, N. & Hansdah, R.C. Dynamic partitioning based
scheduling of real-time tasks in multicore processors.
IEEE 18th International Symposium on Real-Time
Distributed Computing, Auckland, New Zealand, 2015,
190-197. doi: 10.1109/ISORC.2015.23.

7. Osmolovskiy, S.; Ivanova, E.; Shakurov, D.; Fedorov,
I. & Vinogradov, V. Hierarchical real-time scheduling
for multicore systems. In 18th Conference of Open
Innovations Association and Seminar on Information
Security and Protection of Information Technology
(FRUCT-ISPIT), St. Petersburg, Russia, 2016, 248-256.

 doi:10.1109/FRUCT-ISPIT.2016.7561535.
8. Chniter, H.; Mosbahi, O.; Khalgui, M.; Zhou, M. & Li,

Z. Improved multi-core real-time task scheduling of
reconfigurable systems with energy constraints. IEEE
Access, 2020 8, 95698-95713.

 doi: 10.1109/ACCESS.2020.2990973.
9. Mok, A.K.; Feng, X. & Chen, D. Resource partition for

real-time systems. Proceedings Seventh IEEE Real-Time
Technology and Applications Symposium, Taipei &
Taiwan, 2001, 75-84.

 doi: 10.1109/RTTAS.2001.929867.
10. Paul, S.; Chatterjee, N.; Ghosal, P. & Diguet, J.-P.

Adaptive task allocation and scheduling on NoC-based
multicore platforms with multitasking processors. ACM
Trans. Embed. Comput. Syst., 2021, 20(1).

 doi: 10.1145/3408324
11. K. Kang, D. Ding, H. Xie, Q. Yin & J. Zeng. Adaptive

DRL-Based Task Scheduling for Energy-Efficient Cloud
Computing. IEEE Transact. Network and Serv. Manage.,
2022, 19(4), 4948-4961.

 doi: 10.1109/TNSM.2021.3137926.
12. Ali, I.; Seo, J.-h. & Hoon Kim, K. A dynamic power-

aware scheduling of mixed-criticality real-time systems.
In IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure
Computing; Pervasive Intelligence and Computing,
Liverpool, UK, 2015.

 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.63.
13. Altin, L.; Topcuoglu, H.R. & Gürgen, F.S. Latency-aware

multi-objective fog scheduling: Addressing real-time
constraints in distributed environments. IEEE Access,
2024, 12, 62543-625557.

 doi: 10.1109/ ACCESS.2024.3395664.
14. Han, J.-J.; Wang, Z.; Gong, S.; Miao, T. & Yang, L.T.

Resource-aware scheduling for dependable multicore
real-time systems: Utilisation bound and partitioning
algorithm. IEEE Transact. Parallel and Distributed Syst,
2019, 30(12), 2806-2819.

 doi: 10.1109/TPDS.2019.2926455.
15. Seo, E.; Jeong, J.; Park, S. & Lee, J. Energy efficient

scheduling of real-time tasks on multicore processors.
IEEE Transact. Parallel and Distributed Syst., 2008,
19(11), 1540-1552. doi: 10.1109/TPDS.2008.104.

16. Liang, Y.; Li, H.; Shen, F.; Xu, Q.; Hua, S. & Zhu, S.
Adaptive multi-core real-time scheduling based on
reinforcement learning. In IEEE 18th International
Conference on Control & Automation (ICCA), Reykjavík,
Iceland, 2024, pp. 148-153.

 doi: 10.1109/ICCA62789.2024.10591927.
17. Digalwar, M.; Gahukar, P. & Mohan, S. Energy efficient

real-time scheduling on multi-core processor with voltage
islands. In International Conference on Advances in
Computing, Communications and Informatics (ICACCI),
Bangalore, India, 2018, pp. 1245-1251.

 doi: 10.1109/ICACCI.2018.8554680.
18. Ekberg, P. & Baruah, S. Partitioned scheduling of recurrent

real-time tasks. IEEE Real-Time Systems Symposium
(RTSS), Dortmund, DE, 2021, 356-367.

 doi: 10.1109/RTSS52674.2021.00040.
19. Ding, J.; Song, L.; Li, S.; Wu, C.; He, R.; Su, Z. & Lü, Z. A

Heuristic method for data allocation and task scheduling
on heterogeneous multiprocessor systems under
memory constraints. In 23rd International Conference on
Algorithms and Architectures on Parallel Processing,
ICA3PP, Tianjin, China, 2023.

 doi: 10.1007/978-981-97-0801-7_21.
20. Sun, Z.Y. & Han, W.M. & Gao, L.L. Real-time scheduling

for dynamic workshops with random new job insertions
by using deep reinforcement learning. Adv. in Production
Engin. & Manage., 2023, 18, 137-151.

 doi:10.14743/apem2023.2.462.

CONTRIBUTORS

Mr Balakrishnan P. is currently working as an Advisor, at
Bharat Electronics Limited and also at Cochin University
of Science and Technology. His areas of interest include:
Embedded systems/signal processing systems and also working
on scheduling techniques for real-time applications.
His contribution towards this research is in the design of the
scheduling scheme, algorithm, and analysis as well as in the
preparation of the manuscript.

Mr Rajesh M. obtained his PhD from National Institute of
Technology (NIT), Meghalaya and working as a Scientist at
the NIELIT, Kozhikode. His areas of interest include: Research
and development in the areas of Linux internals and real-time
operating systems (RTOS) for Embedded applications.
His contribution to this research is in the software implementation
of the scheduling schemes and its evaluation.

Dr. Rajesh R. obtained PhD Degree in physics from Jamia Millia
Islamia, New Delhi and working at DRDO-NPOL, Kochi. His
areas of interest include: Laser-aided plasma diagnostic systems,
high-power chemical lasers for directed energy applications and
also development of fibre-optic underwater acoustic sensors.
In the current study, he guided the research activity and
critically reviewed the manuscript.

