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ABSTRACT

Detecting anomalies in Automatic Identification System (AIS) data is crucial for marine safety, especially 
with over 60,000 vessels navigating seaways at any moment. This study proposes an enhanced approach to AIS 
data analysis for detecting anomalous ship behaviours and predicting collisions in maritime environments. Unlike 
traditional methods that rely on static threshold-based rules or simpler clustering techniques, our approach integrates 
advanced machine learning methods like Hierarchical Density-Based Spatial Clustering of Applications with Noise 
(HDBSCAN) and Long Short-Term Memory (LSTM) networks, along with Rhumb line approach Dynamic Time 
Warping (R-DTW) for improved trajectory similarity assessment and Closest Point of Approach (CPA) calculations. 
The study outperforms existing techniques by leveraging HDBSCAN’s ability to handle varying-density trajectory 
clusters, LSTM’s temporal sequence learning for more accurate movement predictions, and R-DTW’s adaptability 
in identifying anomalous route deviations. The method includes a robust AIS data preprocessing pipeline, the use 
of HDBSCAN for dynamically grouping complex maritime trajectories, and LSTM models trained using a sliding 
window approach to predict future ship movements. CPA computations are employed to assess collision risks based 
on predicted trajectories. The proposed method significantly enhances anomaly detection accuracy and collision 
prediction reliability over conventional approaches. This integrated and data-driven approach to anomaly detection 
and trajectory prediction provides a substantial improvement in maritime traffic management and collision avoidance, 
contributing to proactive maritime safety measures. 
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1. INTRODUCTION
The International Maritime Organisation (IMO) suggests 

utilising the Bridge Navigational Watch Alarm System 
(BNWAS, Electronic Chart Display and Information (ECDIS)) 
and Automatic Identification System (AIS) to assist the Officers 
on Watch (OOW).

AIS, which is critical for vessel identification and 
location, transmits data to satellites, base stations, and ships, 
aiding collision avoidance by broadcasting navigational 
data such as position, speed, and course. Mandated for 
passenger ships and commercial vessels over 300 gross 
tonnes, AIS enhances situational awareness and marine traffic 
management, crucial for real-time navigation and post-voyage 
analysis. Vessel movement, influenced by currents, weather, 
and traffic, complicates trajectory prediction and anomaly 
detection. Advanced data analysis, including machine learning 
and clustering algorithms, is vital for identifying anomalous 
behaviours and enhancing maritime safety.

Since 1959, substantial volumes of cargo worth billions of 
dollars have been transported between Canada, the U.S., and 
other countries. With growing seaside congestion, ensuring 
maritime safety is becoming increasingly crucial. Collision 

avoidance depends on AIS data, which includes geographical 
position (LAT, LON), course over ground, speed over ground, 
and vessel type. However, vast AIS datasets and irregularities 
complicate trajectory prediction and risk assessment. This study 
uses HDBSCAN for anomaly detection and an LSTM model 
for trajectory prediction to improve safety through proactive 
collision avoidance. AIS, operating on Very High Frequency 
(VHF) frequencies (156–162 MHz), enhances navigational 
safety, collision prevention, and traffic management and is 
classified into Class A and Class B types.

Rhumb Line - Dynamic Time Warping (R-DTW) is an 
algorithm measuring similarity between temporal sequences 
that is useful in time series analysis and other applications. The 
authors have modified the Dynamic Time Warping (DTW) 
algorithm, which was previously used in comparable research 
studies, but with the difference that the distance measurements 
were based on the Euclidean metric. Nevertheless, the research 
carried out for this paper employed the Rhumb Line for more 
accuracy in a longer range.

Research employing Root Mean Squared Error (RMSE), 
Mean Absolute Percentage Error (MAPE), and Mean Absolute 
Error (MAE) demonstrates that LSTM models outperform 
Exponential Smoothing (ETS), Autoregressive Integrated 
Moving Average (ARIMA), Support Vector Regression 
(SVR), and Recurrent Neural Networks (RNNs) in path 



RAJ & KUMAR: LEVERAGING HDBSCAN, LSTM AND R-DTW FOR PROACTIVE DETECTION AND COLLISION PREDICTION

491

prediction. HDBSCAN also surpasses other density-based 
clustering algorithms, like DBSCAN. This paper leverages 
these advancements, using HDBSCAN for anomaly detection 
and an LSTM model for trajectory prediction.

Recent maritime incidents, such as the South China Sea 
collision, underscore the limitations of conventional collision 
avoidance systems, which often rely on rule-based or heuristic 
approaches. This study integrates an advanced data-driven 
framework combining HDBSCAN for anomaly detection with 
LSTM models for trajectory prediction, using Rhumb Line 
based Dynamic Time Warping (R-DTW) and Closest Point of 
Approach (CPA) computations to identify hazards proactively, 
rather than reactively.

The methodology enhances traditional AIS data filtering 
by incorporating Maritime Mobile Service Identity (MMSI), 
position, and Course Over Ground (COG) parameters, enabling 
a more structured preprocessing pipeline. Unlike existing 
studies that primarily use static trajectory mapping, this work 
employs dynamic visualization with Folium and applies cubic 
spline interpolation to smooth movement patterns, improving 
prediction reliability. HDBSCAN clusters contextually similar 
movement behaviors, automatically distinguishing dense traffic 
areas from outliers, unlike conventional DBSCAN or k-means 
clustering. This reduces noise while preserving navigational 
trends, allowing for more precise anomaly identification.

By dynamically comparing predicted trajectories against 
both historical movement trends and detected anomalies, the 
LSTM model offers improved forecasting accuracy compared 
to traditional autoregressive or Kalman filtering methods. 
CPA calculations incorporate predicted deviations rather than 
relying solely on static course projections, ensuring a more 
accurate assessment of collision risks. The effectiveness of this 
approach will be tested using real AIS data, model accuracy 
measured through Mean Absolute Error (MAE) and Root Mean 
Square Error (RMSE), and overall performance validated 
through comparative simulations against existing maritime 
traffic prediction techniques.

This paper introduces a novel, integrated anomaly 
detection and predictive collision avoidance system, 
overcoming the constraints of prior work by combining AIS 
data filtering, adaptive visualization, HDBSCAN clustering, 
and deep-learning-based LSTM trajectory prediction. The 
proposed framework demonstrates a significant advancement 
over traditional methods by integrating both spatial and 
temporal insights, leading to a proactive and adaptive maritime 
safety mechanism.

2.  LITERATURE REVIEW
AIS data has been pivotal in maritime safety, traffic 

management, and trajectory pre-diction research. Various 
methodologies enhance vessel trajectory prediction accuracy 
and efficiency, Yang1, et al. used Bi-directional LSTM (Bi-
LSTM) for trajectory pre-diction, improving accuracy 
by denoising AIS data through trajectory separation, data 
cleaning, and standardization. The Bi-LSTM outperformed 
models like ARIMA, SVR, and LSTM. Mozaffari2, et al. give 
a detailed assessment of deep learning-based techniques for 
car behaviour prediction, emphasising their better performance 

in complicated driving settings. compared to traditional 
approaches, and outlining major research gaps and prospects. 
Raj3, et al. reviewed deep learning techniques for vessel 
trajectory prediction, discussing methodologies, data sources, 
and challenges in the field. They emphasised the need for robust 
models to handle vast AIS data and diverse vessel patterns. 
Lee4, et al. developed an LSTM algorithm to predict maritime 
traffic conditions, thereby assisting autonomous ships. Their 
model effectively predicted traffic conditions using features 
like traffic volume and congestion. 

Zhao and Shi5 combined density-based clustering and 
RNN for maritime anomaly detection, identifying deviations 
from standard navigational practices, and enhancing maritime 
safety. Alam and Torgo6 introduced a clustering-based 
framework focussing on vessel type-specific behaviours for 
location prediction, improving accuracy and computational 
efficiency. Rong7, et al. used trajectory compression and 
clustering for probabilistic maritime traffic characterisation 
and anomaly detection, enhancing traffic management. Lin8, 
et al. developed a collision risk prediction model using CNN 
and LSTM, achieving high accuracy in predicting spatial-
temporal collision risks. Murray and Perera9 proposed a deep 
learning framework using variational recurrent autoencoders 
and HDBSCAN for high-fidelity regional ship behaviour 
prediction. 

Wu10, et al. integrated ConvLSTM and Sequence-to-
Sequence (Seq2Seq) models for ship trajectory prediction 
showing excellent performance in predicting turning 
and straight-line trajectories. Olesen11, et al. developed a 
contextually supported abnormality detector using clustering 
and deep learning for early risk warnings. Alam12, et al. studied 
enhanced short-term vessel trajectory prediction by clustering 
route patterns for each vessel type, thereby improving accuracy 
and computational efficiency. The study by Raj and Kumar13 
demonstrates the effectiveness of integrating linear regression 
(LR) and long short-term memory (LSTM) methods to 
forecast vessel positions using AIS data, to improve maritime 
operations. These studies demonstrate advancements in vessel 
trajectory prediction and anomaly detection. These methods 
improve maritime safety and traffic management by combining 
deep learning models like LSTM, Bi-LSTM, and ConvLSTM 
with clustering algorithms like HDBSCAN. They do this by 
dealing with problems in AIS data and complicated vessel 
movement patterns. 

Building on these insights, this paper combines anomaly 
detection and an LSTM model for trajectory prediction to 
improve maritime safety. The method accurately predicts 
neighbouring vessel trajectories and estimates CPA, providing 
a robust solution for collision avoidance. Experiential 
validation with real-world AIS data highlights the method’s 
practical applicability in maritime traffic management and 
safety enhancement.

3. METHODOLOGY
3.1 Data Acquisition

Selecting the right data source is key for AIS analysis 
due to quality and availability differences. Researchers found 
that Marine Cadastre and AIS Explorer offer the highest time 
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resolution among non-commercial sources. Marine Cadastre 
provides comprehensive, free data but is limited to U.S. waters 
and does not include current-year data, only up to the previous 
year.

Marine Cadastre was chosen for its daily AIS data in ZIP 
format. Initially, the entire U.S. coastline was analysed, but the 
focus shifted to a region below Panama (longitude -88.2729 
to -83.9557, latitude 26.6614 to 29.8356) for the period 
from December 2, 2022, to June 30, 2023. This area, with its 
significant maritime traffic and key ports, improved accuracy 
and relevance.

3.2 Data Filtering Methodology
This dataset initially contains 4,220,319 rows with the 

following columns: MMSI, Latitude LAT, LON, SOG, COG, 
Vessel Type, and BaseDateTime. Meticulous filtering steps 
were performed to ensure the dataset’s integrity and suitability 
for predictive modelling.

3.2.1 Exploratory Data Analysis (EDA)
• Handling Missing Values:  The dataset was examined for 

any missing values (NAs). Any rows containing missing 
values were dropped to ensure data completeness and 
integrity

• Removing Duplicate Values: Duplicate rows, where 
all values were identical, were removed to ensure data 
unique-ness and prevent redundancy. After this process, 
the dataset was reduced to 72,253 rows

• Initial Duplicate Values
• LON: Values were constrained to the range 

[-180, 180] degrees. No rows were excluded
• LAT: Values were constrained to the range [-90, 

90] degrees. No rows were excluded
• COG: Values were constrained to the range [0, 

359.9] degrees. No rows were excluded.

3.2.2 Feature Engineering
• Splitting BaseDateTime: The BaseDateTime column 

was split into separate Date and Time columns for granular 
analysis, focusing on May 1-10, 2023, reducing the dataset 

to 317,815 rows and increasing the columns to 9.
• Adding time_difference_minutes Feature: A time_

difference_minutes feature was added to calculate the time 
difference between consecutive data points. Differences 
exceeding 300 minutes indicate new trajectories, 
enhancing temporal resolution.

• SOG Grouping: SOG values were grouped by MMSI to 
calculate the average SOG. Vessels with an average SOG 
greater than 5 knots were retained to exclude stationary 
vessels, reducing the dataset to 158,449 rows.

3.2.3 Filtering Process
• MMSI Filtering: To ensure valid MMSI, the dataset was 

filtered to retain only 9-digit MMSI numbers. This step 
reduced the dataset to 4,219,742 rows, removing 577 rows.

• Vessel Type Filtering: Certain vessel types, such as 
fishing boats or those operating near ports, exhibit 
erratic movement patterns that complicate clustering and 
prediction processes. To retain specific vessel types, the 
data was filtered using AIS type codes: 80: Tanker Type 
Ships, 35: Military Ops, 60: Passenger Ships and 70: 
Cargo Ships. This filter further reduced the dataset to 
72,254 rows.

• Sorting by BaseDateTime: The dataset was sorted by 
BaseDateTime to ensure proper sequencing of vessel 
trajectories, which is crucial for accurate trajectory 
prediction.

• Length of the Trajectory: MMSIs with fewer than 1,000 
data points were filtered out to ensure substantial trajectory 
information. This step reduced the dataset to 35,624 rows.

Following these thorough filtering steps, the dataset  
(Fig. 1) underwent significant refinement, retaining only 26 
unique MMSIs from an initial 3,132, thereby providing a 
robust foundation for accurate trajectory prediction modelling.

3.3 Trajectory Extraction and Interpolation
After initial filtering, vessel trajectories from AIS data 

were processed by dividing each vessel’s journey into multiple 
segments using MMSI and a unique trajectory ID (Fig. 2). Gaps 

Figure 1. Filtered data.
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in AIS messages were handled by interpolating only where 
messages were not broadcast between 3 and 300 minutes, as 
longer gaps typically indicate extended halts. Cubic spline 
interpolation was used to estimate positions during these gaps, 
based on the vessel’s average broadcast frequency in that 
trajectory. This method offers smoothness, flexibility, minimal 
oscillation, and effective trend preservation, making it ideal for 
interpolating vessel trajectories in AIS data. 

3.4 R-DTW + HDBSCAN
R-DTW and HDBSCAN were employed to analyse and 

cluster vessel trajectories. This combination allowed us to 
account for temporal and spatial variations in the trajectories, 
providing more accurate and meaningful clustering results 
(Fig. 3).

3.4.1 R-DTW
Before clustering, R-DTW was used to measure trajectory 

similarity, handling speed and length differences better than 
traditional Rhumb Line distances. R-DTW aligns sequences 
based on shape rather than point-by-point, making it ideal for 
comparing maritime paths with varying temporal dynamics.

3.4.2 Clustering with HDBSCAN
LAT and LON were used for clustering, focusing on 

these for a generalized model. HDBSCAN was chosen over 
DBSCAN for its density handling and automatic epsilon 
determination. Key parameters are “min_cluster_size” (cluster 
size) and “min_samples” (core point classification). A grid 
search (Table 1) was performed, and cluster quality was 
assessed with silhouette scores. Due to path overlaps, scores 
were sometimes misleading, so results were visually inspected. 
“min_samples” was set from 1 to 11 and “min_cluster_size” 
from 2 to 21, with several parameter combinations yielding 
silhouette scores above 0.2.

Figure 2. Interpolation of trajectories.

Figure 3.  Workflow for detecting vessel behaviour patterns 
with R-DTW & HDBSCAN.

Table 1. Silhouette score in different situations

Min_samples Min_cluster_size Silhouette score
1 3 0.26725
1 5 0.26970
1 6 0.23613
1 7 0.23613
1 8 0.23613
1 9 0.23613
1 10 0.23613
1 11 0.23613
1 12 0.32652
1 13 0.32652
1 14 0.32652
2 2 0.25493
2 3 0.25493
2 4 0.25016
2 5 0.25016
2 6 0.25453
2 11 0.29606
2 12 0.29606
2 13 0.29606
3 10 0.27605
3 11 0.27605
3 12 0.27605
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The best configuration was “min_samples=1” and 
“min_cluster_size=5”, which resulted in five distinct clusters, 
including one for noise. Although “min_cluster_size=12” with 
a silhouette score of 0.3265 produced only two clusters, they 
were unsatisfactory. The final setup effectively captured the 
data’s patterns, with 17 noise points identified (Fig. 3).

3.4.3 Evaluation and Visualization
Due to overlapping trajectories, the silhouette score was 

less effective for evaluating clustering quality. Instead, visual 
inspection with Folium, an interactive mapping library, was 
used to assess the spatial distribution and coherence of clusters 
(Fig. 4).

Figure 4. Clustered trajectories.

3.5  LSTM Model
LSTM networks, a type of RNN, overcome vanishing 

and exploding gradient problems using a unique cell structure 
with Memory Cells, Input Gate, Forget Gate, and Output Gate. 
These gates allow LSTMs to selectively remember and forget 
information, capturing long-term dependencies effectively.

3.5.1 Sliding Window Concept
The LSTM model captures temporal dependencies by 

using a sliding window of 50 data points to predict the next 
point.

3.5.2 LSTM Model Deployment
 The hyperparameters for training the model (Table 2) are 

chosen based on empirical evaluations to optimize performance 
while preventing overfitting:
• Epochs (20): The model undergoes training for 20 cycles 

across the complete dataset. This value was determined 
by monitoring validation loss, where additional epochs 
provided diminishing returns and signs of overfitting

• Batch Size (32): The model updates its weights after every 
32 data points. This batch size balances computational 
efficiency and gradient stability, preventing excessive 
noise while maintaining reasonable convergence speed

• Validation Split (0.2): Twenty percent of the training data 
is reserved for validation. This ratio was selected after 
testing different splits (10 %, 30 %), with 20 % providing 
the best trade-off between training data availability and 
model generalization.

Table 2. Hyperparameter settings for model

Hyper_Parameter Values
Epochs 20
Batch_size 32
Validation_split 0.2

3.5.3 Model Training and Validation
Training and validation loss values were monitored, and 

found 0.0001& 0.0006 respectively. These low values indicate 
effective learning and good generalization (Fig. 5).

Figure 5. Training and validation loss curves over epochs.

3.5.4 Trajectory Prediction and Anomaly Detection
3.5.4.1 Prediction Process

The last 50 points of the vessel’s trajectory are removed 
to evaluate the model’s prediction accuracy. The actual and 
predicted trajectories are compared after the model predicts 
these 50 points. (Table 3) Anomalies are identified when the 
predicted trajectory significantly deviates from the actual 
trajectory.

Table 3. Predicted vessel trajectory data

MMSI LAT LON Time
309761000 27.953092 -87.937632 03:26:35
309761000 27.946034 -87.940097 03:26:42
309761000 27.938481 -87.942439 03:26:48
309761000 27.930610 -87.944713 03:26:55
309761000 27.922408 -87.946932 03:27:02
- - - -
- - - -
309761000 27.529361 -87.998084 03:31:32
309761000 27.519787 -87.998984 03:31:39
309761000 27.510228 -87.999878 03:31:45
309761000 27.500685 -88.000766 03:31:52
309761000 27.491158 -88.001649 03:31:59
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3.5.4.2 Intersection and Collision Detection
Using interpolated data and predicted trajectories, vessels 

that intersect the target vessel’s path are identified. MMSI 
309761000 intersects with the following MMSIs: 367633000, 
636014278, 311001144, 303520000, 311018700, 258288000, 
and 477050700. Further analysis (Table 4) confirms that no 
vessels will disrupt the predicted path within 10 minutes, 
ensuring safe navigation.

To validate the effectiveness of our proposed method, we 
compared its performance with a baseline linear regression 
model and a Kalman filter-based trajectory prediction approach. 
The results demonstrate that our model achieves significantly 
lower error rates (MSE, RMSE, MAE, and MAPE) and a 
higher R-squared value, indicating better predictive accuracy 
and robustness.

Table 4. Model Evaluation Metrics

Performance 
matrix

Proposed model
(RDTW+LSTM
+HDBSCAN)

Kalman 
filter

Linear 
regression

MSE 0.0001 0.0023 0.0041
RMSE 0.0105 0.0480 0.0642
MAE 0.0037 0.0201 0.0314
MAPE 0.0001 0.0028 0.0039
R-squared 0.9996 0.9342 0.8793

The comparison highlights that our model outperforms 
traditional approaches by reducing prediction errors while 
maintaining high accuracy. The LSTM model effectively 
captures non-linear motion patterns, whereas the Kalman 
filter and linear regression struggle with complex trajectory 
variations. These findings reinforce the robustness and 
reliability of our proposed approach for proactive maritime 
navigation.

3.6  CPA 
In maritime navigation, the Closest Point of Approach 

(CPA) assesses collision risk by identifying the closest meeting 
point of two converging vessels. This metric helps mariners 
and automated systems avoid collisions. The research includes 
CPA, which is crucial for evaluating the safety of predicted 
vessel trajectories.

3.6.1 Time to CPA (TCPA)
TCPA measures the time until vessels reach their closest 

point of approach. It helps mariners assess collision imminence 
(Fig. 6) and make timely decisions to alter course or speed to 
avoid accidents.

The formula for TCPA:
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In Eqn. 1, DCPA is the distance at the closest point of 
approach and relativev  is the relative velocity between the two 
vessels.

3.6.2 DCPA 
DCPA measures the minimum distance between two 

vessels if they maintain their current courses and speeds. A 
smaller DCPA indicates a higher collision risk, while a larger 

DCPA suggests a safer distance (Fig. 6). It’s a key spatial 
measure for assessing the closest approach of vessels.

The formula for DCPA:
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v v

×
=

+                
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In Eqn. 2, V1 and V2 are the velocity vectors of the two 
vessels.

Figure 6. Vessel trajectories with CPA, DCPA, and TCPA.

3.6.3  CPA’s Importance in Detecting Anomalous Behaviour 
and Collision Risk

3.6.3.1 Collision Hazards
CPA calculations with AIS data and LSTM models predict 

future vessel positions, enabling proactive collision prevention 
by altering course or speed.

3.6.3.2 Anomalous Behaviours 
• Direct Detection: Monitoring CPA and low DCPA values 

reveals anomalies like sudden speed or course changes.
• Real-Time Monitoring: Continuous CPA calculations 

trigger alerts for deviations and prompt preventive actions.
• Historical Analysis: Analysing past AIS data with CPA 

uncovers trends of anomalous behaviour.

3.6.3.3 Enhancing Marine Safety and Security
Integrating CPA with AIS data predicts collisions, 

provides real-time alerts, maintains safe distances, and 
enhances maritime security.

3.6.4 Mathematics
3.6.4.1 Definitions and Notations
• Position Vectors: Let P1 (t), and P2 (t), be the position 

vector of vessel 1 and vessel 2 at time t
• Velocity Vectors: Let V1, and V2, be the constant velocity 

vector of vessel 1 and vessel 2
• Initial Positions: Let P1,0 and P2,0 be the initial position 

vector of vessel 1 and vessel 2 at time t = 0.
            
3.6.4.2 Equations of Motion

The position of each vessel at any time t can be described 
as:
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1 1,0 1( )P t P V t= + ∗                                       (3)

2 2,0 2( )P t P V t= + ∗                                      (4)
 Relative Position and Velocity:

Define the relative position and velocity vectors:
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Let ,0 1,0 2,0relP P P= −  be the initial relative position.

Time to Closest Point of Approach (TCPA) : To find 
the time tCPA at which the distance between the two vessels 
is minimized, the time when the derivative of the squared 
distance concerning time is zero is solved for.
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If RCPA is less than a safe distance (Dsafe) and TCPA is 

within a critical time frame, a collision risk exists, requiring 
evasive action. This helps predict collisions and enhance 
navigation safety. CPA is calculated by selecting a point within 
a vessel’s predicted trajectory and setting a threshold distance 
to identify nearby vessels. The closest distance between the 
predicted trajectory and any passing vessel is then determined, 
aiding in informed route decisions to avoid collisions (Fig. 7).

Figure 7. Closest point of approach.
The methods were validated using real-world AIS data, 

confirming their practical applicability in maritime operations. 
In the visualization (Fig. 8), the Blue Line represents the actual 
vessel trajectory, while the Green Line depicts the predicted 
path generated by the model. Red Points indicate intersection 

points with other vessels. This visual representation effectively 
highlights deviations from the actual path and potential points 
of intersection, providing clear insights into the model’s 
performance and the safety of the predicted trajectory.

Figure 8. Anomaly detection.

4. RESULT & DISCUSSION
The study showcased notable advancements in the 

detection of anomalous ship behaviors and the prediction of 
potential collisions using AIS data, contributing significantly 
to maritime safety and operational efficiency. Through the 
application of HDBSCAN clustering, the research achieved 
high precision in identifying irregular patterns, such as abrupt 
course changes and unauthorized breaches of restricted zones, 
which are critical indicators of anomalous activity. Collision 
prediction was enhanced by integrating Long Short-Term 
Memory (LSTM) networks with Closest Point of Approach 
(CPA) calculations, providing a reliable framework for 
anticipating and mitigating potential collision scenarios. 
Furthermore, advanced preprocessing techniques, including 
noise removal and trajectory interpolation, were instrumental 
in refining AIS data, ensuring greater clarity and accuracy for 
downstream analysis. These methodologies were rigorously 
validated with real-world maritime datasets, demonstrating 
their effectiveness and practical applicability in dynamic 
maritime environments.

5. CONCLUSION
This study presents a novel approach combining 

HDBSCAN clustering and LSTM networks to enhance 
maritime safety by detecting anomalous ship behaviours and 
predicting collisions. The results demonstrate the method’s 
accuracy and reliability, highlighting its potential for real-
world applications in maritime traffic management. Future 
research should focus on refining these techniques, integrating 
additional data sources, and exploring emerging technologies 
to further improve detection and prediction capabilities. 
This approach provides a valuable tool for proactive risk 
management and collision avoidance in congested seaways.

  
REFERENCES
1. Yang CH, Wu CH, Shao JC, Wang YC, Hsieh CM. AIS-

based intelligent vessel trajectory prediction using bi-
LSTM. Ieee Access. 2022 Feb 25;10:24302-15. 

 doi: 10.1109/ACCESS.2022.3154812
2. Mozaffari S, Al-Jarrah OY, Dianati M, Jennings P, 



RAJ & KUMAR: LEVERAGING HDBSCAN, LSTM AND R-DTW FOR PROACTIVE DETECTION AND COLLISION PREDICTION

497

Mouzakitis A. Deep learning-based vehicle behavior 
prediction for autonomous driving applications: A review. 
IEEE Transactions on Intelligent Transportation Systems. 
2020 Aug 4;23(1):33-47. 

 doi: 10.1109/TITS.2020.3012034.
3. Raj N, Kumar P. Navigating the Future: A Comprehensive 

Review of Vessel Trajectory Prediction Techniques. 
Defence Science Journal. 2025 Jan;75(1):129-38.

 doi : 10.14429/dsj.20287
4. Lee E, Khan J, Son WJ, Kim K. An efficient feature 

augmentation and LSTM-based method to predict 
maritime traffic conditions. Applied Sciences. 2023 Feb 
16;13(4):2556. 

 doi: 10.3390/app13042556
5. Zhao L, Shi G. Maritime anomaly detection using 

density-based clustering and recurrent neural network. 
The Journal of Navigation. 2019 Jul;72(4):894-916. 

 doi: 10.1017/S0373463319000031
6. Alam MM, Torgo L. A clustering-based approach for 

predicting the future location of a vessel. InCanadian AI 
2022 May 27. 

 doi: 10.1016/j.knosys.2021.107561.
7. Rong H, Teixeira AP, Soares CG. Data mining approach 

to shipping route characterization and anomaly detection 
based on AIS data. Ocean Engineering. 2020 Feb 
15;198:106936.

 doi: 10.1016/j.trc.2020.01.011.
8. Lin C, Zhen R, Tong Y, Yang S, Chen S. Regional ship 

collision risk prediction: An approach based on encoder-
decoder LSTM neural network model. Ocean Engineering. 
2024 Mar 15;296:117019. 

 doi: 10.1109/TITS.2024.3115102.
9. Murray B, Perera LP. An AIS-based deep learning 

framework for regional ship behavior prediction. 
Reliability Engineering & System Safety. 2021 Nov 
1;215:107819.

 doi: 10.1109/ACCESS.2021.3088154.
10. Wu W, Chen P, Chen L, Mou J. Ship trajectory prediction: 

An integrated approach using ConvLSTM-based 

sequence-to-sequence model. Journal of Marine Science 
and Engineering. 2023 Jul 25;11(8):1484. 

 doi: 10.1016/j.oceaneng.2023.111147.
11. Olesen KV, Boubekki A, Kampffmeyer MC, Jenssen 

R, Christensen AN, Hørlück S, Clemmensen LH. A 
Contextually Supported Abnormality Detector for 
Maritime Trajectories. Journal of Marine Science and 
Engineering. 2023 Oct 31;11(11):2085. 

 doi: 10.1016/j.eswa.2022.118270.
12. Alam MM, Spadon G, Etemad M, Torgo L, Milios E. 

Enhancing short-term vessel trajectory prediction with 
clustering for heterogeneous and multi-modal movement 
patterns. Ocean Engineering. 2024 Sep 15;308:118303.

 doi: 10.1109/TITS.2023.3157812.
13. Raj N, Kumar P. A Novel and Efficient LR-LSTM AIS 

Route Data Prediction for Longer Range. Defence Science 
Journal. 2024 Jul 1;74(4):583-91 

 doi: 10.14429/dsj.74.19336

CONTRIBUTORS

Dr Nitish Raj obtained PhD from NIT Patna and working as 
a Scientist at DRDO, posted at the Weapons and Electronics 
Systems Engineer Establishment, Ministry of Defence in New 
Delhi. His research interests encompass: System design & 
development, systems integration, and Machine Learning.
He contributed to the current work by coming up with the idea 
and designing the experiment, optimising the deep learning 
techniques used in the experiment, creating the programme, 
analysing the data, and finalising the manuscript.

Dr Prabhat Kumar holds a PhD in Computer Science and 
working as a Professor in the Computer Science and Engineering 
Department at NIT Patna, India. His research focuses on 
Wireless sensor networks, internet of things, cyber security, 
data science, software engineering, and e-Governance.
He made contributions to the current study by assisting in the 
conceptualization of the review, helping in the identification 
and contributing to the analysis and synthesis of findings.


