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ABSTRACT

Soldiers rely heavily on their vision, which is crucial not only for daily activities but also for the effective 
operation of defense systems, weaponry, and other military applications. However, various eye disorders, such as 
those related to increased intra-ocular pressure, can lead to irreversible vision loss, severely impacting a soldier’s 
operational capabilities. While extensive research has been conducted on detecting such ocular conditions, there 
remains a critical need for more accurate diagnostic methods to ensure early detection and treatment. In this study, we 
propose a novel approach combining Empirical Mode Decomposition (EMD) and Variational Mode Decomposition 
(VMD) for enhanced detection of eye disorders from retinal fundus images. The proposed method includes a 
comprehensive preprocessing phase, followed by decomposition using EMD and VMD techniques. The decomposed 
images undergo feature extraction through feature combination, with subsequent normalization and selection using 
z-score and the Relief method, respectively. Classification is performed using Support Vector Machines (SVM) 
with various kernels, including cubic, Gaussian, linear, and quadratic. The results demonstrate that the proposed 
method achieves high accuracy, with SVM kernel functions yielding accuracies of 98.30 %, 96.59 %, 96.59 %, and 
97.87 % for 10-fold cross-validation, respectively. Additionally, the evaluation metrics, including sensitivity and 
specificity, indicate superior performance compared to state-of-the-art methods for similar datasets. This advanced 
diagnostic approach offers significant improvements in detecting eye disorders, which could be crucial in defense 
applications. Early and accurate diagnosis by military ophthalmologists can lead to better decision-making and 
timely interventions, ultimately preserving the vision and effectiveness of soldiers in the war.

Keywords: Eye disorders; Defense applications; Empirical Mode Decomposition (EMD); Support Vector Machines 
(SVM); Retinal fundus images; Early diagnosis

NOMENCLATURE
EMD  : Empirical mode decomposition
VMD  : Variational mode decomposition
SVM : Support vector machines
PCA  : Principal component analysis
OHAWT: Optimal hyper analytic wavelets transform
CVMD : Compact variational mode decomposition
IMFs : Intrinsic mode functions
BDIMFs: Bidimensional intrinsic mode functions

1. INTRODUCTION
The human eye is an essential part of the body, especially 

in defense, where a soldier’s readiness and effectiveness on 
the battlefield depend heavily on sharp vision. In the chaos 
of war, with guns firing, smoke filling the air, and explosions 
lighting up the sky, the ability to see clearly can mean the 
difference between life and death. However, certain ocular 
ailments, like those caused by increased intra-ocular pressure, 
can lead to devastating consequences such as permanent 
vision loss or blindness. These conditions, which develop 
insidiously, gradually damage the optic nerves within the eye, 

reducing a soldier’s capability to operate in environments 
filled with flames, explosions, and other hazards. The World 
Health Organization has identified this condition as the second 
leading cause of vision loss worldwide, with the number of 
affected individuals expected to rise to 111.8 million by the 
year 204011-5.

1.1 Literature Review
Various works have been reported for the glaucoma 

detection in the last decade. Bock, et. al.1 implemented Principal 
Component Analysis (PCA) on a transformed images followed 
by classification using a Support Vector Machine (SVM). 
Raja6, et. al. proposed automated glaucoma detection approach 
using Optimal Hyper Analytic Wavelets Transform (OHAWT). 
Maheshwari7, et. al. proposed variational mode decomposition 
(VMD) method-based glaucoma detection. Kirar8, et. al. 
proposed Discrete Wavelet Transform (DWT) and empirical 
wavelet transform (EWT) methods-based glaucoma detection. 
Kirar9, et. al. designed an automated glaucoma detection 
method using Compact Variational Mode Decomposition 
(CVMD). Agrawal10, et. al. proposed Quasi-Bivariate 
Variational Mode Decomposition (QB-VMD) method-based 
glaucoma detection using. Further, Kirar12, et. al. proposed 
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new approach using DWT image channels. Diaz-Pinto13, 
et. al. proposed and developed new ACRIMA image dataset 
with 705 images for glaucoma detection using Convolutional 
Neural Network (CNNs). Further, various works10-20 have been 
reported on this recent popular ACRIMA dataset13. Serte, et. 
al.14 implemented his work on ACRIMA dataset for glaucoma 
detection using Deep Learning (DL). Claro15, et. al. developed 
new approach using Transfer Learning (TL), hybrid feature 
and Random Forest (RF) classifier. Liu17, et. al. added deep 
NN for feature extraction and classification. Elangovan18, et. 
al. modeled a standard CNN using softmax classifier. Kirar19, 
et. al. in new research work, implemented QB-VMD in two 
stages with SVM. Galarraga20, et. al. successfully implemented 
image processing techniques for glaucoma detection. Devi21, 
et. al. also implemented successfully various texture-based 
method for feature extraction and classification. Manghnani22, 
et. al. proposed an improved method using bidimensional 
EMD (BD-EMD) for glaucoma detection. Devecioglu23, et. 
al. developed a compact Self-Organized Operational Neural 
Networks method for glaucoma detection.

Some most recently published articles include, Singh24, 
et. al. proposed a multimodality-based approach for efficient 
glaucoma prediction. Early fusion and late fusion both were 
implemented in this work. Machine Learning and Deep learning 
were implemented using feature level fusion and image level 
fusion respectively. Approach was tested on three benchmark 
datasets and four combinations of these datasets. Classification 
accuracy up to 92.14 % was achieved through this approach 
using ACRIMA dataset. Sonti25, et. al. implemented QB-VMD 
with shape and texture-based features for better performances. 
Other works also proposed enhanced glaucoma detection from 
fundus images26-28

1.2  Limitations in Existing Research Work
Research work published for glaucoma detection1-7,25-35 

reported less accuracy. It may be due to having some demerit 
or due to limitation of methods used or have not utilized 
the contribution of all components. Methods used based on 
DWT7-9 have interference with little resolution. Methods used 
based on EWT5 suffer from redundancy. Methods used based 
on EMD17 and VMD7-24 the EMD have problem of boundary 
distortion which is overcome by use of VMD based methods. 
VMD based methods are better. Further, VMD is also limited 
to large and varied data set. There is lack of contribution of all 
color components in the methods used based on ML DL36-45 
and DL13-18, 46-58 However, there is a scope to develop a model 
for improved glaucoma detection by combining EMD and 
VMD based methods.

1.3 Contributions in the Proposed Work
During image capturing, if precautions are not taken then 

the image quality may degrade by the addition of some nearby 
noise and artefacts. Continuing with the research work22, 
we further propose a combination of EMD and VMD based 
methods for improved glaucoma detection from retinal fundus 
images. This paper includes the following contributions:
•  It involves the study of latest research work for glaucoma 

detection

•  Images are subjected to preprocessing using rescaling 
and decomposition into its gray scale, green, red and blue 
components

•  All components are subjected to EMD and VMD methods 
for decomposition into their corresponding small, 
moderate and high frequency components

•  Further, extracted and selected features are classified 
with SVM–based kernels, like Linear, Quadratic, Cubic, 
and Gaussian. SVM with Cubic kernel gives the best 
performance.

2.  PROPOSED RESEARCH WORK
This section describes the proposed research work in detail 

as shown in Fig.1 First of all, ACRIMA images are rescaled 
and subjected to decomposition to gray scale, green, red and 
blue components. Then each component is subjected to EMD 
and VMD based methods separately. Then all the decomposed 
frequency components, intrinsic mode functions (IMFs) are 
subjected to features extraction methods. Finally, obtained 
features are combined and subjected to z-score normalization 
and relief features selection followed by classification using 
support vector machines (SVM) with its different kernels like 
linear, quadratic, cubic, and gaussian. Performance metrics are 
evaluated and compared with state of art work. 

Figure 1. Block diagram of the proposed work.

2.1  ACRIMA Images Data Set
This dataset includes a total 705 images (396 Glaucoma+ 

309 Healthy) and available in .jpg image format publically13. 
ACRIMA images are captured with a field of view of 35° and 
pixel values vary from 178×178 to 1420×1420.

2.2 Pre-Processing
Image capturing process may add some unwanted noised 

and artefacts, which is responsible for the lower image quality 
and hence somewhat reduced performance. To enhance the 
performance rescaling and contrast enhancement are applied to 
the images1. This work includes rescaling and decomposition 
into its gray scale, green, red and blue components followed 
by equalisation and filtering29. Outputs of all steps involved in 
preprocessing of glaucoma and healthy images are shown in 
Fig. 2 & 3.

2.3  Empirical Mode Decomposition
This section explains the empirical mode decomposition 
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(EMD). It is adaptive in nature. Its bi-dimensional form 
(BDEMD) decomposes input image into three frequency 
components, Intrinsic Mode Functions (IMFs) and one 
residue. It has the advantage to decompose the image into 
small, moderate & high frequency components, bidimensional 
IMFs (BDIMFs)31 The decomposition of image I(x,y) using 
BDEMD is carried out as follows:
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2.4  Variational Mode Decomposition

This section explains the variational mode decomposition 
(VMD). It is non-stationary and fully adaptive in nature. Its 
two-dimensional form (2DVMD) decomposes input image 
into five frequency components, intrinsic mode functions 
(IMFs). It is more advantageous than conventional methods to 
decompose the image into small, moderate & high frequency 
components (VMDIMFs) because it has no mode mixing 
problems. VMDIMFs are band limited and centered around a 
specific frequency, which are calculated using Eqn. (2-6) as 
follows32:
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The center frequency can be expressed as:
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where, S = signal, α =balancing parameter, zn=VMDIMFs, and 
wn=center frequency of nth VMD component.

2.5  Feature Extraction and Selection
Total 4-GLCM (Gray-Level Co-Occurrence Matrix) and 

6-chip histogram features34 as listed in Table1 are extracted 
from all decomposed components. We have extracted 40 
features from EMDIMFs and 40 features from VMDIMFs i.e. 
a total of 80 features have been extracted.

Figure 2.  Outputs of all steps involved in preprocessing of 
glaucoma image.

Figure 3. Outputs of all steps involved in preprocessing of 
healthy image.

• Calculation of maxima and minima of I(x,y).
• Calculation of upper and lower envelope of I(x,y).
• Calculation average envelope by adding upper and lower 

envelope of I(x,y) and dividing by 2.
• Subtraction of the average envelope from input image. 

Then we check the result for stopping criterion. If a match 
occurs implies it is a BDIMF and we move ahead to the 
next step (v) Else are go back and start from step(i)-(iii). 
Taking the result as input, we find new BDIMF. 

• Calculate remaining BDIMFs, taking result of step (iv) as 
input and repeat steps (i-iv).
Finally, BDEMD decomposes image as a sum of BDIMFs 

(s=1 to 3) and one residue as given in Eqn. (1). Where s is from 
1 to 3.

Table 1. Features extracted from various components

Features No of features Name of features

GLCM 4

Contrast
Correlation
Energy
Homogeneity

Chip histogram features 6

Energy
Mean
Entropy
Variance
Kurtosis
Skewness
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These 80 features are subjected to z-score normalisation22 
and ReliefF features selection method35 for obtaining important 
features only. This step is used to increase the performance of 
SVM classifier. A z-score normalization ( ( )ˆ 

( )
F m FF

sd F
−

=) is calculated using 
Eqn. (7).

( )ˆ 
( )

F m FF
sd F
−

=
                                         (7)

where, sd=standard deviation, m=mean, F= extracted features 
data.

2.6  Classification
Widely used classifier in the medical image field is support 

vector machine36,59-62. This research work is implemented using 
SVM with its kernels like Cubic, Gaussian, Linear, Quadratic 
and hence named as C-SVM, G-SVM, L-SVM, and Q-SVM. 
The SVM and performance evaluation measures30-71 include 
accuracy (Acc), sensitivity (Sen), and specificity (Spe), which 
are calculated using Eqn. (8-10).

100TP TNAcc
TP TN FP FN

+
= ×

+ + +             (8)

10TPSen
TP FN

= ×
+                                   (9)

100TNSpe
TN FP

= ×
+                                                       (10)

where, 
TP=True+Positive. TN=True+Negative, FP=False+Positive 
and FN=False+Negative.

3.  EXPERIMENTAL RESULTS
In this paper a combination of EMD and VMD based 

methods for improved glaucoma detection is implemented 
on ACRIMA13 image dataset. Two input images of glaucoma 
(Im638_g_ACRIMA.jpeg) and healthy (Im056_ACRIMA.
jpeg) are given in Fig. 4. After applying preprocessing and 
decomposition methods, separately. We obtained various 
frequency components (EMD-imfs and VMD-imfs) from 
low to moderate, and moderate to high using EMD69-76 and 
VMD52-68 as shown in Fig. 4.  The evaluated matrices like 
accuracy, sensitivity, and specificity of proposed work using 
10-fold cross validation are presented in Table 2. The achieved 
accuracy using SVM with its kernel functions like cubic, 
gaussian, linear, quadratic is 98.30 %, 96.59 %, 96.59 %, and 
97.87 %, respectively Fig. 4.

In Fig. 5, we have plotted a curve for performance (in 
percentage) of proposed research work using 4 types of SVM- 
kernel for 2-to-13-fold cross validation. In Fig. 5, we obtained 
better accuracy using cubic and quadratic kernels with SVM 
for 10-fold cross validation. However, C-SVM achieved 
highest accuracy with better sensitivity and specificity. This 
showed that 10-fold is better for C-SVM.

Figure 4.  Input sample images along with sample images along 
with preprocessed and EMD-imfs and VMD-imfs.

Table 2.  Performance for the proposed work after 3, 5, & 10 
fold cross validation with different kernel

k-FCV SVM Kernels Acc (%) Sen (%) Spe (%)

3

Linear 95.74 97.47 93.51
Quadratic 97.3 98.48 95.78
Cubic 97.59 98.48 96.43
Gaussian 95.86 99.74 90.91

5

Linear 96.16 97.73 94.16
Quadratic 97.3 98.23 96.1
Cubic 97.87 98.74 96.75
Gaussian 96.31 99.24 92.53

10

Linear 96.59 98.23 94.48
Quadratic 97.87 98.74 96.75
Cubic 98.3 98.48 98.05
Gaussian 96.59 99.75 92.53

Figure 5.  Plot for accuracy (in %) versus SVM-Kernels for 
2-to-13-fold cross validation.

Figure 6. ROC curve foe better accuracy using C-SVM.
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Further, we have also plotted a ROC curve for better 
accuracy using C-SVM in Fig. 6 for 10-fold cross validation.

4.  COMPARATIVE ANALYSIS OF PROPOSED 
AND EXISTING RESEARCH WORK
This section presents an experimental comparison of 

proposed research work and recent state-of-the-art method for 
glaucoma detection. 

Proposed research work achieved better results. We have 
obtained highest accuracy, which is 98.30 %, using C-SVM. 
The achieved accuracy using SVM with its kernel functions like 
cubic, gaussian, linear, quadratic is 98.30 %, 96.59 %, 96.59 
%, and 97.87 %, respectively. The performances comparison 
of this work and recent published work has been given in Table 
3 and plotted in Fig. 7.

5.  CONCLUSIONS AND FUTURE WORK
This research presents a combined Empirical Mode 

Decomposition (EMD) and Variational Mode Decomposition 
(VMD) approach for enhanced detection of ocular diseases 
from retinal fundus images. In defense scenarios, where 
soldiers, fighter pilots, tank operators, and infantry must 
maintain peak visual performance amidst the chaos of war-guns 
firing, rockets launching, cannons booming, and explosions 
lighting up the battlefield-accurate and early diagnosis of eye 
conditions is crucial. By preprocessing and decomposing all 
color components using EMD and VMD into EMD-imfs and 
VMD-imfs, the accuracy of detecting these conditions has 
been significantly improved. The C-SVM classifier achieved 
the highest accuracy of 98.30 %, demonstrating superior 
performance on the ACRIMA image dataset with 10-fold 
cross-validation. The achieved accuracies using SVM with 
cubic, Gaussian, linear, and quadratic kernels were 98.30 %, 
96.59 %, 96.59 %, and 97.87 %, respectively. When compared 
to other methods, our proposed approach outperforms state-of-
the-art techniques, leading to better results for detecting ocular 
diseases.

This method, with its improved accuracy, can assist 
military ophthalmologists in making better decisions for the 
diagnosis of eye conditions in defense applications. The ability 
to diagnose eye diseases early can help maintain the readiness 
and effectiveness of soldiers, pilots, and other defense 
personnel in high-stress environments filled with flames, 
explosions, and smoke. As future work, this approach could 
be extended to include deep learning features for detecting not 
only ocular diseases but also other conditions such as diabetes 
and retinopathy, further advancing its application in defense 
contexts.
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