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Development of Vibrating Disc Piezoelectric Gyroscope
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ABSTRACT

The paper presents an indigenously developed vibrating disc piezoelectric gyroscope, in
which both excitation and detection have been done through piezoelectric, using PZT-5H
material. The gyroscope has been driven to resonant state by direct piezoelectric effect, using
20 V ac signal at 93 kHz, and the output has been detected by the reverse piezoelectric effect.
The performance of this gyroscope has been tested with 3 microprocessor-controlled turntable,
and the output of the gyroscope has been found" to be linearly proportional to the rotation
speed within a range ± 150 °/s. The sensitivity of the gyroscope is about 0.5 mV/°/s, which
is comparable to that of other gyroscopes of similar category.
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1. INTRODUCTION

The vibrating gyroscopes are inertial instruments,
based on the Coriolis effect, used to measure angular
rotation rate. Gyroscopes, in general, can be classified
into three categories, based on their performances,
viz., (i) inertial grade, (ii) tactical grade, and (iii)
rate grade. Optical gyroscopes are considered to be
the most accurate; out of which ring laser gyros
have demonstrated inertial-grade performance, while
fibreoptic gyros are mainly used for tactical-grade
applications. However, optical gyroscopes are too
expensive and bulky for many applications. Solid- state
nature of the vibrating gyroscopes makes various
unique features possible. Also, there are no motors
or bearings. These sensors can be designed to be
extremely rugged and have long service life without
the need for maintenance, have very short startup
time, low-power consumption, small size, and low
cost, and have also achieved inertial-grade performance.

By simply placing a piezoelectric gyroscope
in a desired location or position, on an object,
the angular velocity of the object, unaffected by
the mounting position, can be accurately detected.
Early research on piezoelectric gyroscope was
motivated by military applications for designing
hi-tech sophisticated weapons, with space as the
main constraint. Recently, the piezoelectric gyroscope
is being utilised in various fields1-2 and an increasingly
strong demand has prompted research interest
for a constantly decreased size, improved accuracy,
and reduced cost. With the spread of navigation
systems and the camera-shake detection function
in video movies (VCR integrated with a camera),
the piezoelectric gyroscope has attracted wide attention3.
As the technology advances, vibratory gyroscopes4'5

become smaller, cheaper, and perform better, and
many more applications will become possible.
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The major difference between the conventional
mechanical gyroscope and the vibrating gyroscope
is that instead of spinning wheel used in the
former, the latter uses momentum of a vibrating
elastic body. In a vibratory gyroscope, an elastic
body or a resonator is forced to vibrate in a
flexible mode by attaching a piezoelectric material.
When the resonator is rotated about the sensitive
axis, the vibration pattern changes and this change
is used as a measure of the applied rotation rate.
These angular rate sensors make the use of two
vibrating modes: (i) primary mode arises due to
the excitation and (ii) secondary one arises due
to the Coriolis force in a rotating frame of reference.
In these two vibrating modes, the material particles
move in perpendicular directions, so that the Coriolis
force couples the two vibrating modes. Furthermore,
the resonant frequencies of these two vibrating
modes are very close to each other, for the gyroscope
to work at resonance for maximum sensitivity.
These two vibrating modes are called a pair of
gyroscopic modes. When a piezoelectric gyroscope
is excited into a vibration in the primary mode
by an applied alternating voltage and attached to
a rotating body, the Coriolis force couples energy
from the primary mode of a vibration into a
secondary mode of a vibration and excites this
secondary mode of a vibration, as shown in the
Fig. 1. This transfer of energy provides a measure
of the applied rotation rate. In this piezoelectric
gyroscope, the piezoelectric effect is used both
to excite a reference vibration and to detect a
vibration caused by the Coriolis force. The amplitude
of the secondary mode of vibration is directly
proportional to the applied angular rate.

The resonators can be of various geometric
structures depending upon the designs5'10 and may
be divided into two classes on the basis of modes
of a vibration used during the operation of the
gyroscope. In the first class of resonators, the
Coriolis coupling between the two dissimilar vibrating
modes of different natural frequencies is measured.
The resonators forming the second class have
two orthogonal vibrating modes, having the same
shape and identical natural frequencies, in the
absence of imperfections.

NODE
LINES

PRIMARY MODE

SECONDARY
MODE

Figure 1. Primary and secondary modes of a vibrating disc
piezoelectric gyroscope.

2. DEVELOPMENT OF PIEZOELECTRIC
DISC GYROSCOPE

The design and development of a piezoelectric
disc gyroscope has been undertaken, as vibrating
disc structure has certain advantages over the
other types of vibratory gyroscopes. These are:

(a) The inherent symmetry of the structure makes
it less sensitive to spurious vibrations.

(b) As the two identical flexural modes of the
structure, with equal resonant frequencies,
are used to sense the rotation, the sensitivity
of the sensor is amplified by the quality factor
of the structure, resulting in the higher sensitivity.

(c) The vibrating disc is less sensitive to temperature,
since both the vibration modes are affected
equally by the temperature.

(d) The electronic balancing of the structure is
possible. Any frequency mismatch, due to
mass or stiffness, can be electronically
compensated for using the balancing electrodes
located around the structure.
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2.1 Construction

The piezoelectric disc gyroscope has been made
using axially polarised PZT-5H piezoelectric disc.
A metal disc of diameter 30 mm and thickness
0.5 mm has been used for the purpose. The piezoelectric
disc is marked and cut carefully into the eight
symmetric divisions. The negative electrodes of ail
these cut piezoelectric pieces are pasted onto the
metallic disc, using silver adhesive to make the
joints electrically conductive. The positive electrodes
of all these cut piezoelectric pieces are now on the
upper surface of the disc. This is equivalent to a
piezoelectric disc having the eight equispaced electrodes
on the upper surface, numbered 1 to 8, and a
single electrode on the lower surface.

2.2 Experimental Setup v

The experimental setup of the piezoelectric
disc gyroscope is shown in the Fig. 2. The disc
is rigidly fixed to a turntable, the stepper motor

stem, and excited through a systronics function
generator at 93 kHz frequency with 20 V ac signal.
The output of this disc is taken through a bunch
of nine flexible wires. The eight wires are connected
to the eight equispaced identical positive electrodes
(numbered 1 to 8), and the ninth wire is connected
to the negative electrode. The disc output is fed
to the signal conditioner circuit and the output is
displayed on the 6 V4 digit Keithley digital multimeter.
The stepper motor is operated through a
microprocessor-based controlled driver card.

2.3 Operation

Since the disc is thin, a voltage applied to
electrodes 1 and 5 produces an axial electric field
in that region of the disc, defined by the shape of
those electrodes. This periodic field is used to
drive the disc into a resonant vibration due to
the piezoelectric action, and can excite a combined
radial and torsional mode of a vibration with

10 KQ
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Figure 2. Schematic diagram of a vibrating disc piezoelectric gyroscope along with turntable test setup
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radial displacement of the form as shown in the
Fig. 1. The nodal lines of this mode will occur at
± 45° wrt axis OX. At natural frequency, the disc
will have maximum vibrating amplitude, and hence,
there is maximum strain on the piezoelectric disc,
and as a result of inverse piezoelectric effect,
the output will be maximum. The resonance frequency
of the disc has been found experimentally by
varying the applied input frequency to the disc
from the function generator, and observing the
changing output. This output attains a maximum
value at the resonant frequency of the disc. The
resonant frequency of the disc has been found
as 93 kHz. Hence, the disc is excited with 93
kHz, 20 V ac signal for gyroscopic operation.

When this disc is rotated through the stepper
motor at an excited condition, the secondary mode
of a vibration is generated as a result of the
Coriolis force. The modal response produced by
this excitation can be measured directly by the
inverse piezoelectric effect, taking the current
produced by the electrode 4 through a high input
impedance current to a voltage convertor, using
operational amplifier LM 741(Aj). A second

measurement electrode 8 is connected to a second
high input impedance current to a voltage convertor
A2 (instead of electrode pair 4 and 8, electrode pair
2 and 6 can also be used). As these electrodes are
centered precisely on the 45° nodal lines of the
foregoing mode, these will register no output current
as a result of the oscillator vibration. If the disc
is rotated now, the Coriolis inertia forces will
excite a secondary motion as shown by dotted
lines in Fig. 1. This motion will cause an output
to be generated by A, and Ar The voltages are
applied to a high gain differential amplifier. The
value of the differential voltage is taken as the
measure of the applied rate of turntable.

3. RESULTS & ANALYSIS

The differential output of the vibrating disc
piezoelectric gyroscope, without rotation and with
rotational speed, for clockwise and counterclockwise
motion of the turntable is shown in the Tables 1
and 2, respectively. In these tables, rotational speed
for the turntable is presented in rotations per minute
(rpm) as well as in degree per second. The turntable
is 8085 microprocessor-based and has been calibrated

Table 1. Vibrating disc piezoelectric gyroscope output for clockwise rotation of the stepper motor

Clockwise rotation

First reading (mV)

rpm

6

8

11

16

18

20

22

24

26

28

30

32

34

36

40

43

RTN
(deg/s)

36

48

66

96

108

120

132

144

156

168

180

192

204

216

240

258

W/O
RTN

858

744

788

795

834

678

650

670

645

627

591

572

560

556

620

504

AFTR
RTN

870

760

804

820

870

712

690

715

705

715

702

688

673

700

813

607

DIFF

12

16

16

25

36

34

40

45

60

88

111

116

113

144

193

103

Second reading (mV)

W/O
RTN

855

740

789

812

836

693

652

665

652

629

595

561

550

438

563

501

AFTR
RTN

865

757

807

840

875

730

693

715

708

710

704

675

650

562

731

598

DIFF

10

17

18

28

39

37

41

50

56

81

109

114

100

124

168

97

Third reading (mV)

W/O
RTN

854

740

795

806

800

694

650

664

640

615

580

551

460

430

502

502

AFTR
RTN

868

754

811

838

831

730

691

710

699

691

684

663

574

559

701

606

DIFF

14

14

16

32

31

36

41

46

59

76

104

112

114

129

199

104

Average
change
(mV)

12.00

15.67

16.67

28.33

35.33

35.67

40.67

47.00

58.33

81.67

108.00

114.00

109.00

132.33

186.67

101.33
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Table 2. Vibrating disc piezoelectric gyroscope output for counterclockwise rotation of the stepper motor

Counterclockwise rotation
First reading (mV) Second reading (mV)

RTN W/O AFTR nTpp W/O
^ (deg/s) RTN RTN RTN

6 36 868 857 -11 864

8 48 757 744 -13 755

11 66 806 787 -19 803

16 96 815 792 -23 838

18 108 880 845 -35 874

20 120 712 678 -34 730

22 132 702 661 -41 724

24 144 721 675 -46 725

26 156 708 650 -58 700

28 168 ' 702 627 -75 710

30 180 690 591 -99 704

32 192 682 575 -107 675

34 204 676 560 -116 670

36 216 702 556 -146 562

40 240 806 620 -186 731

43 258 596 504 -92 598

for different speeds to suit rotation of the gyroscope
having a minimum speed of 6 rpm ( 36 °/s) and a
maximum speed of 65 rpm (390 °/s). The microprocessor
program corresponding to the speed is changed
serially and different speeds are measured by a
tachometer.

In signal conditioning circuit, the gain of the
current-to-voltage converter has been maintained
at 10 with a feedback resistor of 10 KQ. A 6.6 KQ.
resistor has been used as the feedback resistor in
differential circuit, and 100 Q resistor has been
used in series with the input supply to get a gain
of 66. The LM 741 operational amplifier has been
used for both the current-to-voltage converter and
the differential amplifier circuits. The output ac
voltage available from the differential amplifier is
measured by a 6 1/2 digit Keithley digital multimeter
and waveform is recorded on a 400 MHz Lecroy
storage oscilloscope. A number of experiments were
conducted and three sets of results have been presented

AFTR p.™
RTN

855 -9

740 -15

788 -15

812 -26

836 -38

693 -37

683 -41

687 -38

652 -48

629 -81

595 -109

561 -114

550 -120

438 -124

563 -168

501 -97

in Tables

Third reading (mV) Average

W/O AFTR nlFF
 Chan8e

RTN RTN (mV)

865 853 -12 -10.67

754 738 -16 -14.67

808 795 -13 -15.67

835 806 -29 -26.00

888 858 -30 -34.33

730 694 -36 -35.67

715 673 -42 -41.33

708 664: -444 -42.67

705 650 -55 -53.67

691 615 -76 -77.33

684 580 -104 -104.00

663 551 -112 -11.00

574 460 -114 -116.67

559 430 -129 -133.00

701 502 -199 -184.33

606 502 -104 -97.67

1 and 2. These tables also present average
values, which are shown graphically in Figs 3 and
4, for clockwise and counterclockwise rotations of
the stepper motor, respectively. It is observed from
the graphs that the output voltage increases for the
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Figure 3. Variation of sensors differential output with rotation
speed in degree per second for clockwise rotation
of turntable.
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Figure 4. Variation of sensors differential output with rotation
speed in degree per second for counterclockwise
rotation of turntable.

clockwise rotation of the stepper motor and deceases
(increases negatively) for the counterclockwise rotation
of the stepper motoV. Hence, the gyroscope is able
to detect the direction of a rotation. For the clockwise
rotation, the increased voltage remains constant until
it is rotated counterclockwise to decrease it to the
same reference voltage. For consecutive rotations
in the same direction, the voltage increases or decreases
as per the direction. These results satisfy the operating
principle of a gyroscope.

From the results and the corresponding graphs
shown in Figs 3 and 4, it has been observed that
the gyroscope operates linearly up to a rotation rate
of approximately ±150 °/s, after which the response
becomes nonlinear. This gyroscope can be successfully
used up to a maximum rotational speed of ± 150 °/s.
For most of the commercial applications, the maximum
range for rotation required is about 50 °/s, which
is much lower than the linear range attained for
the developed gyroscope. The sensitivity of the
gyroscope obtained is approximately 0.5 mV/°/s,
for the linear range, which is comparable to the
values reported for other designs and better than
the values reported for a disc-type gyroscope6'9.
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