
411

Defence Science Journal, Vol. 75, No. 4, July 2025, pp. 411-417, DOI : 10.14429/dsj.20508 
 2025, DESIDOC

Received : 14 August 2024, Revised : 18 February 2025 
Accepted : 05 March 2025, Online published : 26 June 2025

Obstacle Prone Area Coverage by Swarm of Mobile Robots with Limited Visibility 

Banashree Mandal#,*, Deepanwita Das#,*, and Niladri Mandal$

#National Institute of Technology, Durgapur – 713209, India 
$DRDO-Defence Research & Development Laboratory, Hyderabad – 500058, India 

*E-mail: bm.20cs1101@phd.nitdgp.ac.in

ABSTRACT

This paper studies a distributed coverage algorithm of a bounded rectangular region in the presence of horizontal 
line obstacles by an autonomous swarm of asynchronous mobile robots. They follow the basic Look-Compute-Move 
model, formally known as the CORDA model. The robot has no prior knowledge about the internal environment 
of the target region, especially the number and location of the robots, as well as obstacles. Robots are assumed to 
be anonymous, small, identical, simple, oblivious, inexpensive, and non-communicating in nature. The robots have 
a limited range of visibility. The robots unanimously decompose the whole region into several non-overlapping 
horizontal strips, where each robot is responsible for painting at most two strips based on its initial position. The 
painting of the entire region is achieved within finite time without any collision and repetition.
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NOMENCLATURE
d   : Visibility range
UPB     : The upper boundary of the strip
LWB     : The lower boundary of the strip
LFB     : The left boundary of the strip
RTB     : The right boundary of the strip

1. INTRODUCTION
Scientists have developed small robots that mimic social 

behaviors like coordination and synchronization to perform 
tasks, known as a swarm of robots1-4. Using a distributed 
system, each robot in the swarm completes a part of the task, 
achieving the overall goal when all parts are done. Swarm 
robots are widely applied in area coverage. In this work, 
N robots divide a rectangular area into non-overlapping 
horizontal strips, each assigned to a robot. The area, obstructed 
by horizontal line obstacles, is covered when all strips are 
painted. Robots drop lights as passive communication since no 
active communication exists.

The coverage algorithm has two phases: EXPLORE 
and PAINT. Robots, scattered initially, assemble on the left 
boundary using ASSEMBLE algorithm5-6 and compute strip 
boundaries in the EXPLORE phase before covering them 
in the PAINT phase. Based on the CORDA model7, robots 
observe their surroundings and calculate their next move, 
working asynchronously with limited visibility and local 
coordinate systems. These constraints make the coverage 
problem challenging, but the proposed solution addresses them 
effectively.

2. LITERATURE REVIEW
Authors have proposed a distributed painting algorithm8 

for non-repeated coverage of obstacle-free areas using CORDA 
model. The region is divided into virtual cells, with each robot 
assigned a cell based on rank. After all robots finish painting, 
the task is complete. To address realism, they proposed a second 
algorithm9 for rectangular regions with horizontal obstacles, 
dividing the region into blocks with obstacles on upper 
boundaries. Robots paint these blocks, ensuring agreement on 
shared boundaries to avoid collisions. To increase complexity, 
authors have introduced another algorithm10 for limited 
visibility of robots. Robots are connected by a visibility graph 
and paint strips by moving between boundaries. If multiple 
robots share a strip, it is divided by mutual agreement, ensuring 
complete, non-overlapping coverage. Another algorithm has 
been addressed11, which presents the Simultaneous Allocation 
and Path Planning (SAPP) algorithm, which optimizes task 
assignment and path planning for drone swarms. The goal is 
to efficiently distribute tasks among drones while ensuring 
collision-free trajectories in dynamic environments. Later, in 
literature12, authors proposed one method to demonstrate that 
a single operator can manage a swarm of 100+ heterogeneous 
robots using advanced AI-driven command interfaces. This 
was studied in DARPA’s OFFSET (OFFensive Swarm-Enabled 
Tactics) program, which conducted six field exercises (FXs) at 
U.S. Army training sites. Additionally, several area coverage 
algorithms have been proposed for autonomous robots. The 
method in this paper13 divides a target region into fixed-size 
sub-regions, each assigned to a robot for coverage, increasing 
complexity due to coordination. The approach in this paper14 
uses boustrophedon decomposition with adjacency graphs for 
non-overlapping coverage. Literature15 employs vertical stripes 
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with cyclic paths, updating a Reeb graph at a communication 
cost. The offline algorithm16 uses EEC and CPP with obstacle 
maps, while17 tackles unknown environments using Repart-
Coverage and auction-based allocation, ensuring adaptability 
but requiring high communication.

2.1 Our Contribution 
Previous research8-17 has focused on unlimited or limited 

visibility and various obstacle settings in the presence or 
absence of direct communication in both known and unknown 
environments. However, no solution exists for robots with 
limited visibility in unknown environments with horizontal 
line obstacles. We propose an algorithm for limited-visibility 
robots following an asynchronous timing model, which is more 
realistic than full or semi-synchronous models. The challenge 
is to achieve complete coverage without collisions or repeated 
painting in finite time. Our approach considers a region with 
fixed horizontal line obstacles, where robots, initially on the 
left boundary, perform asynchronous area coverage with sleep 
states, using the CORDA and full-compass models.

3.  CHARACTERISTICS, MODELS AND 
ASSUMPTIONS

3.1 Characteristics
• Identical and homogeneous: Robots are identical.
• Mobile: Robots are allowed to move freely in any 

direction.
• Autonomous: Robots take their decision and complete 

their tasks independently.
• Memory: Robots have a memory to retain a few past 

pieces of information with some variables.
• Limited Visibility: A robot can only see within a fixed 

range, called visibility range (Vr), represented by a circle 
of radius d, where Vr=d. To extend visibility, robots are 
equipped with Lights18-20 which they drop as needed. 
These Lights help detect robots outside the visibility range 
to prevent collisions. If a robot sees illumination, it knows 
another robot located nearby has dropped a Light.

The exact Light may not be visible, but its 
illumination can be detected if it’s within a distance, d+h 
where, h=d-ϵ (ϵ negligible amount). This is shown in  
Fig. 1, where robot R, at point D, sees illumination from a 
Light at point A. While the source at A is not visible to R, 
it can estimate the source’s location within a range L+D, 
where L is the distance from A to C, where, 0≤L≤D.

Robots drop one Light at a time, ensuring a vertical 
gap of d+ϵ between consecutive Lights. If multiple Lights 
are detected, the robot considers only the illumination 
aligned with the y-axis to determine its next move, 
ignoring others. The Lights have no energy constraints, 
providing continuous support to overcome visibility 
limitations.

• Communication: Robots do not directly exchange 
information about their states, locations, etc. A robot 
carries some Lights; those, when dropped, signify its mark 
of presence to other robots. If such Lights are viewed, a 
robot figures out the next collision-free move accordingly. 
Hence, passive communication exists among robots.

• Sensing-zone: Robots are point robots, and each of them 
has a sensing zone of radius λ. In this work, standing in a 
position, a robot can paint its entire sensing zone with the 
help of its actuator. Whenever a robot performs its assigned 
task for a specific region instead of actually reaching there, 
a robot executes its job from that λ distance.

3.2 Models
In this work, robots follow the CORDA model7, which 

consists of sequential Look-Compute-Move phases. Each robot 
observes its surroundings (Look), calculates its next move 
(Compute), and moves accordingly (Move). This cycle repeats, 
with each robot running the same algorithm independently. 
Robots have their own local coordinate systems, assuming 
they are at the origin, and use a full-compass model, where 
the local x and y axes are common for all robots. Robots are 
asynchronous, so robots do not share a clock and may compute 
based on different snapshots. Robots can be either in active 
state (computing and moving) or in sleep state, but cannot 
remain asleep indefinitely..

3.3 Assumptions
The environment for exploration and painting is a bounded 

rectangular region with randomly placed horizontal obstacles 
of negligible width. These obstacles do not touch the region’s 
boundaries and have gaps between them. However, robots can 
pass horizontally over obstacles, distinguishing them from 
other robots. 

4. WORKING PROCEDURE AND ALGORITHM
The target area is divided into non-overlapping strips, 

where each strip is assigned to a robot. The algorithm ensures 
no gaps between strips, leading to full coverage once all strips 
are covered. The process involves two phases: Explore, where 
a robot determines its strip boundaries, and Paint, once the 
strip is covered. Once all the assigned strips are painted, the 
algorithm terminates. Robots begin from the left boundary of 
the region.  

Figure 1.  A robot views the illumination of light within its 
visibility range.
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Generally, a robot paints two vertically consecutive 
strips: one above and one below its starting position, sharing a 
common lower boundary, LWB. The exploration and painting 
processes for the upper and lower strips are denoted as 
Explore1, Paint1, Explore2, and Paint2. Explore1 includes two 
steps: Explore1-RTB, the robot moves from the left boundary 
(LFB) to the right boundary (RTB) along the common LWB, 
and in Explore1-UPB, it explores the upper boundary of the first 
strip. During Paint1, the robot re-calculates the LWB and paints 
the first strip. In Explore2 and Paint2, the robot determines the 
upper boundary of the second strip and paints the second strip.

4.1  Explore1-RTB
At the very beginning, R drops a Light at its initial position 

(say, A on LFB) shown in Fig. 2 (a) and computes common LWB 
(AA′) along its initial location. Next, R computes the UPB of 
both strips. To do that, R inspects objects above it, i.e., another 
robot (Q), Light (K), painted strip, and upper boundary of the 
region to determine the UPB of the first strip. If R detects any 
of these objects, it considers a horizontal line (BB’) through 
its current position (B’) as UPB of the first strip shown in  
Fig. 2(b). However, if the upper boundary of the region is 
detected above, then this boundary is considered as UPB of 
the first strip. 

If R is at upper boundary of the region, this boundary 
serves as both its LWB and UPB. Similarly, R also determines 
UPBexp2 by checking the presence of any object (robot, Light, 
painted strip, or lower boundary) below it. If R finds any 
object(s) located below, R considers a horizontal line passing 
through the nearest object as its UPBexp2; otherwise, it considers 
lower boundary of the region as its UPBexp2. 

If R detects no object above and/or below its initial 
position, it is unable to determine the UPB of either strip 
initially. However, for both cases (with known or unknown 
UPBs), R moves to its right along the LWB (AA’) towards the 
RTB and drops another Light at A’. The Explore1-RTB ends 
once R reaches the RTB. 

If R cannot determine the UPB of the first strip by end 
of Explore1-RTB, R enters into Explore1-UPB. If R calculates 
the upper boundary of the region as the UPB of the first strip, 
it also moves to Explore1-UPB. Otherwise, it proceeds to 
Explore2. During movement from LFB to RTB, if R encounters 
horizontal line obstacles, it bypasses them from above or 
below them.

4.2  In Explore1-UPB
R moves upward from RTB to find UPB of the strip above. 

R performs vertical and horizontal movements alternatively, 
creating a zigzag pattern. It drops Light(s) when changing 
direction from vertical to horizontal. R continues this process 
until it detects another robot (Q) / Light (K) / painted strip 
above. At this point, R assumes a horizontal line through its 
current position as UPB of the first strip, as shown in Fig. 2(b). 
If R can see the upper boundary of the region, this boundary is 
considered UPB of the first strip.

Once the UPB of the first strip is determined, the robot 
drops a Light at its current location, ending the Explore1-UPB 
step. If the robot computes the upper boundary of the region 

as UPB, it moves directly towards it using vertical movements 
instead of zigzag. Upon reaching the upper boundary, the 
Explore1-UPB terminates, and R enters into Paint1. 

During Paint1, the robot paints the first strip from UPB 
towards LWB. After finishing, R returns to LWB and ends 
Paint1, shown in Fig. 2(c).

If R encounters obstacles during Paint1, it moves from 
either above or below the obstacles. On termination of Paint1, 
R enters the Explore2.

After completing painting of its first strip, R begins 
exploring the strip below LWB by executing Explore2. The 
second strip, is located directly below the first, sharing the 
LWB as a common boundary. In Explore2, R moves downward 
to locate the UPBexp2. Depending on where R finished Paint1, 
it may start exploring along RTB or LFB. In some cases, R 
may skip Explore1-RTB and Paint1, transitioning directly into 
Explore2 after Explore1-RTB.

During Explore2, located on its LWB, if a robot R finds the 
presence of one or more objects below its current position, it 
considers a horizontal line, passing through the current position 
of the nearest object as its UPBexp2. Once the UPB is computed, 
Explore2 terminates, and R enters Paint2.

If R is on LWB and finds no object below, it performs 
zigzag movements downward to compute UPBexp2. During this 
movement, R drops Lights at each change in direction from 
vertical to horizontal until it detects an object below. Once, 
R finds another robot (P) or a light (K) below, it considers the 
horizontal line passing through P or K’s position as the UPBexp2. 
R can view a painted region below only if P has already 
painted it. R considers the visible boundary of this region to be 
its UPB. If R detects the lower boundary as an object below, it 
designates the lower boundary of that region as UPBexp2.

Figure 2.  (a) Computation of UPB of both the strips at LFB 
due to the presence of another robot (Q) and/or 
light source (K) and completion of Explore1-RTB (b) 
determine UPB of the first strip (c) Completion of 
Paint1 (d) Determination of UPBexp2 and completion 
of Paint2.
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After determining UPBexp2, R reaches it while avoiding 
obstacles as previously described. Once UPBexp2 is computed, 
Explore2 ends and begins Paint2 to cover new strip. During 
Paint2, R handles obstacles in the same way as in Paint1. 

During Paint2, R starts painting from the UPBexp2 and 
stops at the common LWB is shown in Fig. 2 (d). R finishes its 
task when both the strips are covered, and the entire process 
ends once the whole region is fully painted.

5. CORRECTNESS PROOFS
The various lemmas have been proposed:

 Lemma 1: Two robots never cross each other 
vertically.
Proof: It is assumed that two consecutive robots start their 

exploration at different vertical heights from the region’s LFB. 
In the first cycle, they determine their LWB, UPB, UPBexp2 
based on rules in Section 4. Since the robots begin at different 
vertical heights, their horizontal movements start distinctly, 
preventing horizontal crossovers. Thus, this proof focuses on 
vertical crossovers. However, scenarios where robots move 
along common boundaries are managed using the sensing 
abilities discussed in Section 3.

During the EXPLORE, each robot is required to carry 
Lights and place them in appropriate positions. These Lights 
are colorless. For clarity in the figures, different-colored Lights 
represent the two robots. Throughout execution, each robot is 
either EXPLORE or PAINT state, leading to three possible state 
combinations for two robots.

Case (A): Both robots are in an EXPLORE state.
Case (B): One is in the EXPLORE state and other one is 

in the PAINT state.
Case (C): Both are in PAINT state.
Case (A): During the EXPLORE state, R starts at LFB 

and moves to RTB after calculating LWB, UPB, and UPBexp2. 
Upon reaching RTB, R enters either Explore1-UPB or Explore2 
based on LWB, UPB, and UPBexp2. For proof, two robots, 
R1 and R2, are considered, initially not visible to each other. 
Throughout the process, there are three possible cases for the 
robots’ locations.

Case (i):  Both R1 and R2 are in Explore1-UPB.
Case (ii): Both R1 and R2 are in Explore2.
Case (iii): R1 is in Explore1-UPB, and R2 is in Explore2 or 

vice-versa.
Case (i): In Explore1-UPB, a robot explores the upper 

boundary of the first strip if   UPB = ∞ . Starting from LFB, 
the robot moves to RTB along common LWB, initiating its first 
vertical movement along RTB. During exploration, the robot 
moves between LFB and RTB and can switch to sleep at any 
point. 

When both R1 and R2 are in Explore1-UPB, they begin at 
LFB and follow separate horizontal paths along their respective 
LWBs to reach RTB, from where they move upward to explore 
their strips. Each robot drops Lights at RTB to ensure they 
don’t cross vertically, even if one robot falls asleep. The 
Lights prevent the lower robot from crossing the upper robot’s 
boundary when it reactivates.

However, the adverse situation remains, as shown in 
Fig. 3. Starting the movement from A, R1 enters sleep state 
at A’ instead of reaching the opposite boundary at A1. R2 also 
continues its movement through points B1, B2, B3, and so on to 
reach B6 where, Vdist(A1, B6)≥d, causing R2 to cross R1’s strip. If 
R1 reactivates and resumes exploration, collisions may occur.

To prevent this, the two robots never cross vertically each 
other. As depicted in Fig. 3, R1 and R2 are initially separated by 
a vertical distance D, where D>>d and d <D ≤ L (where L is 
the region’s length), making them invisible to each other.

Considering the Lights’ illumination range, the minimum 
visibility distance between robots is ≤ d. Starting at A, R1 enters 
sleep state at A′ before reaching A1. Meanwhile, R2 moves 
through points B1 to B6, where Vdist(A1, B6)≥d. If R1 reaches A1 
without sleep, it drops a Light there, allowing R2 to view it and 
compute the UPB of its first strip.

Figure 3. R1 and R2 are in Explore1-UPB.

However, in this Scenario, R2 does not detect any Light at 
B6 and switches to horizontal exploration towards LFB. Upon 
reaching B7, R2 sees the Light dropped by R1 at A, confirming 
that even if R2 couldn’t detect R1 at B6, but view it at B7. As 
a result, the robots never cross vertically despite starting 
asynchronously and outside each other’s visibility range. R2 
computes its UPB upon seeing the Light above and stays below 
it in later phases. Meanwhile, R1 explores upward towards the 
RTB, proving that in Explore1-UPB, the robots never cross 
vertically.

Case (ii): Since both are in Explore2.They won’t cross 
each other vertically.

Case (iii): In this Scenario, two robots, R1 (above) and R2 
(below), are in different states: either (a) R1 is in Explore1-UPB 
while R2 is in Explore2, or (b) R2 is in Explore1-UPB while R1 
is in Explore2.

Case (a): Since the robots’ movements are exactly 
opposite there is no chance of vertical crossover.

Case (b): As both robots move toward each other, the risk 
of collision is high. Imagine a reference line A’B’ where robots 
R1 and R2 are at endpoints A’ and B’. R1 is in Explore2, has 
followed a path A→ A1→A2→A3→B’ → A’. If R1 continues, 
it enters R2’s explored region. Similarly, R2, in Explore1-
UPB, has followed B→B1→ B2→B3→A’→B’, and continued 
movement would lead R2 into R1’s explored area, risking 
repeated exploration and collision as their paths overlap i.e., 
A’→B’ and B’→A’. Figure 4(a) shows the scenario.
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However, these Scenarios never happen because (a) 
vertical crossing requires both robots to be on a same horizontal 
line, which is impossible, and (b) both robots sense each other’s 
presence before reaching line A’B’ due to the Lights dropped 
along their paths. These Lights, visible from points like A3 and 
B3, allow robots to detect each other well before collision as 
shown in Fig. 4(b). Even if a robot sleeps, the other can follow 
a zigzag path to sense dropped Lights. Hence, the proof.

each other vertically. Each robot moves in every computational 
cycle to avoid collisions. The minimum distance a robot 
moves per cycle depends on its visibility range, d. To maintain 
collision-free movement, the distance covered in each move, ∂, 
should be optimized based on d, with ∂ = 2

d . Keeping constant 
the value of d, different values of ∂ is taken to justify the 
optimality. Three different scenarios are taken into account and 
∂ considered as 3

2
d  , d and 2

d . 
Let’s consider two robots say, R1 and R2 and it is also 

considered Vdist(R1, R2)=d+h, where 2
d < h≤ d. This means R1 

and R2 are located out of each other’s visibility range and are 
vertically moving towards each other with ∂ moves. 

Scenario (1): ∂= 3
2
d .

Figure 5 (a) shows that R1 is at A and R2 is at B and both 
compute their destination points as A’ and B’ respectively. As

d∂ > , so to reach A’, R1 needs to cross R2 and vice versa. This 
scenario never guarantees collision-free movement. 

Scenario (2): ∂=d.
If h=d, then two robots compute their destinations on the 

same point on their visibility circle. However, for h<d they 
vertically cross each other as per Scenario (1). So, this scenario 
also causes a collision. Figure 5(b) shows the scenario.

Scenario (3): ∂= 2
d

In above two scenarios, robots collide during their 
movements. Now, as ∂<d, robots R1 and R2 never cross each 
other to reach destination points A’ and B’ respectively. Hence, 
there is no collision during their movements. This is also 
applicable to all values where ∂< 2

d . Figure 5(c) illustrates the 
scenario. From all the above-mentioned scenarios, it can be 
concluded that ∂= 2

d , justifies the optimality.       
Figure 4.  (a) R1 crosses R2 vertically and vice versa; and (b) 

R1 never crosses R2 vertically and vice-versa.

Case (B): Each robot computes the boundaries of its 
strip independently. A robot only enters the PAINT state after 
calculating both LWB and UPB in EXPLORE state. Once 
boundaries are set, robots stay within their strips and stop 
exploring. During PAINT, R covers the accessible area within 
its boundaries (UPB and LWB). Both robots work without 
interfering, preventing vertical crossovers. Even if one enters 
sleep state, EXPLORE and PAINT are atomic states, so one 
robot’s action does not affect other. 

Case (C): Both robots are in PAINT state, indicating 
they have determined the UPB and LWB of their strips. As 
EXPLORE and PAINT are independent, there is no interference 
between them. Since boundaries are fixed, no overlap occurs, 
and crossovers are avoided. The robots continue their tasks 
independently, even if one enters sleep state.

 Lemma 2: The optimal distance that a robot should 
move in every computational cycle to ensure collision-
free movements is 

2
d .

Proof: Robot movements involve both vertical and 
horizontal moves. If multiple robots align on the same 
horizontal or vertical line, or if one is on a horizontal line 
while another is on a vertical line, there is a high chance of 
collision. However, Lemma 1 ensures that during exploration, 
two robots never be on the same horizontal line, nor they cross 

Figure 5. (a) Each computational cycle, a robot moves (a) 
2
d

distance (b) d distance (c) 3
2
d  distance.

 Lemma 3: Throughout the exploration process a 
robot, R drops maximum of 2 2L

d
 × +  

 Lights.

Proof: This work addresses the issue of limited visibility, 
with a fixed range Vr=d, by using Lights with a fixed illumination 
range that do not reset between cycles. Robots detect Light 
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from beyond their visibility range to identify other robots. 
Each robot drops Lights one at a time, with a maximum number 
dropped when starting at the upper boundary and LFB. When 
starting on the LFB and upper boundary, the robot performs 
two steps: Explore1-RTB and Explore2. During Explore1-RTB, 
it drops up to two Lights along the same horizontal line. In 
Explore2, it follows zigzag moves, dropping a Light each time 
it changes direction from vertical to horizontal, resulting in up 
to two Lights per zigzag move. To cover entire region L, the 
robot can drop up to 2 L

d
 ×   

 number of Lights.
So, to explore the whole region while ignoring the 

fractional values of L
d

 
   , the cumulative number of Lights 

required is represented as 
2 2......................(1)L

d
 × +                   (1)

To illustrate Eqn. (1), considering following scenario 
where L=10 units, and 1

2
d

=  unit distance. Therefore, as per 

Eqn. (1), a robot drops maximum 2 2L
d

 = × + =  
 102 2 12

2
  × + =    

 
Lights.

There remains another scenario in which R is on LFB but 
not on upper and lower boundaries of region. 

Consider, L=L1+L2, where L1 and L2 are the vertical 
heights of the two strips respectively. So, during the whole 
process maximum number of Lights dropped by R is: Lights 
dropped in (Explore1-RTB+Explore1-UPB+ Explore2)  

1 22 2 2 2 2L L
d d

       = + × + + × +                .
As L> L1 and L2, so always 1 2L L L

d d d
     > +          

.To illustrate, 
consider the same region with L1 = L2 = 5 units and 1

2
d

=  unit. 
To explore whole region, R drops Lights,

1 22 2 2 2 2L L
d d

       = + × + + × +              

5 52 2 2 2 2 2 4 4 10
2 2

       = + × + + × + = + + =              

Considering, L1=3 and L2=7 units and 1
2
d  =  

 unit, the total 
number of Lights 

3 72 2 2 2 2 2 2 6 10.
2 2

       = + × + + × + = + + =                
So, it is observed that a robot positioned anywhere between 

upper and lower boundaries drops fewer Lights compared to 
when it is positioned on either upper or lower boundary. 

So, the maximum number of Lights dropped throughout 
the execution is 2 2L

d
 × +  

.

 Lemma 4
The painting of the entire target region is completed 

within a finite amount of time.
Proof: The algorithm specifies that each robot can paint 

up to two consecutive strips. Occasionally, a robot might only 
paint one strip or none, with different termination processes for 
each case:

(i) Robots with no specific painting area
If robot R is positioned at LFB along lower boundary and 

detects objects above, it has no region to paint and moves to 

RTB, terminating after completing Explore1-RTB. 

(ii)  Robots with two consecutive strips for painting
Knowing 1distUPB V=  or UPB = ∞  and 2  ExpUPB =∞  or 

2 2Exp distUPB V= , R moves horizontally along LWB towards RTB 
by setting LWB=0, terminating Explore1-RTB. It then moves 
upward to determine UPB during Explore1-UPB, after which it 
enters Paint1. Once first strip is painted, R calculates UPBExp2 
of second strip (Explore2), then paints the second strip during 
Paint2. If UPBExp2 is pre-determined, R starts painting from 
LWB to UPBExp2. After painting both strips, R successfully 
terminates.

(iii) Robots with only one strip for painting
Below mentioned are such scenarios:
Scenario 1: A robot is located on the upper boundary with 

or without knowledge of UPBExp2. 
Scenario 2: A robot is located anywhere on LFB where 

LWB=0, UPB=0, with/ without knowledge of UPBExp2.
Scenario 3: A robot is located on lower boundary of 

region without knowledge of UPB. 
In all scenarios, R explores and paints one strip above/

below, following same execution and termination order as 
in (ii). For Scenario 1 and Scenario 2, R performs Paint2 or 
Explore2+ Paint2. For Scenario 3, the robot performs Explore1-
UPB and Paint1.

EXPLORE and PAINT phases are atomic; once strip 
boundaries are set, painting is uninterrupted. Robots complete 
tasks in finite time, working autonomously to paint entire 
region.

5. CONCLUSION
This work introduces a distributed algorithm for a swarm 

of oblivious, silent robots to paint a bounded rectangular area 
with opaque horizontal line obstacles. Using a full-compass 
and asynchronous timing model, the algorithm guarantees 
collision-free, non-repetitive coverage and finite-time 
completion despite limited visibility. Future research could 
extend this to polygonal obstacles and direction-only models.

REFERENCES
1.  Tan  Y,  Zheng  Z. Research advance in swarm robotics. 

Defence Technology. 2013; 9(1), 18–39.
   doi: 10.1007/s10472-009-9120-2
2.  Shahzad  M,  Saeed  ZM,  Akhtar  A,  Munawar  H,  Yousaf  

MH,  Baloach  NK,  Hussain  F. A review of swarm 
robotics in a NutShell. Drones. 2023;7(4), 269–297.

   doi:10.3390/drones7040269
3.  Alqudsi Y, Makaraci M. Exploring advancements and 

emerging trends in robotic swarm coordination and 
control of swarm flying robots: A review. Proceedings of 
the Institution of Mechanical Engineers, Part C: Journal 
of Mechanical Engineering Science. 2025; 239(1), 180–
204.

   doi:10.1177/09544062241275359
4.  Mandal B, Sardar M, Das, D. Swarm Coverage in 

Continuous and Discrete Domain: A Survey of Robots’ 
Behaviour. In: volume 653: Advances in Data-driven 



MANDAL, et al.: OBSTACLE PRONE AREA COVERAGE BY SWARM OF MOBILE ROBOTS WITH LIMITED VISIBILITY

417

Computing and Intelligent Systems 2022. Singapore: 
Springer Nature; 2023 [cited 2025 May 6]. p. 573–587. 
Available from:

   doi:10.1007/978-981-99-0981-0_44
5.  Tokas P, Das D. A distributed algorithm for assembling 

of asynchronous swarm of mobile robots with limited 
visibility in presence of horizontal line obstacle. In: 2nd 
International Conference for Convergence in Technology 
(I2CT) 2017. Mumbai, India: IEEE xplore; 2017 [cited 
2025 May 6]. p. 426–429. Available from:

  doi: 10.1109/I2CT.2017.8226165
6.  Mandal B, Sardar M, Das D. Assembling of Swarm 

Robots in Distributed Environment in the Presence 
of Polygonal Obstacles. In: Proceedings of the 6th 
International Conference on Advances in Robotics 2023. 
IIT Ropar, India: ACM Digital Library; 2023 [cited 2025 
May 6]. p. 1–6. Available from:

  doi: 10.1145/3610419.3610504
7.  Prencipe G. Instantaneous actions vs. full asynchronicity: 

Controlling and coordinating a set of autonomous mobile 
robots. In: Volume 2202: ICTCS  2001. Springer; 2001 
[cited 2025 May 6]. p. 154–171. Available from:

  doi: 10.1007/3-540-45446-2
8.  Das D,  Mukhopadhyaya, S. Distributed painting by a 

swarm of robots with unlimited sensing capabilities and 
its simulation. In: International Journal on Information 
Processing. 2013; 7(3): 1–15.

   doi: 10.48550/arXiv.1311.4952
9.  Das D, Mukhopadhyaya S, Nandi D. Swarm-based 

painting of an area cluttered with obstacles. International 
Journal of Parallel, Emergent and Distributed Systems. 
2021; 36(4): 359–379. 

       doi: 10.1080/17445760.2021.1879071
10.  Das D, Mukhopadhyaya S. Distributed algorithm for 

painting by a swarm of randomly deployed robots 
under limited visibility model. International Journal 
on Information Processing. 2018; 15(5): 17298814–
18804508. 

  doi: 0.1177/1729881418804508
11.  Alqudsi, Y. Integrated Optimization of Simultaneous 

Target Assignment and Path Planning for Aerial Robot 
Swarm. The Journal of Supercomputing. 2025; 81(1): 
1–24. 

  doi:10.1007/s11227-024-06620-w
12.  Adams JA, Hamell J, Walker P. Can a single human 

supervise a swarm of 100 heterogeneous robots?. IEEE 
Transactions on Field Robotics. 2025; (2), 46–80. 

  doi: 10.1109/TFR.2024.3502316 
13.  Latimer D, Srinivasa S, Lee-Shue V, Sonne S, Choset 

H, Hurst A. Towards sensor based coverage with robot 
teams. In Volume 1: International Conference on Robotics 
and Automation 2002. USA:  IEEE; 2002 [cited 2025 
May 6]. p. 154–171. Available from:

   doi: 10.1109/ROBOT.2002.1014684
14.  Kong CS, Peng NA, Rekleitis I. Distributed coverage 

with multi-robot system. In: International Conference on 
Robotics and Automation 2006. ICRA IEEE; 2006 [cited 

2025 May 6]. p. 2423–2429. 
 doi: 10.1109/ROBOT.2006.1642065
15. Rekleitis I, New AP, Rankin ES, Choset H. Efficient 

boustrophedon multi-robot coverage: An algorithmic 
approach. Annals of Mathematics and Artificial 
Intelligence. 2008; 52: 109–142. 

 doi: 10.1007/s10472-009-9120-2
16.  Karapetyan N, Benson K, McKinney C, Taslakian P, 

Rekleitis I. Efficient multi-robot coverage of a known 
environment. In International Conference on Intelligent 
Robots and Systems (IROS) 2017. IEEE/RSJ; 2017 [cited 
2025 May 6]. p. 2423–2429. Available from:

 doi: 10.1109/IROS.2017.8206000
17. Hungerford K, Dasgupta P, Guruprasad K. Distributed, 

complete, multi-robot coverage of initially unknown 
environments using repartitioning. In: International 
conference on Autonomous agents and multi-agent 
systems 2014. ACM; 2014 [cited 2025 May 6]. p. 1453–
1454. 

 doi:10.5555/2615731.2617519
18. Viglietta G. Rendezvous of two robots with visible bits. 

In: Algorithms for Sensor Systems 9th International 
Symposium on Algorithms and Experiments for Sensor 
Systems, Wireless Networks and Distributed Robotics, 
ALGOSENSORS 2013. Berlin, Heidelberg: Springer; 
2013 [cited 2025 May 6]. p. 291–306. Available from:

 doi:10.1007/978-3-642-45346-5_21
19. Das S, Flocchini P, Prencipe G, Santoro N, Yamashita 

M. Autonomous mobile robots with lights. Theoretical 
Computer Science. 2016; 609(1), 171–184.

 doi:10.1016/j.tcs.2015.09.018
20. Takashi O, Koichi W, Yoshiaki K. Optimala 

synchronous rendezvous for mobile robots with lights, 
arXiv:1707.04449 2017. 2017 [cited 2025 May 6]. p. 
1–15. Available from:

 doi: 10.48550/arXiv.1707.04449

CONTRIBUTORS

Ms Banashree Mandal is a PhD scholar in Department of 
CSE at NIT Durgapur. Her research interests include: Swarm 
robotics, distributed algorithms. 
In the current study she contributed to the conceptualization, 
implementation of the algorithm, and correctness proof analysis, 
as well as writing the final manuscript. 

Dr Deepanwita Das is an Assistant Professor at NIT Durgapur. 
Her research interest include: Swarm robotics, distributed 
algorithms.
In the current study she verified the algorithm and thoroughly 
reviewed and revised manuscript as the main supervisor. 

Dr Niladri Mandal is a Scientist ‘F’ at DRDO-DRDL, Hyderabad.  
His research interest include: Hybrid manufacturing technologies, 
non-conventional manufacturing, artificial intelligence, and 
automation. 
In the current study he contributed to the overall analysis and 
provided insights for developing various aspects of the algorithm.


