
411

Defence Science Journal, Vol. 75, No. 4, July 2025, pp. 411-417, DOI : 10.14429/dsj.20508
 2025, DESIDOC

Received : 14 August 2024, Revised : 18 February 2025
Accepted : 05 March 2025, Online published : 26 June 2025

Obstacle Prone Area Coverage by Swarm of Mobile Robots with Limited Visibility

Banashree Mandal#,*, Deepanwita Das#,*, and Niladri Mandal$

#National Institute of Technology, Durgapur – 713209, India
$DRDO-Defence Research & Development Laboratory, Hyderabad – 500058, India

*E-mail: bm.20cs1101@phd.nitdgp.ac.in

ABSTRACT

This paper studies a distributed coverage algorithm of a bounded rectangular region in the presence of horizontal
line obstacles by an autonomous swarm of asynchronous mobile robots. They follow the basic Look-Compute-Move
model, formally known as the CORDA model. The robot has no prior knowledge about the internal environment
of the target region, especially the number and location of the robots, as well as obstacles. Robots are assumed to
be anonymous, small, identical, simple, oblivious, inexpensive, and non-communicating in nature. The robots have
a limited range of visibility. The robots unanimously decompose the whole region into several non-overlapping
horizontal strips, where each robot is responsible for painting at most two strips based on its initial position. The
painting of the entire region is achieved within finite time without any collision and repetition.

Keywords: Area coverage; Limited visibility; Horizontal line obstacle; Robot swarm

NOMENCLATURE
d : Visibility range
UPB : The upper boundary of the strip
LWB : The lower boundary of the strip
LFB : The left boundary of the strip
RTB : The right boundary of the strip

1. INTRODUCTION
Scientists have developed small robots that mimic social

behaviors like coordination and synchronization to perform
tasks, known as a swarm of robots1-4. Using a distributed
system, each robot in the swarm completes a part of the task,
achieving the overall goal when all parts are done. Swarm
robots are widely applied in area coverage. In this work,
N robots divide a rectangular area into non-overlapping
horizontal strips, each assigned to a robot. The area, obstructed
by horizontal line obstacles, is covered when all strips are
painted. Robots drop lights as passive communication since no
active communication exists.

The coverage algorithm has two phases: EXPLORE
and PAINT. Robots, scattered initially, assemble on the left
boundary using ASSEMBLE algorithm5-6 and compute strip
boundaries in the EXPLORE phase before covering them
in the PAINT phase. Based on the CORDA model7, robots
observe their surroundings and calculate their next move,
working asynchronously with limited visibility and local
coordinate systems. These constraints make the coverage
problem challenging, but the proposed solution addresses them
effectively.

2. LITERATURE REVIEW
Authors have proposed a distributed painting algorithm8

for non-repeated coverage of obstacle-free areas using CORDA
model. The region is divided into virtual cells, with each robot
assigned a cell based on rank. After all robots finish painting,
the task is complete. To address realism, they proposed a second
algorithm9 for rectangular regions with horizontal obstacles,
dividing the region into blocks with obstacles on upper
boundaries. Robots paint these blocks, ensuring agreement on
shared boundaries to avoid collisions. To increase complexity,
authors have introduced another algorithm10 for limited
visibility of robots. Robots are connected by a visibility graph
and paint strips by moving between boundaries. If multiple
robots share a strip, it is divided by mutual agreement, ensuring
complete, non-overlapping coverage. Another algorithm has
been addressed11, which presents the Simultaneous Allocation
and Path Planning (SAPP) algorithm, which optimizes task
assignment and path planning for drone swarms. The goal is
to efficiently distribute tasks among drones while ensuring
collision-free trajectories in dynamic environments. Later, in
literature12, authors proposed one method to demonstrate that
a single operator can manage a swarm of 100+ heterogeneous
robots using advanced AI-driven command interfaces. This
was studied in DARPA’s OFFSET (OFFensive Swarm-Enabled
Tactics) program, which conducted six field exercises (FXs) at
U.S. Army training sites. Additionally, several area coverage
algorithms have been proposed for autonomous robots. The
method in this paper13 divides a target region into fixed-size
sub-regions, each assigned to a robot for coverage, increasing
complexity due to coordination. The approach in this paper14
uses boustrophedon decomposition with adjacency graphs for
non-overlapping coverage. Literature15 employs vertical stripes

DEF. SCI. J., VOL. 75, NO. 4, JULY 2025

412

with cyclic paths, updating a Reeb graph at a communication
cost. The offline algorithm16 uses EEC and CPP with obstacle
maps, while17 tackles unknown environments using Repart-
Coverage and auction-based allocation, ensuring adaptability
but requiring high communication.

2.1 Our Contribution
Previous research8-17 has focused on unlimited or limited

visibility and various obstacle settings in the presence or
absence of direct communication in both known and unknown
environments. However, no solution exists for robots with
limited visibility in unknown environments with horizontal
line obstacles. We propose an algorithm for limited-visibility
robots following an asynchronous timing model, which is more
realistic than full or semi-synchronous models. The challenge
is to achieve complete coverage without collisions or repeated
painting in finite time. Our approach considers a region with
fixed horizontal line obstacles, where robots, initially on the
left boundary, perform asynchronous area coverage with sleep
states, using the CORDA and full-compass models.

3. CHARACTERISTICS, MODELS AND
ASSUMPTIONS

3.1 Characteristics
• Identical and homogeneous: Robots are identical.
• Mobile: Robots are allowed to move freely in any

direction.
• Autonomous: Robots take their decision and complete

their tasks independently.
• Memory: Robots have a memory to retain a few past

pieces of information with some variables.
• Limited Visibility: A robot can only see within a fixed

range, called visibility range (Vr), represented by a circle
of radius d, where Vr=d. To extend visibility, robots are
equipped with Lights18-20 which they drop as needed.
These Lights help detect robots outside the visibility range
to prevent collisions. If a robot sees illumination, it knows
another robot located nearby has dropped a Light.

The exact Light may not be visible, but its
illumination can be detected if it’s within a distance, d+h
where, h=d-ϵ (ϵ negligible amount). This is shown in
Fig. 1, where robot R, at point D, sees illumination from a
Light at point A. While the source at A is not visible to R,
it can estimate the source’s location within a range L+D,
where L is the distance from A to C, where, 0≤L≤D.

Robots drop one Light at a time, ensuring a vertical
gap of d+ϵ between consecutive Lights. If multiple Lights
are detected, the robot considers only the illumination
aligned with the y-axis to determine its next move,
ignoring others. The Lights have no energy constraints,
providing continuous support to overcome visibility
limitations.

• Communication: Robots do not directly exchange
information about their states, locations, etc. A robot
carries some Lights; those, when dropped, signify its mark
of presence to other robots. If such Lights are viewed, a
robot figures out the next collision-free move accordingly.
Hence, passive communication exists among robots.

• Sensing-zone: Robots are point robots, and each of them
has a sensing zone of radius λ. In this work, standing in a
position, a robot can paint its entire sensing zone with the
help of its actuator. Whenever a robot performs its assigned
task for a specific region instead of actually reaching there,
a robot executes its job from that λ distance.

3.2 Models
In this work, robots follow the CORDA model7, which

consists of sequential Look-Compute-Move phases. Each robot
observes its surroundings (Look), calculates its next move
(Compute), and moves accordingly (Move). This cycle repeats,
with each robot running the same algorithm independently.
Robots have their own local coordinate systems, assuming
they are at the origin, and use a full-compass model, where
the local x and y axes are common for all robots. Robots are
asynchronous, so robots do not share a clock and may compute
based on different snapshots. Robots can be either in active
state (computing and moving) or in sleep state, but cannot
remain asleep indefinitely..

3.3 Assumptions
The environment for exploration and painting is a bounded

rectangular region with randomly placed horizontal obstacles
of negligible width. These obstacles do not touch the region’s
boundaries and have gaps between them. However, robots can
pass horizontally over obstacles, distinguishing them from
other robots.

4. WORKING PROCEDURE AND ALGORITHM
The target area is divided into non-overlapping strips,

where each strip is assigned to a robot. The algorithm ensures
no gaps between strips, leading to full coverage once all strips
are covered. The process involves two phases: Explore, where
a robot determines its strip boundaries, and Paint, once the
strip is covered. Once all the assigned strips are painted, the
algorithm terminates. Robots begin from the left boundary of
the region.

Figure 1. A robot views the illumination of light within its
visibility range.

MANDAL, et al.: OBSTACLE PRONE AREA COVERAGE BY SWARM OF MOBILE ROBOTS WITH LIMITED VISIBILITY

413

Generally, a robot paints two vertically consecutive
strips: one above and one below its starting position, sharing a
common lower boundary, LWB. The exploration and painting
processes for the upper and lower strips are denoted as
Explore1, Paint1, Explore2, and Paint2. Explore1 includes two
steps: Explore1-RTB, the robot moves from the left boundary
(LFB) to the right boundary (RTB) along the common LWB,
and in Explore1-UPB, it explores the upper boundary of the first
strip. During Paint1, the robot re-calculates the LWB and paints
the first strip. In Explore2 and Paint2, the robot determines the
upper boundary of the second strip and paints the second strip.

4.1 Explore1-RTB
At the very beginning, R drops a Light at its initial position

(say, A on LFB) shown in Fig. 2 (a) and computes common LWB
(AA′) along its initial location. Next, R computes the UPB of
both strips. To do that, R inspects objects above it, i.e., another
robot (Q), Light (K), painted strip, and upper boundary of the
region to determine the UPB of the first strip. If R detects any
of these objects, it considers a horizontal line (BB’) through
its current position (B’) as UPB of the first strip shown in
Fig. 2(b). However, if the upper boundary of the region is
detected above, then this boundary is considered as UPB of
the first strip.

If R is at upper boundary of the region, this boundary
serves as both its LWB and UPB. Similarly, R also determines
UPBexp2 by checking the presence of any object (robot, Light,
painted strip, or lower boundary) below it. If R finds any
object(s) located below, R considers a horizontal line passing
through the nearest object as its UPBexp2; otherwise, it considers
lower boundary of the region as its UPBexp2.

If R detects no object above and/or below its initial
position, it is unable to determine the UPB of either strip
initially. However, for both cases (with known or unknown
UPBs), R moves to its right along the LWB (AA’) towards the
RTB and drops another Light at A’. The Explore1-RTB ends
once R reaches the RTB.

If R cannot determine the UPB of the first strip by end
of Explore1-RTB, R enters into Explore1-UPB. If R calculates
the upper boundary of the region as the UPB of the first strip,
it also moves to Explore1-UPB. Otherwise, it proceeds to
Explore2. During movement from LFB to RTB, if R encounters
horizontal line obstacles, it bypasses them from above or
below them.

4.2 In Explore1-UPB
R moves upward from RTB to find UPB of the strip above.

R performs vertical and horizontal movements alternatively,
creating a zigzag pattern. It drops Light(s) when changing
direction from vertical to horizontal. R continues this process
until it detects another robot (Q) / Light (K) / painted strip
above. At this point, R assumes a horizontal line through its
current position as UPB of the first strip, as shown in Fig. 2(b).
If R can see the upper boundary of the region, this boundary is
considered UPB of the first strip.

Once the UPB of the first strip is determined, the robot
drops a Light at its current location, ending the Explore1-UPB
step. If the robot computes the upper boundary of the region

as UPB, it moves directly towards it using vertical movements
instead of zigzag. Upon reaching the upper boundary, the
Explore1-UPB terminates, and R enters into Paint1.

During Paint1, the robot paints the first strip from UPB
towards LWB. After finishing, R returns to LWB and ends
Paint1, shown in Fig. 2(c).

If R encounters obstacles during Paint1, it moves from
either above or below the obstacles. On termination of Paint1,
R enters the Explore2.

After completing painting of its first strip, R begins
exploring the strip below LWB by executing Explore2. The
second strip, is located directly below the first, sharing the
LWB as a common boundary. In Explore2, R moves downward
to locate the UPBexp2. Depending on where R finished Paint1,
it may start exploring along RTB or LFB. In some cases, R
may skip Explore1-RTB and Paint1, transitioning directly into
Explore2 after Explore1-RTB.

During Explore2, located on its LWB, if a robot R finds the
presence of one or more objects below its current position, it
considers a horizontal line, passing through the current position
of the nearest object as its UPBexp2. Once the UPB is computed,
Explore2 terminates, and R enters Paint2.

If R is on LWB and finds no object below, it performs
zigzag movements downward to compute UPBexp2. During this
movement, R drops Lights at each change in direction from
vertical to horizontal until it detects an object below. Once,
R finds another robot (P) or a light (K) below, it considers the
horizontal line passing through P or K’s position as the UPBexp2.
R can view a painted region below only if P has already
painted it. R considers the visible boundary of this region to be
its UPB. If R detects the lower boundary as an object below, it
designates the lower boundary of that region as UPBexp2.

Figure 2. (a) Computation of UPB of both the strips at LFB
due to the presence of another robot (Q) and/or
light source (K) and completion of Explore1-RTB (b)
determine UPB of the first strip (c) Completion of
Paint1 (d) Determination of UPBexp2 and completion
of Paint2.

DEF. SCI. J., VOL. 75, NO. 4, JULY 2025

414

After determining UPBexp2, R reaches it while avoiding
obstacles as previously described. Once UPBexp2 is computed,
Explore2 ends and begins Paint2 to cover new strip. During
Paint2, R handles obstacles in the same way as in Paint1.

During Paint2, R starts painting from the UPBexp2 and
stops at the common LWB is shown in Fig. 2 (d). R finishes its
task when both the strips are covered, and the entire process
ends once the whole region is fully painted.

5. CORRECTNESS PROOFS
The various lemmas have been proposed:

 Lemma 1: Two robots never cross each other
vertically.
Proof: It is assumed that two consecutive robots start their

exploration at different vertical heights from the region’s LFB.
In the first cycle, they determine their LWB, UPB, UPBexp2
based on rules in Section 4. Since the robots begin at different
vertical heights, their horizontal movements start distinctly,
preventing horizontal crossovers. Thus, this proof focuses on
vertical crossovers. However, scenarios where robots move
along common boundaries are managed using the sensing
abilities discussed in Section 3.

During the EXPLORE, each robot is required to carry
Lights and place them in appropriate positions. These Lights
are colorless. For clarity in the figures, different-colored Lights
represent the two robots. Throughout execution, each robot is
either EXPLORE or PAINT state, leading to three possible state
combinations for two robots.

Case (A): Both robots are in an EXPLORE state.
Case (B): One is in the EXPLORE state and other one is

in the PAINT state.
Case (C): Both are in PAINT state.
Case (A): During the EXPLORE state, R starts at LFB

and moves to RTB after calculating LWB, UPB, and UPBexp2.
Upon reaching RTB, R enters either Explore1-UPB or Explore2
based on LWB, UPB, and UPBexp2. For proof, two robots,
R1 and R2, are considered, initially not visible to each other.
Throughout the process, there are three possible cases for the
robots’ locations.

Case (i): Both R1 and R2 are in Explore1-UPB.
Case (ii): Both R1 and R2 are in Explore2.
Case (iii): R1 is in Explore1-UPB, and R2 is in Explore2 or

vice-versa.
Case (i): In Explore1-UPB, a robot explores the upper

boundary of the first strip if UPB = ∞ . Starting from LFB,
the robot moves to RTB along common LWB, initiating its first
vertical movement along RTB. During exploration, the robot
moves between LFB and RTB and can switch to sleep at any
point.

When both R1 and R2 are in Explore1-UPB, they begin at
LFB and follow separate horizontal paths along their respective
LWBs to reach RTB, from where they move upward to explore
their strips. Each robot drops Lights at RTB to ensure they
don’t cross vertically, even if one robot falls asleep. The
Lights prevent the lower robot from crossing the upper robot’s
boundary when it reactivates.

However, the adverse situation remains, as shown in
Fig. 3. Starting the movement from A, R1 enters sleep state
at A’ instead of reaching the opposite boundary at A1. R2 also
continues its movement through points B1, B2, B3, and so on to
reach B6 where, Vdist(A1, B6)≥d, causing R2 to cross R1’s strip. If
R1 reactivates and resumes exploration, collisions may occur.

To prevent this, the two robots never cross vertically each
other. As depicted in Fig. 3, R1 and R2 are initially separated by
a vertical distance D, where D>>d and d <D ≤ L (where L is
the region’s length), making them invisible to each other.

Considering the Lights’ illumination range, the minimum
visibility distance between robots is ≤ d. Starting at A, R1 enters
sleep state at A′ before reaching A1. Meanwhile, R2 moves
through points B1 to B6, where Vdist(A1, B6)≥d. If R1 reaches A1
without sleep, it drops a Light there, allowing R2 to view it and
compute the UPB of its first strip.

Figure 3. R1 and R2 are in Explore1-UPB.

However, in this Scenario, R2 does not detect any Light at
B6 and switches to horizontal exploration towards LFB. Upon
reaching B7, R2 sees the Light dropped by R1 at A, confirming
that even if R2 couldn’t detect R1 at B6, but view it at B7. As
a result, the robots never cross vertically despite starting
asynchronously and outside each other’s visibility range. R2
computes its UPB upon seeing the Light above and stays below
it in later phases. Meanwhile, R1 explores upward towards the
RTB, proving that in Explore1-UPB, the robots never cross
vertically.

Case (ii): Since both are in Explore2.They won’t cross
each other vertically.

Case (iii): In this Scenario, two robots, R1 (above) and R2
(below), are in different states: either (a) R1 is in Explore1-UPB
while R2 is in Explore2, or (b) R2 is in Explore1-UPB while R1
is in Explore2.

Case (a): Since the robots’ movements are exactly
opposite there is no chance of vertical crossover.

Case (b): As both robots move toward each other, the risk
of collision is high. Imagine a reference line A’B’ where robots
R1 and R2 are at endpoints A’ and B’. R1 is in Explore2, has
followed a path A→ A1→A2→A3→B’ → A’. If R1 continues,
it enters R2’s explored region. Similarly, R2, in Explore1-
UPB, has followed B→B1→ B2→B3→A’→B’, and continued
movement would lead R2 into R1’s explored area, risking
repeated exploration and collision as their paths overlap i.e.,
A’→B’ and B’→A’. Figure 4(a) shows the scenario.

MANDAL, et al.: OBSTACLE PRONE AREA COVERAGE BY SWARM OF MOBILE ROBOTS WITH LIMITED VISIBILITY

415

However, these Scenarios never happen because (a)
vertical crossing requires both robots to be on a same horizontal
line, which is impossible, and (b) both robots sense each other’s
presence before reaching line A’B’ due to the Lights dropped
along their paths. These Lights, visible from points like A3 and
B3, allow robots to detect each other well before collision as
shown in Fig. 4(b). Even if a robot sleeps, the other can follow
a zigzag path to sense dropped Lights. Hence, the proof.

each other vertically. Each robot moves in every computational
cycle to avoid collisions. The minimum distance a robot
moves per cycle depends on its visibility range, d. To maintain
collision-free movement, the distance covered in each move, ∂,
should be optimized based on d, with ∂ = 2

d . Keeping constant
the value of d, different values of ∂ is taken to justify the
optimality. Three different scenarios are taken into account and
∂ considered as 3

2
d , d and 2

d .
Let’s consider two robots say, R1 and R2 and it is also

considered Vdist(R1, R2)=d+h, where 2
d < h≤ d. This means R1

and R2 are located out of each other’s visibility range and are
vertically moving towards each other with ∂ moves.

Scenario (1): ∂= 3
2
d .

Figure 5 (a) shows that R1 is at A and R2 is at B and both
compute their destination points as A’ and B’ respectively. As

d∂ > , so to reach A’, R1 needs to cross R2 and vice versa. This
scenario never guarantees collision-free movement.

Scenario (2): ∂=d.
If h=d, then two robots compute their destinations on the

same point on their visibility circle. However, for h<d they
vertically cross each other as per Scenario (1). So, this scenario
also causes a collision. Figure 5(b) shows the scenario.

Scenario (3): ∂= 2
d

In above two scenarios, robots collide during their
movements. Now, as ∂<d, robots R1 and R2 never cross each
other to reach destination points A’ and B’ respectively. Hence,
there is no collision during their movements. This is also
applicable to all values where ∂< 2

d . Figure 5(c) illustrates the
scenario. From all the above-mentioned scenarios, it can be
concluded that ∂= 2

d , justifies the optimality.
Figure 4. (a) R1 crosses R2 vertically and vice versa; and (b)

R1 never crosses R2 vertically and vice-versa.

Case (B): Each robot computes the boundaries of its
strip independently. A robot only enters the PAINT state after
calculating both LWB and UPB in EXPLORE state. Once
boundaries are set, robots stay within their strips and stop
exploring. During PAINT, R covers the accessible area within
its boundaries (UPB and LWB). Both robots work without
interfering, preventing vertical crossovers. Even if one enters
sleep state, EXPLORE and PAINT are atomic states, so one
robot’s action does not affect other.

Case (C): Both robots are in PAINT state, indicating
they have determined the UPB and LWB of their strips. As
EXPLORE and PAINT are independent, there is no interference
between them. Since boundaries are fixed, no overlap occurs,
and crossovers are avoided. The robots continue their tasks
independently, even if one enters sleep state.

 Lemma 2: The optimal distance that a robot should
move in every computational cycle to ensure collision-
free movements is

2
d .

Proof: Robot movements involve both vertical and
horizontal moves. If multiple robots align on the same
horizontal or vertical line, or if one is on a horizontal line
while another is on a vertical line, there is a high chance of
collision. However, Lemma 1 ensures that during exploration,
two robots never be on the same horizontal line, nor they cross

Figure 5. (a) Each computational cycle, a robot moves (a)
2
d

distance (b) d distance (c) 3
2
d distance.

 Lemma 3: Throughout the exploration process a
robot, R drops maximum of 2 2L

d
 × +  

 Lights.

Proof: This work addresses the issue of limited visibility,
with a fixed range Vr=d, by using Lights with a fixed illumination
range that do not reset between cycles. Robots detect Light

DEF. SCI. J., VOL. 75, NO. 4, JULY 2025

416

from beyond their visibility range to identify other robots.
Each robot drops Lights one at a time, with a maximum number
dropped when starting at the upper boundary and LFB. When
starting on the LFB and upper boundary, the robot performs
two steps: Explore1-RTB and Explore2. During Explore1-RTB,
it drops up to two Lights along the same horizontal line. In
Explore2, it follows zigzag moves, dropping a Light each time
it changes direction from vertical to horizontal, resulting in up
to two Lights per zigzag move. To cover entire region L, the
robot can drop up to 2 L

d
 ×   

 number of Lights.
So, to explore the whole region while ignoring the

fractional values of L
d

 
   , the cumulative number of Lights

required is represented as
2 2......................(1)L

d
 × +   (1)

To illustrate Eqn. (1), considering following scenario
where L=10 units, and 1

2
d

= unit distance. Therefore, as per

Eqn. (1), a robot drops maximum 2 2L
d

 = × + =  
 102 2 12

2
  × + =    

Lights.

There remains another scenario in which R is on LFB but
not on upper and lower boundaries of region.

Consider, L=L1+L2, where L1 and L2 are the vertical
heights of the two strips respectively. So, during the whole
process maximum number of Lights dropped by R is: Lights
dropped in (Explore1-RTB+Explore1-UPB+ Explore2)

1 22 2 2 2 2L L
d d

       = + × + + × +               .
As L> L1 and L2, so always 1 2L L L

d d d
     > +          

.To illustrate,
consider the same region with L1 = L2 = 5 units and 1

2
d

= unit.
To explore whole region, R drops Lights,

1 22 2 2 2 2L L
d d

       = + × + + × +              

5 52 2 2 2 2 2 4 4 10
2 2

       = + × + + × + = + + =              

Considering, L1=3 and L2=7 units and 1
2
d  =  

 unit, the total
number of Lights

3 72 2 2 2 2 2 2 6 10.
2 2

       = + × + + × + = + + =              
So, it is observed that a robot positioned anywhere between

upper and lower boundaries drops fewer Lights compared to
when it is positioned on either upper or lower boundary.

So, the maximum number of Lights dropped throughout
the execution is 2 2L

d
 × +  

.

 Lemma 4
The painting of the entire target region is completed

within a finite amount of time.
Proof: The algorithm specifies that each robot can paint

up to two consecutive strips. Occasionally, a robot might only
paint one strip or none, with different termination processes for
each case:

(i) Robots with no specific painting area
If robot R is positioned at LFB along lower boundary and

detects objects above, it has no region to paint and moves to

RTB, terminating after completing Explore1-RTB.

(ii) Robots with two consecutive strips for painting
Knowing 1distUPB V= or UPB = ∞ and 2 ExpUPB =∞ or

2 2Exp distUPB V= , R moves horizontally along LWB towards RTB
by setting LWB=0, terminating Explore1-RTB. It then moves
upward to determine UPB during Explore1-UPB, after which it
enters Paint1. Once first strip is painted, R calculates UPBExp2
of second strip (Explore2), then paints the second strip during
Paint2. If UPBExp2 is pre-determined, R starts painting from
LWB to UPBExp2. After painting both strips, R successfully
terminates.

(iii) Robots with only one strip for painting
Below mentioned are such scenarios:
Scenario 1: A robot is located on the upper boundary with

or without knowledge of UPBExp2.
Scenario 2: A robot is located anywhere on LFB where

LWB=0, UPB=0, with/ without knowledge of UPBExp2.
Scenario 3: A robot is located on lower boundary of

region without knowledge of UPB.
In all scenarios, R explores and paints one strip above/

below, following same execution and termination order as
in (ii). For Scenario 1 and Scenario 2, R performs Paint2 or
Explore2+ Paint2. For Scenario 3, the robot performs Explore1-
UPB and Paint1.

EXPLORE and PAINT phases are atomic; once strip
boundaries are set, painting is uninterrupted. Robots complete
tasks in finite time, working autonomously to paint entire
region.

5. CONCLUSION
This work introduces a distributed algorithm for a swarm

of oblivious, silent robots to paint a bounded rectangular area
with opaque horizontal line obstacles. Using a full-compass
and asynchronous timing model, the algorithm guarantees
collision-free, non-repetitive coverage and finite-time
completion despite limited visibility. Future research could
extend this to polygonal obstacles and direction-only models.

REFERENCES
1. Tan Y, Zheng Z. Research advance in swarm robotics.

Defence Technology. 2013; 9(1), 18–39.
 doi: 10.1007/s10472-009-9120-2
2. Shahzad M, Saeed ZM, Akhtar A, Munawar H, Yousaf

MH, Baloach NK, Hussain F. A review of swarm
robotics in a NutShell. Drones. 2023;7(4), 269–297.

 doi:10.3390/drones7040269
3. Alqudsi Y, Makaraci M. Exploring advancements and

emerging trends in robotic swarm coordination and
control of swarm flying robots: A review. Proceedings of
the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science. 2025; 239(1), 180–
204.

 doi:10.1177/09544062241275359
4. Mandal B, Sardar M, Das, D. Swarm Coverage in

Continuous and Discrete Domain: A Survey of Robots’
Behaviour. In: volume 653: Advances in Data-driven

MANDAL, et al.: OBSTACLE PRONE AREA COVERAGE BY SWARM OF MOBILE ROBOTS WITH LIMITED VISIBILITY

417

Computing and Intelligent Systems 2022. Singapore:
Springer Nature; 2023 [cited 2025 May 6]. p. 573–587.
Available from:

 doi:10.1007/978-981-99-0981-0_44
5. Tokas P, Das D. A distributed algorithm for assembling

of asynchronous swarm of mobile robots with limited
visibility in presence of horizontal line obstacle. In: 2nd
International Conference for Convergence in Technology
(I2CT) 2017. Mumbai, India: IEEE xplore; 2017 [cited
2025 May 6]. p. 426–429. Available from:

 doi: 10.1109/I2CT.2017.8226165
6. Mandal B, Sardar M, Das D. Assembling of Swarm

Robots in Distributed Environment in the Presence
of Polygonal Obstacles. In: Proceedings of the 6th
International Conference on Advances in Robotics 2023.
IIT Ropar, India: ACM Digital Library; 2023 [cited 2025
May 6]. p. 1–6. Available from:

 doi: 10.1145/3610419.3610504
7. Prencipe G. Instantaneous actions vs. full asynchronicity:

Controlling and coordinating a set of autonomous mobile
robots. In: Volume 2202: ICTCS 2001. Springer; 2001
[cited 2025 May 6]. p. 154–171. Available from:

 doi: 10.1007/3-540-45446-2
8. Das D, Mukhopadhyaya, S. Distributed painting by a

swarm of robots with unlimited sensing capabilities and
its simulation. In: International Journal on Information
Processing. 2013; 7(3): 1–15.

 doi: 10.48550/arXiv.1311.4952
9. Das D, Mukhopadhyaya S, Nandi D. Swarm-based

painting of an area cluttered with obstacles. International
Journal of Parallel, Emergent and Distributed Systems.
2021; 36(4): 359–379.

 doi: 10.1080/17445760.2021.1879071
10. Das D, Mukhopadhyaya S. Distributed algorithm for

painting by a swarm of randomly deployed robots
under limited visibility model. International Journal
on Information Processing. 2018; 15(5): 17298814–
18804508.

 doi: 0.1177/1729881418804508
11. Alqudsi, Y. Integrated Optimization of Simultaneous

Target Assignment and Path Planning for Aerial Robot
Swarm. The Journal of Supercomputing. 2025; 81(1):
1–24.

 doi:10.1007/s11227-024-06620-w
12. Adams JA, Hamell J, Walker P. Can a single human

supervise a swarm of 100 heterogeneous robots?. IEEE
Transactions on Field Robotics. 2025; (2), 46–80.

 doi: 10.1109/TFR.2024.3502316
13. Latimer D, Srinivasa S, Lee-Shue V, Sonne S, Choset

H, Hurst A. Towards sensor based coverage with robot
teams. In Volume 1: International Conference on Robotics
and Automation 2002. USA: IEEE; 2002 [cited 2025
May 6]. p. 154–171. Available from:

 doi: 10.1109/ROBOT.2002.1014684
14. Kong CS, Peng NA, Rekleitis I. Distributed coverage

with multi-robot system. In: International Conference on
Robotics and Automation 2006. ICRA IEEE; 2006 [cited

2025 May 6]. p. 2423–2429.
 doi: 10.1109/ROBOT.2006.1642065
15. Rekleitis I, New AP, Rankin ES, Choset H. Efficient

boustrophedon multi-robot coverage: An algorithmic
approach. Annals of Mathematics and Artificial
Intelligence. 2008; 52: 109–142.

 doi: 10.1007/s10472-009-9120-2
16. Karapetyan N, Benson K, McKinney C, Taslakian P,

Rekleitis I. Efficient multi-robot coverage of a known
environment. In International Conference on Intelligent
Robots and Systems (IROS) 2017. IEEE/RSJ; 2017 [cited
2025 May 6]. p. 2423–2429. Available from:

 doi: 10.1109/IROS.2017.8206000
17. Hungerford K, Dasgupta P, Guruprasad K. Distributed,

complete, multi-robot coverage of initially unknown
environments using repartitioning. In: International
conference on Autonomous agents and multi-agent
systems 2014. ACM; 2014 [cited 2025 May 6]. p. 1453–
1454.

 doi:10.5555/2615731.2617519
18. Viglietta G. Rendezvous of two robots with visible bits.

In: Algorithms for Sensor Systems 9th International
Symposium on Algorithms and Experiments for Sensor
Systems, Wireless Networks and Distributed Robotics,
ALGOSENSORS 2013. Berlin, Heidelberg: Springer;
2013 [cited 2025 May 6]. p. 291–306. Available from:

 doi:10.1007/978-3-642-45346-5_21
19. Das S, Flocchini P, Prencipe G, Santoro N, Yamashita

M. Autonomous mobile robots with lights. Theoretical
Computer Science. 2016; 609(1), 171–184.

 doi:10.1016/j.tcs.2015.09.018
20. Takashi O, Koichi W, Yoshiaki K. Optimala

synchronous rendezvous for mobile robots with lights,
arXiv:1707.04449 2017. 2017 [cited 2025 May 6]. p.
1–15. Available from:

 doi: 10.48550/arXiv.1707.04449

CONTRIBUTORS

Ms Banashree Mandal is a PhD scholar in Department of
CSE at NIT Durgapur. Her research interests include: Swarm
robotics, distributed algorithms.
In the current study she contributed to the conceptualization,
implementation of the algorithm, and correctness proof analysis,
as well as writing the final manuscript.

Dr Deepanwita Das is an Assistant Professor at NIT Durgapur.
Her research interest include: Swarm robotics, distributed
algorithms.
In the current study she verified the algorithm and thoroughly
reviewed and revised manuscript as the main supervisor.

Dr Niladri Mandal is a Scientist ‘F’ at DRDO-DRDL, Hyderabad.
His research interest include: Hybrid manufacturing technologies,
non-conventional manufacturing, artificial intelligence, and
automation.
In the current study he contributed to the overall analysis and
provided insights for developing various aspects of the algorithm.

