
Defence Science Journal, Vol. 54, No. 3, July 2004, pp. 361-377
© 2004, DESIDOC

Numerics of High Performance Computers and Benchmark
Evaluation of Distributed Memory Computers

H.S. Krishna and K.P. Singh
Aeronautical Development Agency, Bangalore-560 017

ABSTRACT

The internal representation of numerical data, their speed of manipulation to generate the
desired result through efficient utilisation of central processing unit, memory, and communication
links are essential steps of all high performance scientific computations. Machine parameters,
in particular, reveal accuracy and error bounds of computation, required for performance tuning
of codes. This paper reports diagnosis of machine parameters, measurement of computing power
of several workstations, serial and parallel computers, and a component-wise test procedure for
distributed memory computers. Hierarchical memory structure is illustrated by block copying
and unrolling techniques. Locality of reference for cache reuse of data is amply demonstrated
by fast Fourier transform codes. Cache and register-blocking technique results in their optimum
utilisation with consequent gain in throughput during vector-matrix operations. Implementation
of these memory management techniques reduces cache inefficiency loss, which is known to be
proportional to the number of processors. Of the two Linux clusters-ANUP16, HPC22 and HPC64,
it has been found from the measurement of intrinsic parameters and from application benchmark
of multi-block Euler code test run that ANUP16 is suitable for problems that exhibit fine-grained
parallelism. The delivered performance of ANUP16 is of immense utility for developing high-end
PC clusters like HPC64 and customised parallel computers with added advantage of speed and
high degree of parallelism.

Keywords: Bandwidth, benchmark, cache, communication link, fast Fourier transformation, granularity,
iteration, Linux cluster, latency, multigrid, Mflops, machine parameters, memory, PIM, matrix,
refinement, distributed memory computers, high power scientific computations, parallel iterative
method

1. INTRODUCTION

The two emerging fields of the twenty-first
century, computational fluid dynamics and DSP,
most researched in recent times, demand machines
which must achieve Tflops performance and provide
extensive memory storage' of about 1 GB/h. Often,
the desired accuracy in numerical simulation of
fluid flows may well be less than 10~8. In the
design of digital filters, it is desirable to represent

data in the largest word length or bits to minimise
the quantisation effect, which is proportional to the
number of bits of finite length register. High performance
computers, in particular, multiple instruction multiple
data (MIMD) parallel machines meet these requirements
to a great extent and provide a cost-effective solution
to the problem. The selection of a computing facility
suitable for a particular application depends on
memory bandwidth and computing power or speed.
Over the years, improvement in speed of computers

Revised 8 April 2003

361

DBF SCI J, VOL. 54, NO. 3, JULY 2004

has been largely due to the development of pipeline
architecture, vector processing, supercomputing,
parallel and massively parallel computing progressively
in that order. Software parallel programming concepts,
such as virtual processors, reduction operation, strip
mining, and dependency analysis are important efficient
parallelisation techniques which have largely resulted
in improvement in hardware utilisation through
hierarchical memory structure and memory management.
The hardware architectural consideration also plays
a crucial role in the implementation of these techniques
as for instance, in fast Fourier transform (FFT)
computations. Vector architecture requires codes
of long vector length, whereas RISC/cache-based
architecture requires small data length for efficient
cache reuse. Today's high power computing resources2

for distributed memory machine's include parallel
numerical software, such as highly tuned linear
algebra kernels-BLAS, LAPACK, PBLAS,
ScaLAPACK, and ATLAS; parallel iterative method
(PIM) solvers; and communication libraries like
MPI-LAM, Petsc, Essl and Pessl (for IBM machines).

Benchmarking3 of computers is useful in estimating
performance of an application program on a particular
architecture, exploring relative computing capabilities
of several computer systems, determining their portability
and architectural limitations. The choice of suitable
benchmark depends on the available library. Parallel
benchmarks should evaluate both fine- and coarse-
grained parallelism. In addition, parallel benchmarks
should apply the aforementioned programming concepts
to actually simulate the process of computation for
realistic or delivered performance.

In this paper, exhaustive benchmark tests that
include standard, application, kernel, and synthetic
benchmark codes are presented for distributed memory
parallel computers. These codes find complete bound
on computing time of algorithms, measure computational
complexity, memory bandwidth and operation count
independent of machine or programming language,
either through recursive looping to increase computational
intensity or through data reuse. Wall clock time
(get_time_of_the_day in ns or us) is the single
most important parameter for timing all operations.

The computing platforms benchmarked for
performance comprise five workstations- DecAlpha,

Linux, SunUltral, IrisS, and Iris2; a serial computer
IBM RISC1 RS 6000 and four distributed memory
parallel computers-PACE32, ANUP16, HPC22 and
HPC64. Some special features of workstations are
DecAlpha's various levels of optimisation to increase
the speed of computation only at the expense of
accuracy and IrisS's SDRAM, which is expandable
up to 4 GB for extensive storage application.

2. DISTRIBUTED MEMORY PARALLEL
COMPUTERS

2.1 ANUP16 Hardware Architecture

It is a customised parallel machine made up of
Linux pentium III processors. Its cluster-based
MIMD parallel architecture allows scalable computing.
The nerve centre of this machine is the Fast Ethernet
Intel 510T switch that connects 16 PCs in a cluster
as shown in the Fig. 1. Some of the special features
of this LAN technology switch are scalable stacking
technology at reduced up-front cost, redundancy
of stacking modules to eliminate single-point failure
for switch-to-switch connections, stacks up to seven
switches, 10/100 Mbps throughput per port in
24-port switch, and backplane scalable performance
up to 14.7 Gbps (2.1Gbps/switch X 7) bandwidth.
Communication is by the message passing between
the master and the slave processors or nodes, and
among nodes themselves. The master processor is
also backed by the 200 GB Intel server. It supports
MPICH parallel library and a defacto standard
library called Anulib developed at the Bhabha Atomic
Research Centre, Trombay. A monitor connected to
slave nodes through sharer gives the status of processes

INTEL SWITCH
10/100 Mbps

LINK
MONITOR

MONITOR SERVER

Figure 1. Block diagram of Linux cluster

362

DBF SCI J, VOL. 54, NO. 3, JULY 2004

The Machar code available online at Netlib
repository and Berkeley's Spara program have been
used for diagnosis of machine parameters. The
single floating-point precision numbers for all the
32-bit machines mentioned here were found to be
F(2, 24, -126, 128, T). From this, one may interpret
underflow and overflow to be 1.1754951 X 1Q-38

and 3.402823466 X 1038, floating-point precision
(eps or machine epsilon) of 1.1920929 X 1Q-7 or
machep (quantisation step size of digital filters),
the relative spacing between the machine number
(exact) and its succeeding number as 10~23. In
short notation, the double floating-point precision
numbers for all computers are F(2,53, -1022,1024, T).

The other machine parameters of interest to
computational fluid dynamics code developers, machine
zero and clock granularity or resolution as determined
from programs3 Machar and Tickl respectively
have been listed in the Table 1.

Machine zero is a measure of compiler
accuracy and clock granularity is the smallest
time interval measured by the clock. Machine
zero is required to set error bounds for residual
convergence of CFD codes. The apparent
resolution of the clock as measured by Ctest
of Perftest bench suite and Tickl is 0.95 us.
The timings of elementary arithmetic operations7

for all high performance computers are tabulated
in Table 1. The time, T in nano seconds for
an assignment (=) operation is shown in italics
and all other arithmetic operations are expressed
as the ratio of assignment operation. These
values are useful in calculating Mflops (T~'/106)
from operation count of the test code. Table
1 also shows values of vectorisation parameter
/?Mand memory-access bandwidth for read (/?)
and wri te (\V) operations in MB/s. These
parameters determine intranode communication
rate and its granularity.

Table 1. Machine parameters of high performance computers

Parameter

Processor/
model

Year

Clock (MHz)

Cache (KB)

RAM (MB)

Compiler (C)

EPS ,10"

CKG.105

MZ.1020

flc.

R/W(MB/s)
+Linpack, (Mflops)

+MGSOR (s)

Operations
(=)TimeT.10'°s
= : + : - : / : *

ANUP

P-III
Katrnai

2000

550.0

512

512/256

GCC
2.96

2.22044

0.01298

5.4201

142.0

440/260

48.6

10.25

81
1:2:2
:25:2

HPC

P-III
C.M.

2002

1O02.0

256

2/1GB

GCC
2.96

2.22044

0.9468

5.4201

195.0

790/475

56.3

5.63

46
1:2:2
:26:3

DEC

ST30

1999

500.0

2048

512

Digital
UnixV4

2.22044

0.119

11102.2

32.0

327/469

69.3

13.0

3
1:28:28
:222:28

LINUX

P-II
Deschutes

1999

448.05

512

505

GCC
2.7.2.3

2.2204

0.01362

5.4201

75.0

369/281

35.3

14.48

54
1:4:4
:49: 44

SUN

Ultra
Spare

1993

200.0

512

512

SunOS
5.5.1

2.2204

0.119

11102.0

58.0

62/68

8.9

33.5

504
1: 1: 1
: 2 : 1

IRIS2

MIPS
R4400

1992

250.0

512

128

MIPS
Pro

2.2204

1.0728

11102.2

31.0

116/123

16.6

51.9

40
1:4:4
:36:8

IRIS3

MIPS
R 10000

1993

195.0

512

128

MIPS
Pro

2.2204

1.0728

11102.2

81.0

54/51

26.3

-

48
1:2:2
: 13:2

RISC1

RS
6000

1988

41.6

256

64

Version
1.3.0.43

2.2204

1.0728

11102.0

46.0

-

23.2

81.2

252
1:2:3
: 4 : 3

PACE

SPARC
10HS

1995

60.0

256

- 64

Sun R 4.1

2.2204

0.119

1 1 102.0

-

-

-

77.0

604
1 : 2 : 2
: 2 : 2

*Double precision, + Optimisation, P: Pentium, EPS: Machine epsilon, R/W: Memory read/write

364

KRISHNA & SINGH: NUMERICS OF HIGH PERFORMANCE COMPUTERS

4. THROUGHPUT

Iterative convergence and mesh refinement form
the basis of most computational fluid dynamics
solution techniques. CFD codes employing time-
dependent technique involve large number of iterations
for the solution to converge and attain steady-
state values. While grid generation technique is
aimed at obtaining smooth and ever so fine grid,
the purpose of flow solver development is to compute
flow variables in minimum time through faster iterative
convergence of solution.

The difference between successive stages of
approximation of a physical variable, which is usually
pressure or density in CFD computations, is called
the residual. The solution by FDM, FEM or FVM
methods of governing differential equations of fluid
flow, heat transfer, structural dynamics, control
systems, computational electromagnetics (CEM),
electric circuits and aeroacoustics, is obtained either
by reducing or by factoring into linear system of
the form Ax = b, where A is the global coefficient
matrix, x is the solution vector, and b is the global
matrix of source terms, which is zero in most
cases. Invariably, such linear systems are readily
solved by well established linear algebra matrix
methods. These methods function as convergence
acceleration devices to speedup the computation
process by driving the residual to machine epsilon
or zero. All linear systems solution methods fall
under the following two categories: (i) multi-level
method and (ii) iterative methods.

Multigriding is the most popular multi-level
method because it is also the fastest iterative convergence
technique known. Its lower bound complexity is
O(N). For illustrating the efficacy of this method,
Fivol program8 has been chosen. Fivol is a freeware
finite volume elliptic grid generator that solves
Laplace equation in cartesian coordinates. It applies
SOR technique for smoothing the solution. This
code is modified to work on a 2-level multigrid
V-cycle. The bar chart in Fig. 3 shows the relative
speeds or work in Mflops of the various machines
as computed by Fivol-multigrid (FivolMV) program
for iterative residual convergence to the same floating-
point precision of 10~8. A number of multigrid codes
are available at Mgnet website, and the execution

600 -I

500 -

400 •

300 •

200 -

100 •

n .

545 . * Master only
490 482

Fivol MV-Mflops

370

252

1
177

1 68 50

I 1 P
ANUP* HPC* DEC LINUX SUN IRIS RISC PACE'

Figure 3. Computing power of various types of high
performance computers.

time for one such code, Mgsor is presented in
Table 1 for 2-level V-cycle multigrid with SOR
smoothing on non-red-black grid. It compares the
relative speed of the machines in serial computation.

Iterative methods applied to linear algebra problems
are broadly classified into direct or stationary methods
and non-stationary or parallel iterative methods9(PIM).
In direct methods, matrix ordering determines solution
time and storage requirement, and cost depends on
the order of matrix storage. The popular direct
iterative method of solution of linear systems like
block Jacobi, LU, Cholesky, and variants of Gaussian
methods are suitable for small problem sizes, require
more storage space and execution time when compared
to parallel iterative methods.

The throughput in Mflops as a function of
process grid of LU factorisartion routine, as obtained
from Scalapack test suite run are shown in Table 2
for HPC64. It shows that the effect of domain or
matrix decomposition on throughput in fine-grained
parallelism, parallel iterative methods, more commonly
known by the generic name as Krylov solvers, are
preferred for large-scale problems that involve
sparse matrices computations. Laplacian and Poisson
elliptic solvers for incompressible flow solution in
aircraft aerodynamics, implicit Euler unsteady and
time-dependent solution, implicit Navier-Stokes methods,
all lead to the solution of sparse matrix.

For over a decade now, at the Innovative Computing
Laboratory, University of Tennessee, USA, Dongarra's
team10 has carried out intensive research in sparse
linear algebra to develop parallel preconditioned

365

DBF SCI J, VOL. 54, NO. 3, JULY 2004

Table 2. Throughput of ScaLAPACK LU routine for HPC64

PxQ 1x64 64 x 1 8x8 4x16 4x4

100x100 6.1 1.5 5.4 9.2 17.1

500x500 36.9 7.96 32.6 57.2 127.0

for parallel iterative method and smart libraries for
partial automatic choice of iterative method and
preconditioners, load-balancing techniques based
on matrix structure, since it often reflects the physical
structure and changes in differential coefficients,
and block structuring of matrices based on balancing
number of rows or zeros for enhanced performance.
Their effort culminated in the development of three
widely used linear algebra packages, particularly
suited for dense matrices: Liftpack foi*vector computers,
Lapack for shared-memory computers, and
ScaLAPACK for distributed-memory machines. In
all these packages, the non-zero elements of sparse
matrix are stored by indirect addressing through
pointers, either in compressed row storage format
or compressed column storage format. To obtain
good load balance, usually square block scattered
or block-cyclic decompositions is employed. Block
partitioning of matrices ensures efficient cache and
data reuse.

The BLAS2 linear algebra package
implements these techniques in a highly tuned manner.
The structured matrices are more rapidly solved
than the unstructured ones. Standard test matrices
may be obtained online from Matrix Market. Since
each node of distributed memory cluster computers
have gigabyte memory storage, handling of sparse
matrices is not a constraint. Storage or retrieval of
data is in column-major order for Fortran and row-
major order for C in stride one input/output operation.

The prominent Krylov solvers for CFD applications
based on non-stationary methods, such as conjugate
gradient, GMRES, and QMR, generate a sequence
of orthogonal vectors of residuals during each iteration.
Minimisation of gradients of these quadratic functional
residuals (by least-square technique in GMRES
and QMR) yields solution of linear systems. In
recent times, Newton-Krylov-Schwarz method"'13

has been applied in nonlinear implicit CFD solver

for full potential and 3-D time-dependent Euler
computations. PIM optimisation14 procedure comprises
quadtree data structure adaptation to improve locality
of reference, overlapping nearest neighbour
communication with computation, excepting inner
product and norms that induce global synchronisation,
A perfect or linear speedup is the upper limit to
parallel scalability while that for numerical scalability
is given by linear relationship between computing
power and problem size. Together, these ensure
that optimum speedup or perfect scalability is obtained
without sacrificing numerical accuracy. Scalability
then implies that the solution time be constant when
both the problem size and the number of processors
increase in a fixed ratio. This is illustrated in Fig.
4 for the execution time obtained from PIM Krylov
solver, Psparslib15 test run on HPC64 and ANUP16
process grid (P ' Q) for two problem sizes of
100 ' 100 and 200 ' 200 on each processor. Further
confirmation of scalabilty is shown in Table 3 for
typical CFD problem of over million mesh points,
class B bench test run of NAS parallel benchmark-
LU factorisation routine. Both ANUP16 and HPC64
scale linearly up to 16 nodes with constant high
value of throughput of about 40 Mflops per processor
that is comparable to any of the other high performance

- A ANUP16: lOOx 100

D ANUP16: 200 x 200

• HPC64: 100 x 100

800 T e HPC64: 200 x 200

Expon. (ANUP16: 100 x 100)

Expon. (HPC64: 200 x 200)

600 -

1 2 3 4 5

PROCESS GRID 2<P"Q>

Figure 4. Parallel and numerical scalability

366

KRISHNA & SINGH: NUMERICS OF HIGH PERFORMANCE COMPUTERS

Table 3. Throughput of NAS-LU benchmark

ANUP16, class B, 1023

P

1

2

8

16

1

2

8

16

32

64

Elapsed time
(ET)

11402

5877

1612

863

HPC64, class

14173

7246

1756

991

1234

593

Speedup
(S)

1.0

1.9

7.1

13.0

B, 1023,

1.0

1.9

8.1

, 14.0

11.0

24.0

, 250 iterations

Efficiency
(E)

-

97

88

82

250 iterations

-

98

100

v 89

36

37

Mflops/P

43.8

43.0

38.7

36.1

35.2

34.4

35.5

31.4

12.6

13.1

computers, such as Intel Paragon, CRAY, etc. But
beyond 16 nodes, machine utilisation of HPC64 is
poor as evidenced by sharp decline in efficiency
(E); computation-to-communication ratio (CC); and
speedup (5). The difference between Fig. 4 and
Table 3 for high-end HPC64 can be reconciled by
observing that the former is a coarse-grained problem
whereas the latter (LU) is fine-grained problem.
The parallel iterative methods (PIMs) are preferred
to multi-level methods due to their modular nature
that enables these to be used as black box routines16

with little or no modification to the existing programs.
Convergence histories of PIMs aid as stopping
criterion if iteration count could be predetermined
for a given error bound or machine epsilon. The
number of iterations for uniform convergence or
rapid convergence depends on the Krylov subspace
dimension and the preconditioner used.

i
In any computational fluid dynamics computation,

it is always desirable to seek finer resolution of
grid in the flow field region in order that an accurate
representation of the flow region be obtained, more
so in the regions where large gradients in the flow
variables are expected, such as that occurring at
the leading and trailing edges of airfoil, flow at the

convex corner, etc. But computational power in
terms of memory and speed of the computer, time,
and cost put a limit on the resolution of the grid.
The effect of refinement is illustrated by general
unsteady Euler solver (GUES) code run for NASA
F3 forebody at Mach number 1.7. GUES is a
3-D time-marching, finite-difference code based
on MacCormack's predictor-corrector explicit scheme
for flow field solution in cylindrical coordinates
(z, Q, r). The log-linear plot of throughput versus
grid points in Fig. 5 shows stark contrast for axial
(Gl, G2, and G3) and azimuthal (G4 and G5)
refinements, mainly because of linear topology and
that communication dominates in cross-flow direction.
The machine-code dependencies require that
isogranularity plots be linear for perfectly scalable

200 n

I

o§

150 -

100 -

50 - - AXIAL

- AZIMUTHAL

20000 40000 60000 80000 100000

GRID POINTS

Figure 5. Effect of grid refinement (PACE32)

code. This stipulation is satisfied by low-end machines
(up to 8 nodes) only in Fig. 6.

A linearly scalable program on various architectures
ensures ease of portability. The parallel balance
point for PACE32 is located at 16 processors. The
delivered performance of PACE32 is about 10-20
per cent of its peak performance. Benchmark based
on execution times and throughput have been refuted
of late, as psuedo work measures by Gustafson in
his HINT commercial benchmark. He contends
that the performance should be quantified in terms
of absolute measure- quality improvement per second
(QUIPS): The performance curve, on which HINT

367

DBF SCI J, VOL. 54, NO. 3, JULY 2004

200n

175-

O

150-

125-

0.
X
O
D
O
at,
ac

100-

75-

50-

25-

-ir-Gl: %x 16x16
-•-02:184x16x16
-0—03:384x16x16
-+-G4: 96x 16x32
-X-G5: %x!6x64

Table 4. Standard benchmark codes used in performance
evaluation

16

PR6CCESSORS

24 32

Figure 6. Isogranularity plot for scalable performance

measurement is based, has resemblence to time-
processor product curve (measure of goodness of
parallel implementation) and also the learning curve
of a neural network.-

5. MEMORY MANAGEMENT

The programs and data that reside in the main
memory are often shuffled to vary the amount of
memory in use. The data itself may be copied to
other memory locations, such as cache, registers,
auxiliary, and external storages by the operating
system softwares. In any case, the locality of reference
determines the speed of access to data stored on
a particular location. The various test suites used
for benchmark study in Table 4 and the block
diagram of processor components in Fig. 7 present
an overview of the bench test plan.

5.1 Hierarchical Memory

The memory of ANUP16 processor ranging
from fast but small capacity to slow but large
capacity storage units consists of registers (CPU),
cache, main memory (RAM), and external storage
in magnetic tapes (4 mm). The cache of ANUP16
is located between CPU and the main memory
(RAM) and its access time is close to processor
logic clock cycle time. It stores program under

Code

Genesis

(i)Polyl,2, Rinfl

(ii) Tick 1 & 2

LLC suite

(i) Cachebench

(ii) Mpbench

BLAS suite

(i) Sblat 1,2, 3

FFT-0216

CMU TP suite

Output

Low-level metrics:

Rm R~. ni/2
Timer error

Memory bandwitdth

Bandwidth,
MPIcalls

Iteration count

ET(s) and FFT

ET(s) and FFT

Component test

Cache

CPU

Cache, memory

Internode link

Memory, cache

Cache, memory

Cache, memory

execution and temporary data in use. The access
time ratio between the cache and the main memory
varies from 1 to 7 as reported in the literature.

Hierarchical memory offers the advantage of
highest average speed. Prior to execution of a
code, parameters necessary to select the best program
transformation in looping operation are unknown.
Under these circumstances, advantages of spatial
and temporal locality of references are explored to
improve program performance. Also, array dimensions
may be subject to alterations during run time. Efficient
utilisation of memory hierarchy by the compiler by
minimising cache miss, page fault, or altering main
memory access pattern are known to play an important
role in reducing execution time substantially. The
most effective method to deal with the problems
that often arise in linear algebra computations, has
been the blocked-memory access or strip mining
in large vector operations. Blocking exploits, to a
high degree, the memory hierarchy. Many present-
day high performance computers are designed to
allow reuse of data transferred to faster level of
memory hierarchy, as often as possible, before
these are restored to slower level. In matrix computation,
a (n x m) matrix is decomposed or partitioned into
pair-wise disjunct matrices or submatrices. These
submatrices are then copied into contiguous memory
area in the highest memory hierarchy, cache. These

368

KRISHNA & SINGH: NUMERICS OF HIGH PERFORMANCE COMPUTERS

CPU
MACHINE PARAMETERS, CLOCK RATE

OUT-CACHE I

CACHE MISS

CACHE
INTRINSIC PARAMETERS (R , nm), THROUGHPUT, HIT RATIO

BLOCKCOPY AND UNROLL -UTILISATION, COHERENCE,
ASSOCIATIVITY

IN-CACHE, CACHEDEHTT

MAIN MEMORY
DYNAMIC MEMORY ALLOCATION,

CONTIGUOUS STORAGE, VIRTUAL MEMORY
STORAGE, RAM

RECENT COPY

UPDATE
NODE 1

EXTERNAL STORAGE
PROCESS ON FLY, DISK, TAPE

COMMUNICATION RATE
BANDWIDTH, LATENCY,
NUMBER OF NODES,
OVERHEAD i

s~

I ODD-EVEN SET

INTEL
SWITCH

LINK BUFFER
OVERFLOW

~\

NODES

Figure 7. Block diagram of processor components and their functionality

operations may be further hastened by operand
registers that store programs as well as intermediate
results. An example of software implementation of
this idea is the block-copying algorithm6 for matrix
multiplication of matrices A.k and BkJ, which is
given below :

do i, =1, n, nb

do i2 =1, n, nb

do j{ = z'2, MIN(n, i2+nb - 1)

doj2= it, MIN(n, i^nb - 1)

A(j-i2+l, ;2-z,+l) = A(jy 7,)
do kt = I, n, nb

dok2 = kv MlN(n, k^+nb -1)

do £3 = iy MIN(n, i2+nb -1)

do k4 = iv MlN(n, it+nb -1)

C(k4, k2) = C(k4, k2) +

A(k3- i2+i. kr ;
B(ky

The ANUP16 execution time for the above
algorithm computed by synthetic code BLKCP is
shown in Fig. 8. As the block size nb is decreased
from 200 to 100, there is a large drop, about one-
fifth of the computation time, and any further reduction
in nb results in little or no saving in computation
time. In general, this is true, for empirically determined
good block sizes are found in the range 32 to 256.
Block size depends on the computation-to-
communication ratio of the system problem size,
hence it is identified as a tuning parameter. Small
caches must transact with small block sizes, usually
less than 8 KB, to increase cache hit ratio.

Another efficient loop transformation method,
that is both machine- and compiler-dependent, is
loop unrolling in reduction operation on a vector.
It may be recalled that unrolling outer nested loops
increases locality of reference. The code segment
that implements loop unrolling of dot product of
two matrices is given below:

enddo
— C

^ .7 = 1, m>

369

DBF SCI J, VOL. 54, NO. 3, JULY 2004

250 n

200 400 500 '600

MATRIX (n xn)
*t

Figure 8. Blocking copying by varying
submatrices.

700

block size nb of

i = I, n, u ; k = I, p, I ; d = 0, 1; u = 1, 2, 3,

4.

The elapsed time (ET) for square matrices
(m = n) are graphed in Fig. 9. For a given innermost
block sizep, the computation time reduces uniformly
as the depth of unroll u is increased from 1 to 4.
Loop interchanges by permuting ijk variants in six
different ways show deterioration in performance
when the matrices (data) exceed cache size (n>200)
or main memory (n> 1600).

Blocking and unrolling techniques have been
implemented in the standard numerical library BLAS
level 2 and BLAS level 3 and LAPACK. BLAS
level 2 and BLAS level 3 is a collection of linear
algebra subroutines that implements various levels
of memory hierarchy. The BLAS level 1 subroutine
Saxpy carries out completely unblocked vector-
vector operation and has computational complexity
O(ri). The BLAS level 2 subroutine Sgemv performs
matrix-vector operations (double-nested loop) of
O(n2) complexity and the BLAS level 3 subroutine
Sgemm performs matrix-matrix operations (triple-
nested loop)of complexity <9(n3). SBLAT level 2
and SBLAT level 3 programs regulate the amount
of data processed during each run so that large
problems run for fewer iterations to maintain the

200 300 400 500 600 700 800

MATRIX (« x n)

Figure 9. Loop optimisation by increasing depth of unroll

run time for each problem size nearly constant. A
test run of SBLAT suite, required 3460 and 17496
computational calls by subroutines Sgemv (BLAS
level 2) and Sgemm(BLAS level 3) respectively on
both ANUP and HPC computers. Computational
electromagnetics (CEM) technique based on frequency
domain approach of method of moments solves
discretised integral equation of impedance matrix
Z and unknown vector of current amplitudes / for
one or more excitations of voltage, V (ZI = V). In
the determination of radar cross section of aircraft
by method of moments, linear algebra kernels of
BLAS level 2 and BLAS level 3 are used to speedup
the solution of the above matrix equation.

5.2 Cache Utilisation

As already noted, reuse of data greatly improves
processor performance. Performance losses in parallel
computers grow proportionately as the number of
nodes, and therefore, efficient cache utilisation becomes
a vital problem. The characterisation17 of cache
memory is based on the assumption of linear timing
model and infinite bandwidth. The two important
intrinsic parameters related to the machine performance,
R^ and F „ (or n) due to Hockney2-17 give a

370

KRISHNA & SINGH: NUMERICS OF HIGH PERFORMANCE COMPUTERS

measure of pipeline effect and scalar computation.
The Rn is the throughput in Mflops of the machine
obtained for an infinite or excessive long calculation
and nm is the computational intensity at half of
its sustained performance. A single parameter may
be defined as the ratio of these two measures to
obtain intranode communication time as
tnm=(F+Fl/2)/Raa. Two programs, Polyl and Poly2
of Genesis bench suite, evaluate a polynomial by
Homer's rule to determine in-cache and out-cache
performance. These two programs differ in only
one respect. The coefficients of the polynomial in
Poly2 are ten-times larger than those in Polyl so
that the former tackles a larger problem of size in
excess of cache memory. Figure 10 shows a comparison
of these performances for both the master and the
slave nodes of ANUP16. The negative gradient of
tc (shown by thick lines in Fig. 10) suggest that the
intrinsic performance parameter /?_ increases with
computational intensity since the two parameters
are inversely related to each other. HPC, however,
with marked steeper gradient has higher /?M value
compared to its counterpart ANUP, which implies
that HPC yields better performance for large- or

coarse-grained problems.

A C-language benchmark code Cachebench of
Llcbench test suite with dynamic memory allocation
and compiler optimisation was test run on both
ANUP 16 and HPC22 to determine the memory
access patterns. The bandwidth in MB/s for compiler
optimised read and write test cases have been
compared in Fig. 11 with that of distributed memory
computer, CRAY T3E. The greater bandwidth exhibited
for write operations by CRAY while executing
small vector lengths (< 215) is due to its constant
data reuse. The read operation of ANUP 16 shows
larger bandwidth (MB/s) than the write operation
because of prefetching of data. Moreover, the write
operation is plagued by replacement policy (write-
through and write-back) and write buffering. The
inadequecy in bandwidth of HPC is made up, to
a large extent, by its faster clock rate, a space-
time apportionment. The intrinsic performance
parameters generated by Rinfl code of Genesis
test suite and tabulated in Table 5 corroborates the
explanation of Fig. 10.

All DSP techniques employ the FFT kernels.

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

• ANUP In Host - -»- - ANUP In Slave
A ANUP Out Host 0 ANUP Out Slave

O HPP In Host —D HPP In Slave
—&•— HPP Out Host 0 HPP Out Slave

- ANUP READ —D— ANUP WRITE™-*— HPP READ
-HPP WRITE —A—CRAY READ -A—CRAY WRITE

03
s

3000 -,

2500 -

X 2000 -
9
I 1500 -
z

ôf
O

1000-1

500 -

100 10000 1000000

DATA VECTOR LENGTH

I00000000

Figure 10. Intranode communication time Figure 11. Memory read and write operations

371

DEF SCI J, VOL. 54, NO. 3, JULY 2004

Table 5. Selected values of intrinsic vectorisation parameter /?_ of MIMD computers

ANUP MASTER ANUP SLAVE HPC MASTER HPC SLAVE

Length 7L, Ra Length &.

<80 142 21.1 <100 100

>300 24.7 204 >500 11.8

Rn Length /Z» Rn Length /L, Ra

10 <80 109 20.5 <80 110 28.3

206 >300 25.9 111 > 300 27.9 111

The FFT butterfly graph is the basic block for
counting and bitonic sorting networks. The FFT
method of solution of Poisson equation on hypothetical
parallel random access machine(PRAM) is the fastest
method with asymptotic lower bound complexity of
0(logAO computations. Ever since Cooley-Tukey
proposed a numerical solution of FFT in the mid-
sixties, many faster and efficient methods have
been developed. The decimation in time Cooley-
Tukey algorithm first reorders input data bit reversal
method and then performs twiddle factor multiplication.
The faster Tukey-Sands decimation in frequency
algorithm reverses these two computational steps.
These algorithms require n-passes through data to
compute 2n points. A more efficient Radix-8 algorithm
requires n passes only. Bailey18 gave a 4-step algorithm
in which a (nl x nl) matrix of stored data undergoes
nl simultaneous n2point FFT prior to multiplication
by twiddle factor, then transposes to n2 x nl matrix,
and finally performs «2 simultaneous nl point FFT.
As an improvement of this algorithm* a 4-step
architecture-adaptive parallel algorithm that requires
only three passes was suggested . In this method,
the matrix transposition, which is communication-
intensive, is globally adapted to interconnection
network of parallel computers and the phase rotation
or twiddle-factor scaling is locally adapted to a
single processor for full cache utilisation. The most
efficient FFT algorithm known todate is the optimal
bit reversal COBRA algorithm19. To perform FFT
on large data file, array dimensions too must be
large, and during matrix transposition and bit reversal,
performance degrades due to limited, small memory
cache. Cache associativity depends on computer
architecture and Murphy's law requires that cache
lines be distinct between source and destination
for the same associativity set. As a feasible solution
to this problem, wide cache has been used in modern
microprocessors.

The CMU benchmark TPSUITE is a collection
of FFT, radar, and imaging software. Its FFT1
code applies Bailey's 4-step algorithm to exploit
task parallelism by performing FFT through matrix
transpose, scaling, and butterfly computation. The
timing for these steps were found to be 49 per
cent, 16 per cent, and 34 per cent of the total
computing time, respectively, for the data vector
length considered above. The same FFT 1 code is
architecturally adapted for HPC22, as explained in
previous paragragh, to perform computation in
parallel. Figure 12 shows the throughput in Mflops
(= 5Mog2W / ET) for Cooley-Tukey, FFT1 serial
and parallel, and Radix-8 FFT codes. The cache
data reuse is clearly evident for Radix-8 algorithm
because of unrolling.

Particle tracing20, a scientific visualisation technique,
applies cell caching method to reduce number of
cache misses. The field values within each cell are
defined by cell-local interpolating function. The
vertices of the cell are copied into small buffers

60

50

40

30 -I
o
O 20

10

- O - - - Cooley FFT
-•— Bailey Serial
-• Bailey Parallel
-4 Radix FFT

1000 10000 100000

DATA LENGTH (N)

Figure 12. Cache utilisation by FFT codes

1000000

372

KRISHNA & SINGH: NUMERICS OF HIGH PERFORMANCE COMPUTERS

Table 6. Elapsed time/iteration for coarse-grained problems

Parallel
computer

PACE32

HPC22/
(HPC64*)

ANUP16

Node
P

8

8

16

16

8

16

8

15

Euler
code

Original

Modified

Original

Modified

--

--

~

~

ET(s) GCM
131x51x113

37.6

32.5

32.1

20.0

7.35(7.10*)

6.13(5.42*)

6.69

5.50

ET(s) GCC
51x25x67

4.54

_

3.33

-

0.55(1.74*)

0.41 (1.52*)

0.91

1.14

to support the fly calculation of flow variables.
The position and vector field samples are loaded
into contiguous memory locations in column-major
order (Fortran) for caching the data. This method
has been applied to the successive-lerp interpolation
algorithm and the factored version of volume method.
Also in virtual memory computers, the small data
length is preferred for reasons mentioned above.

5.3 Buffer Overflow & External Storage

Buffer is a low capacity storage device connected
to the communication links. It temporarily stores
data when the links are busy. A large problem
involving intensive computation may cause buffer
overflow and congestion in the links. Single instruction
multiple data (SIMD) machines like PACE32 can
be economically utilised in terms of computational
time when it is required to tackle problems with
data parallelism. A data-parallel job permits single
operation to be applied to all the elements of its
data structure simultaneously. The odd-even process-
exchange algorithm given below is used to minimise
the time taken in internode communication across
overlapping boundary planes in aircraft multiblock
Euler solution4.

do parallel np = 1, P

iodd=MOD(np, 2); ieven = 1 - iodd;

if (ieven.eq. 1) then

odd nodes send data and even nodes receive

else

even nodes send and odd nodes receive

enddo parallel

The amount of data transferred across overlapping
node boundary is 314 KB, which far exceeds the
PACE32 communication buffer capacity of 256 KB.
At any given instance, every node either sends or
receives the data but not both, thereby reducing
the data transferred to the link. It may be observed
in Table 6 that there is a reduction of about one-
third of elapsed time per iteration for modified
code that incorporates odd-even process exchange
when compared with that of the original program.
A similar problem arises in the FDM/FVM solution
of Euler/potential flow equations that use central
differencing scheme. The values at grid points in
the stream-wise direction change sign alternately,
which is referred to as odd-even decoupling. Here
again, the odd and even numbered sets of grid
points may be solved for parallel implementation.

External data storage devices, such as magnetic
tapes and magnetic disks are used to store large
volume of waveform data signals or images to
compute Fourier transform. In real-time multimedia
information systems, huge data in uncompressed
form must be sorted on the fly to prevent loss of
information content upon compression. Such data
can be processed on the fly by Singleton algorithm21

which computes FFT in two stages of bit-reversed
computing pass and permutation pass. The ANUP16
parallel computer has a 4 mm tape drive with a
speed of 900 in/s and maximum access time of
cassette of less than 4 min. A built-in routine of
system calls, a make file of command line arguments
or environment variables in C to perform FFT on
the fly is necessary to run Fourfs code21. As a test
run, this code took 12.5 s for data file of 0.25 MB
size. The conversion from ASCII to binary data
file format usually results in 30 per cent reduction
in size (Lempel-Ziv algorithm). The database standard,
such as CGNS reduces overhead costs arising
from file translation and multiple data sets in
various formats and also aids in information retrieval.

373

DBF SCI J, VOL. 54, NO. 3, JULY 2004

CGNS has been implemented22 in commercial CFD
codes- NUMECA, CFL3D, OVERFLOW, WIND,
PLOT3D, to name a few, and MIT's V3 visualisation
software.

6. COMMUNICATION RATE

The 10/100 Mbps Intel 51OT and 410T switches
link the different nodes of ANUP16 and HPC22
to the master. The Fast Ethernet switch has its
performance enhanced through increased raw band-
width and reduced traffic congestion. An important
feature of scalable stacking technology (SST) is
the chassis-based switch that enables it to be managed
as a single device. The scalable stacking technology
is controlled by simple network management protocol
(SNMP)-supported Linux operating system. Each
of the 16 ports has a 10/100 Mbps link connected
to it. The rate of internode data transfer determines
the communication rate of the parallel computer.
All parallel computers are designed to minimise the
time taken for this process.

The complexity of parallel computation log P,
is characterised through four parameters-bandwidth

(W), latency (L), overhead (O) and number of
processors(P). Bandwidth rated in Mbps is the amount
of data in megabits communicated by link per unit
time (s), latency is idle or start-up time of processor
before the message is sent. Since network capacity
is finite and almost (L/W), messages can be transferred
from one machine to another at any given time, the
assumption made in Hockney's intrinsic parameter
calculation, that latency is constant or bandwidth
is infinite, is highly idealistic23.

The MPI library communication calls, 8 in number,
tested on HPC22 using Mpbench program of Llcbench
suite for increasing message size have been plotted
in Fig. 13. A comparison with CRAY T3E (broken
line) shows an order of magnitude higher bandwidth
for CRAY, the effect of cache is also evident as
all curves tend to level off with the increase in
traffic. Roundtrip, measured in transactions per
second, shows better utilisation of link for small
data size, which is actually twice that of other
cases, but its performance declines when the link
becomes busy. The actual internode communication
rates of ANUP16 and HPC22 are determined by
Banlat code using ANULIB library (Alib) in ping-

1000000

100000 -

10000 -

1000 -

100 -

10 •

— Roundtrip

— Broadcast

• — Cray bandwidth

-AlibANUP

•ft All reduce

—— All-to-all

Hi Cray Roundtrip

•O- -AlibHPC

- Reduce

- Bi-directional

- Bandwidth

10 100 1000

MESSAGE SIZE (BYTES)

10000 100000 1000000

Figure 13. Intel switch performance for MPI/Anulib (Alib) communication calls

374

KRISHNA & SINGH: NUMERICS OF HIGH PERFORMANCE COMPUTERS

pong test.

In a one-to-all communication, message is broadcast
by the master to all the eight slaves in the subgroup
and the message returned by a single processor is
received by the master. The measured bandwidth
by ANULIB plotted in Fig. 13 is 10-15 per cent
lower than that of MPI LAM communication calls,
which means that the latter is slightly faster than
the former. Latency is determined by C-benchmark
code Ctest and the overhead is found through
repeated measurement in the above test with Banlat
code. The measured maximum and average latency
are 26.00 ^is and 0.95 us (950 ms) respectively
and the communication overhead varied from
0.22 ns to 0.44 ns.

In Fig. 14, the inverse relationship of latency
in contrast to bandwidth, is evident with exponential
rise in latency when the message size exceeds that
of cache(104). Iteration, however, has negligible
effect on latency. Finally, the inverse of barrier
communication rate of Intel 510T, 410T and 3Com
switches are presented in Table 7 as a comparative
measure of switch performance during synchronisation.

6. APPLICATION BENCHMARK-A
COARSE-GRAINED CFD PROBLEM

A coarse-grained process performs large number
(millions) of arithmetic operations before communication
takes place. A measure of granularity of a process
is the computation-to-communication ratio. To determine
the performance of MIMD machines for a CFD
problem, two cases of flow simulation for combat
aircraft configuration at Mach number 0.9 and
angle of attack of 5° are performed. In the first
case, the tailless aircraft covered by 51 x 25 x 67
(roll-x, pitch-y and yaw-z axes) mesh points (GCC
grid of 9 blocks and memory 2MB) and in the
second, a more dense mesh of 131 x 51 x 114
points (GCM grid of 142 blocks and 9MB disk
space) generated over the aircraft carrying a close-
combat missile are solved by Jameson's finite volume,
3-D Cartesian, time-dependent Euler multi-block
solver. The elapsed time per iteration for these
computation are recorded in Table 6.

It has been observed that ANUP16 is faster

1800 -|

1600 -

1400 -

1200 -

1000 -

800 -

600

400 -

200 -

0

Iteration

-e— 100
— &— 1000

10000
100000

1 10 100 1000 10000 100000

MESSAGE SIZE (BYTES)

Figure 14. Variation of latency of HPC22 with message size

than HPC22 for computationally-intensive GCM
grid and the reverse is true for the fewer-points
GCC grid, the reason being that GCM grid comprises
142 logical blocks whereas GCC grid is made up
of barely 9 logical blocks. The cells inside any
given block are structured but the blocks themselves
may be unstructured. Thus, division into greater
number of logical blocks or fine grain dominated
by communication appears to favour ANUP16.
The MIMD machines are at least four times faster
than SEVID PACE32 machines despite easing congestion
in communication link of the latter by odd-even
process exchange (modified code).

8. CONCLUSION

A complete bench test procedure for parallel
computers is established. As a thumb rule, a balanced
parallel architecture should yield equal number of
MB, Mbps, and Mflops. To realise it in practice
for a range of applications, performance data from

Table 7. Global synchronisation time per barrier of links

Computer

Processors

F.E. switch

Time barrier

ANUP16

16

S510T

1633 us

HPC22

22

J410T

1000 us

HPC64

64

3Com

3450 us

375

DBF SCI J, VOL. 54, NO. 3, JULY 2004

bench test would be required. It is found that for
efficient memory management through locality of
reference, block size of 50 to 100 and depth of
unroll up to 4 are required. The vectorisation parameters
/ ? , « . „ and intranode communication time determined

00 1/2

from cache operation or memory bottleneck indicate
that fine-grained problems yield optimum performance
of ANUP16.

Coarse-grained parallelism is desirable for efficient
parallelisation of distributed memory machines. Generally
in practice, this is achieved by increasing the number
of processors as in HPC64. Scalability and application
benchmark tests revealed that HPC64 optimum
performance may be obtained for coarse-grained
problems. A single node cache performance of
HPC64 is found to be almost the same as that of
CRAY-T3E. Roughly, the computing power of ANUP16
is at least ten times faster than the serial RISC1
machine and at least three times faster than that
of DecAlpha workstation.

REFERENCES

1. del Rosario, J.M. & Choudhary, A.N. High
performance input/output for massively parallel
computers: Problems and prospects. IEEE
Computer, March 1994, 59-68.

2. Dongarra, J.J.; Meuer, W.H. & Strohmaier E.
Top 500 supercomputing sites, Ed. 13. University
of Tennessee, UT-CS-99-434, November 11,
1999.

3. Addison, C.A.; Getov,VS.;Hey, A.J.G.; Hockney,
R.W. & Wolton, I.C. The GENESIS of distributed
memory benchmarks. In Computer benchmarks,
edited by J. Dongarra and W. Gentzsch.
North-Holland, 1993. pp. 257-71.

4. Krishna, H.S. & Singh, K.P. Performance analysis
and efficient parallelisation of CFD codes; In
IIT Kharagpur Golden Jubilee Celebration,
Procedure of Workshop on CFD, December
5-7, 2001. IIT Kharagpur.

5. Deshpande, S.M. High performance computing
(HPC) in CFD: An Indian perspective. Invited
Lecture. In Proceedings of Sixth International
Conference on HPC in Asia-Pacific Region,

HPC-Asia-2002. Bangalore, 16-19 December
2002. Vol. 1. pp.129.

6. Ueberhuber, C.W. Numerical computation: Methods,
software and analysis. Vol. 1. Springer, 1997.
267p.

7. Krishna, H.S. & Singh, K.P. Scalable performance
of beowulf clusters. In Proceedings of Sixth
International Conference on High Performance
Computing in Asia Pacific region, HPC-Asia-
2002, Bangalore, 16-19 December, 2002.

. Vol. 1. pp. 153-56.

8. Fletcher, C.A.J. Computational techniques for
fluid dynamics. Vol. 1. Springer-Verlag.

9. Demme, J.W.; Heath M.T. & van der Vorst,
H.A. LAPACK working note 60, parallel numerical
linear algebra. University of Tennessee.
UT-CS-93-192, August 1993.

10. Dongarra, J. Innovative Computing Laboratory,
University of Tennessee, Knoxville. Report No.
ICL-2001.

11. Cai, X.; Keyes, D.E. & Venkatkrishnan, V.
Newton-Krylov-Schwarz: An implicit solver for
CFD. NASA Report ICASE-1995-87.

12. Jameson, A. & Caughey, D.A. How many steps
are required to solve the Euler equations for
steady compressible flow: In Search of a fast
solution algorithm. AIAA Paper No-2001-2673.

1.3. Sharov,D.; Luo, H. & Baum, J.D. Implementation
of unstructured grid GMRES+ LU-SGS method
on shared memory: Cache-based parallel computers.
AIAA Paper No-2000-0927.

14. Tian ruo Yang (Ed). Parallel numerical computations
with applications. Kluwer Academic Publications,
1999. ISBN 0-7923-8588-8.

15. Saad, Y.; Lo, G.C. & Kuznetsov, S.; PSPARSLIB
users manual: A portable library of parallel iterative
solvers. University of Minnesota, Dept of Computer
Science, Minneapolis, MN, 1998.

376

KRISHNA & SINGH: NUMERICS OF HIGH PERFORMANCE COMPUTERS

16. Eijkhout, V. Overview of iterative linear system
solver packages. University of Tennessee, UT-
CS-98-411, July 1998.

17. Getov, V.S. Performance characterisation of
the cache memory effect. Supercomputer, 1995,
62, XI(4), 31-49.

18. Bailey, D.H. FFTs in external or hierarchical
memory. 1990, Journal of Supercomputing,
4, 23-35.

19. Gatlin, K.S. & Carter, L. Memory hierarchy
considerations for fast transpose and bit reversals.
In Proceedings of HPCA, Orlando, PL, 9 to 13

January 1999.

20. Hultquist, J.P.M. Improving the performance
of particle tracing in curvilinear grids.
AIAA Aerospace Sciences Meeting, Reno, NV,
January 1994. AIAA Paper No-94-0324.

21. Press, W.H. et al. Numerical recipes in FORTRAN
77: In The art of scientific computing. Cambridge
University Press, 1986. pp. 525 & 881.

22. Poirier, D.M.A. et al. Advances in the CGNS
database standard for aerodynamics and CFD.
AIAA Aerospace Sciences Meeting, Reno, NV,
January 12, 2000. AIAA 2000-0681.

23. Petrini, F. Latency and bandwidth requirements
of MPP: FFT as a case study. Elsevier, June
1999.

Contributors

Mr H.S. Krishna obtained his BE(Mech Engg) from the Bangalore University and
ME(Aerospace Engg) from the Indian Institute of Science (IISc), Bangalore. Presently,
he is working as Scientist/Engineer D at the Aerodynamic Group of Aeronautical
Development Agency(ADA), Bangalore. His areas of expertise include: Heat transfer,
computational fluid dynamics, and high performance computing.

Dr K.P. Singh obtained his BSc(Mech Engg) from the Banaras Hindu University;
MTech (Mech Engg) from the Indian Institute of Technology, Kanpur and PhD(Aerospace
Engg) from the IISc, Bangalore. Presently, he is Group Director, Aerodynamic
Group at the ADA, Bangalore. His areas of research include: Development of CFD
Euler codes, aerodynamic design of launch vehicle, CFD tools and their application
for design and development of aircraft, and parallel computing.

377

