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ABSTRACT

Many cutting-edge computer vision systems now rely heavily on convolutional neural networks, or CNNs. 
However, conventional interpretation techniques frequently concentrate on 2D feature maps, ignoring the intricate 
contributions of individual pixels. This work aims to produce “visual explanations” that improve the explainability 
and transparency of decisions made by various CNN-based algorithms. We provide Pixel Ablation-CAM, a new 
method that builds on the ideas of Ablation-CAM by using pixel-wise ablation, which enables a finer-grained 
comprehension of model choices. With this method, activation maps are reinterpreted as arrays of one-dimensional 
vectors that represent channel-specific pixel activations. We show that, as compared to other approaches such as 
Grad-CAM, Pixel Ablation-CAM offers better resolution and accuracy in class-discriminative localisation maps 
by methodically ablating these vectors and monitoring changes in class activation scores. Our extensive testing 
demonstrates that Pixel Ablation-CAM improves model trust and interpretability, providing fresh perspectives on 
CNN behavior and propelling the field of explainable AI forward. 
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1.   INTRODUCTION
In essential industries, automated decision-making 

systems-especially those driven by deep learning are 
being utilised more and more. However, since blind trust is 
uncommon, users anticipate justifications for these choices. 
Numerous elements, such as trust, causation, transferability, 
accountability, and egalitarian decision-making, are what 
motivate this requirement for transparency1. Explainability is 
therefore essential to building confidence in these systems, 
particularly in high-stakes domains such as banking, healthcare, 
autonomous driving, and defence.

Convolutional Neural Nets (CNNs)2 have significantly 
enhanced performance in several computer vision tasks, 
such as semantic segmentation5, object detection4, and image 
classification3. CNN designs have improved in accuracy and 
efficiency over time6. CNNs function as “black boxes,” making 
it challenging for consumers to believe their predictions 
even in spite of their success7. Therefore, enhancing CNNs8 
interpretability is crucial for their incorporation into sectors 
where dependability and trust are unavoidable.

A number of approaches have been put up to solve CNN 
interpretability; gradient-based approaches, such as Grad-
CAM9 and Grad-CAM++10, have drawn a lot of interest. 
By determining the areas of an image that have the greatest 
influence on the model’s conclusion, these techniques produce 
visual explanations. Grad-CAM is not without its limits, 
though, especially when it comes to precisely localising 

numerous instances of an item or adequately capturing the 
area of an object, which can result in incomplete or misleading 
explanations11. Non-gradient-based techniques like Ablation-
CAM12 have been developed in response to these difficulties. 
In order for ablation-CAM to function, individual channels in 
the final convolutional layer are methodically removed, and 
the resulting changes in activation scores are monitored. This 
channel-wise ablation method is useful in many situations, 
but it is still too coarse and frequently falls short of offering a 
complete picture of the CNN’s decision-making process.

We present a new method called Pixel Ablation-CAM, 
which extends ablation to individual pixels in the last 
convolutional layer to provide a more detailed interpretation. 
Rather of eliminating entire channels, our method 
systematically eliminates each pixel and evaluates the shifts in 
activation ratings to assign relevance to each one. This pixel-
by-pixel ablation highlights the areas of a picture that have 
the biggest impact on predictions, enabling a more accurate 
understanding of the CNN’s behavior. By concentrating on 
pixel vectors, Pixel Ablation-CAM not only overcomes the 
dimensionality constraints of conventional Ablation-CAM but 
also raises the overall resolution of visual explanations. This 
approach is more suitable for real-world applications where 
trust and transparency are essential since it provides more 
thorough localisation of significant features. For example, in 
autonomous driving, clearer explanations can enable safer 
navigation by detecting essential environmental cues, and in 
healthcare, more accurate interpretability can help with medical 
picture diagnosis by highlighting crucial regions in an X-ray or 
MRI scan. These uses highlight Pixel Ablation-CAM’s wider 
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significance and its capacity to close the gap between model 
accuracy and interpretability in systems that are vital to the 
mission. Pixel Ablation-CAM can improve transparency in 
the face recognition space by pinpointing the precise facial 
features that influence a match or mismatch determination 
the most. By emphasizing the most influential regions, this 
not only increases the system’s trustworthiness but also helps 
refine models, guaranteeing that the system makes judgments 
based on consistent and dependable qualities.

In this research, we present a comprehensive methodology 
for Pixel Ablation-CAM, empirically compare it with other 
approaches, and show that it can improve CNN interpretability 
on a range of tasks. An overview of our methodology is 
shown in Fig. 1, which compares our pixel-wise approach 
with conventional channel-based ablation. This contribution is 
expected to make a significant impact in the field of explainable 
AI by providing practitioners and researchers with an effective 
tool for understanding the inner workings of deep learning 
models.

2.  LITERATURE REVIEW
The phrases “black box,” “gray box,” and “white box” 

relate to various degrees of closure of a component’s internal 
essence in science, computing, and engineering. Specifically, 
a white box component presents all of its internal design, 
structure, and implementation to the user, while a black box 
component keeps all of this information hidden. Depending 
on the amount of information provided, there may be varying 
degrees of gray box components in between. Technological 
businesses have used the black box idea for commercial 
purposes; often, this has been done to preserve efficiency and 
protect intellectual property. The black box problem in AI 
refers to the inability of the system to adequately explain how 
it concluded. The three primary tenets of responsible AI are 
transparency, accountability, and responsibility.

Two visual aids for assisting in the interpretation of 
trained neural nets were presented by Yosinski13, et al. One 
of the tools is designed to show the activations generated on 
every layer of a convolutional neural network (CNN) while 
it processes an image or video, such as a live webcam clip. 
They have made clear that observing real-time activations that 
alter in response to user input is a useful tool for developing 
insightful intuitions about convolutional neural networks. 

The second tool uses regularized optimization in image 
space to allow the visualization of features at each layer of 
a DNN. They included some novel regularisation techniques 
here because earlier iterations of this concept yielded less 
identifiable images. These techniques together result in visuals 
that are more interpretable and qualitatively clear.

The topic of comprehending classification judgments by 
pixel-wise breakdown of nonlinear classifiers was addressed 
extensively by Bach14, et al. They presented a system that 
enables the visualization of individual pixel contributions to 
predictions for multi-layered neural networks and kernel-based 
classifiers over Bag of Words data. These pixel contributions 
are given to a human expert, who may intuitively confirm the 
accuracy of the classification conclusion and direct additional 
investigation toward areas of possible interest. These 
contributions can be visualized as heatmaps.

Zeiler and Fergus15 have suggested massive convolutional 
neural network models that undergo conditioning for image 
classification. They started by demonstrating a fresh method for 
representing the activity inside the model. This demonstrates 
that the features are not at all random or illogical patterns. 
Instead, as the layers rise, they exhibit several naturally 
appealing characteristics like compositionality, growing 
invariance, and class discrimination. They noticed that there 
are ways to use this visualization to pinpoint model flaws and 
improve outcomes. SHAP (SHapley Additive exPlanations), 
a unified paradigm for interpreting predictions, was given 
by Lundberg and Lee16. For a given prediction, SHAP 
allocates an importance value to every feature. To provide 
visual explanations for the classification networks, Zhou17, 
et al. proposed a new framework called Interpretable Basis 
Decomposition. This framework can quantify the contribution 
of each piece of evidence to the final prediction and disentangle 
the evidence encoded in the activation feature vector.

The survey papers25-26,30 examine the evolution and 
importance of XAI research across a range of applications 
and disciplines. Throughout this research, a comprehensive 
collection of explainability summaries and classifications, 
as well as their applications and real-world use cases, has 
been created. The paper27 offers a thorough examination 
of several XAI solutions, stressing both their advantages 
and disadvantages. While XAI has several benefits, such as 
enhanced stakeholder acceptance and trust in AI systems, the 

Figure 1.  Pixel Ablation-CAM overview: Given an image as input, the left image shows how the image is handled in Ablation-
CAM, where each channel is evaluated by removing it to assert its importance. The right image illustrates the proposed 
method, where each pixel is treated as a 1D vector of channels and dropped out to determine its significance, offering a 
new perspective on CNN layer evaluation.

(a) Ablation-CAM approach (b) Pixel Ablation-CAM approach
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capacity to recognise and reduce potential biases in AI models, 
and enhanced debugging and model-improvement capabilities, 
it also has drawbacks. Explainable artificial intelligence 
(XAI) in deep learning-based medical image processing was 
covered in the survey paper28. Images were categorized based 
on imaging technique and anatomical location inside an XAI 
framework. The study covered XAI evaluation techniques, 
recent criticisms of XAI, and potential applications of XAI in 
medical image processing.

The significance of the notion of XAI was examined by 
Reddy and Pavan29. Details are provided on some techniques, 
including saliency mapping, feature visualisation, and model 
interpretation. LIME and SHAP approaches were given 
particular consideration. The suggested study expands upon 
notable developments in saliency method evaluation18, model 
interpretability18, and CNN visualization techniques6. Here, 
we go through the major achievements made in these fields as 
well as their shortcomings, which highlight the need for better 
techniques.  

2.1  Visualizing CNNs
Early efforts in CNN interpretation, such as those by 

Adebayo19, et al., utilised deconvolution approaches to trace 
neuron activations back to input pixels, providing insights 
into which image regions were responsible for specific 
neuron activations. Simonyan20, et al. introduced class-
specific saliency maps derived from the partial derivatives 
of class scores concerning input pixels, but these methods 
often lacked class discriminability, producing nearly identical 
visualizations across different classes. To increase the 
transparency and explainability of decisions made by a wide 
class of Convolutional Neural Network (CNN)-based models, 
Selvaraju9, et al. suggested a method for creating “visual 
explanations.” Their gradient-weighted Class Activation 
Mapping (Grad-CAM) creates a coarse localisation map that 
highlights the crucial areas in the image for idea prediction 
by using the gradients of each target concept flowing into the 
final convolutional layer. Grad-CAM’s visualisation9 provides 
fine-grained details of the projected class to illustrate the 
CNN-based model prediction, but it is not able to localize 
numerous instances of the same class. Additionally, the Grad-
CAM heatmap’s localisation is not particularly good when it 
comes to encompassing the class region in an image. To fix 
the limitations of the Grad-CAM process Grad-CAM++, a 
modified method, was presented by Chattopadhyay10, et al. 
Their approach tackles the drawbacks of Grad-CAM, such as 
inadequate object localisations and many instances of the same 
class in one image. A time-efficient method called Ablation-
CAM++ was presented by Salama31, et al.; it can produce 
smooth explanations that are equivalent to Ablation-CAM 
in a lot less time. These techniques do, however, still have 
drawbacks, such as gradient saturation, which might mask the 
actual significance of particular features and lead to incomplete 
object renderings. 

  
2.2 Non-Gradient Based Approaches

To address some of the limitations of gradient based 
methods, researchers have explored non-gradient based 

approaches like Ablation-CAM21. This method involves 
systematically removing channels in the final convolutional 
layer and observing the impact on the class activation score. 
While Ablation-CAM avoids issues related to gradient 
saturation, it often reduces the feature map’s dimensionality, 
potentially losing fine-grained spatial information necessary 
for precise localisation.

2.3  Evaluating Trust in Models
Establishing confidence in CNN models is essential, 

especially for applications that demand great reliability. 
Approaches like LIME7 and DeepLIFT8 offered frameworks 
for importance attribution and local approximation, 
respectively. Although these approaches were less scalable for 
big, sophisticated CNNs and frequently required significant 
processing resources, they attempted to provide interpretable 
reasons for model predictions. Morcos22, et al. and Zhou12 et al. 
ablation investigations emphasized the significance of particular 
neurons and feature maps in defining network outputs. These 
findings show that the ablation of important neurons can have 
a substantial impact on network performance, highlighting 
the necessity for accurate interpretability techniques that can 
pinpoint and elucidate the significance of individual neurons.

2.4  Limitations of Existing Methods
Despite these advancements, current visualization 

techniques face several challenges. Gradient-based methods 
like Grad-CAM and Grad-CAM++ are prone to gradient 
saturation, which can result in suboptimal localisation 
and incomplete object highlighting. Non-gradient-based 
approaches such as Ablation-CAM, while avoiding gradient-
related issues, may lack the necessary resolution and specificity 
due to the ablation of entire channels rather than more granular 
elements.

3.  PROPOSED PIXEL-WISE ABLATION-CAM 
STRATEGY
Traditional convolutional neural network (CNN) 

architectures operate on the principle of learning 2D feature 
filters that capture local patterns in the input data. The 
activation map at the final convolutional layer is typically 
viewed as a collection of these 2D feature maps, with each 
map representing the activation of a particular learned filter. 
An alternative perspective is to consider the activation map as 
a collection of 1D feature vectors, where each spatial location 
i, j in the activation map is represented by a 1D vector of 
length equal to the number of feature channels c. This 1D 
vector encodes the activations of the c feature channels at that 
particular spatial location. 

Inspired by this different perspective, we suggest an 
Ablation-CAM-inspired visualisation method that we apply 
to the 1D feature vectors in the activation map. Gradient 
information is used by conventional techniques like Grad-
CAM and Grad-CAM++ to produce visual explanations. 
Nevertheless, they frequently experience problems such 
as noisy gradients and gradient saturation, which produce 
less accurate and understandable findings23. Some of these 
constraints have been addressed by non-gradient-based 
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techniques like Ablation-CAM, which systematically ablate 
channels in the final convolutional layer and measure the effect 
on the activation score. This approach eliminates problems 
with gradients but also lowers the dimensionality of the feature 
maps, which may result in the loss of fine-grained spatial 
information.

By executing pixel-wise ablation rather than channel-
wise, the proposed Pixel Ablation-CAM expands on this 
idea and offers a more thorough and accurate analysis. By 
preserving spatial features down to the pixel level, this 
technique not only avoids the drawbacks of gradient-based 
techniques but also improves the resolution and accuracy of 
the visual explanations. This spatial ablation approach offers a 
complementary perspective to typical 2D filter-based activation 
map representations, primarily in its ability to identify the most 
significant spatial locations in the activation map. Compared to 
conventional methods like Grad-CAM or Ablation-CAM, this 
can provide more insights and a clearer grasp of the model’s 
decision-making process.

Instead of treating the n channels as distinct filters, 
the suggested methodology treats each pixel in the final 
convolutional layer as a one-dimensional vector in n directions 
(where n is the number of channels). Improved interpretability 
results from this method’s ability to evaluate pixel relevance at 
a finer and more accurate level.

3.1  Feature Map Interpretation
We interpret the feature map as an array of h×w one-

dimensional vectors:

{ }, ,
n

i j i j
FeatureMap V V= Î           (1)
Here, Vi,j represents the vector at the spatial location 

(i,j) in the feature map, where each vector has n components 
corresponding to each channel. This is analogous to any 
regular one-dimensional vector where n components present 
the n directions 

3.2 Ablation Process
For each pixel (i,j), we set its vector components to zero 

to ablate it. 
Vi,j =0              (2)
We then forward propagate this modified feature map 

through the remaining layers of the network to observe the 
change in the final class activation score Sc:

( ) ( )
c c c
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This change in score provides a measure of the importance 

of the pixel (i,j) in the network’s decision-making process. 

3.3  Importance Assignment
The importance score wij for each pixel at position (i,j) is 

calculated as:
c c

ij
ij c

Y Y
w

Y

-
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(4)

Here, Yc is the original class activation score for class c, 
and c

ij
Y  is the class activation score after setting the activation 

at spatial location (i,j) to zero.

This score c
ij

w  represents the fraction of drop in the 
activation score of class c when the activation at the spatial 
location (i,j) is removed.

3.4  Visualisation Process
The computed importance scores are then used to 

generate a heatmap that highlights the regions of the image 
most influential to the network’s prediction. The heatmap 
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This visualisation retains only the positive contributions, 
ensuring that the final map highlights areas with a significant 
positive influence on the class score. The visual impact 
consequences of different approaches are demonstrated in 
Section 4.

4.  EXPERIMENTAL RESULTS AND DISCUSSION
We assess Pixel Ablation-CAM using experiments that 

are both quantitative and qualitative. The purpose of these tests 
is to evaluate Pixel Ablation-CAM’s performance in relation 
to other methods, specifically Grad-CAM, Ablation-CAM, 
and Ablation-CAM++, and to determine how well it provides 
interpretable and accurate class-conditional localisation maps. 
For our trials, we employed pre-trained VGG-16 and Resnet-50 
models, which were trained using ImageNet24.

4.1  Visualisation Impact
The visual impact of the proposed strategy is presented in 

Fig. 2 and compared with other methods. Here, the inference 
is performed using Resnet-50, a pre-trained model on the 
ImageNet dataset. Original Images of targets are shown in 
Fig. 2(a), Fig. 2(f), Fig. 2(k), Fig. 2(p), and Fig. 2(u), in that 
order. Figures 2(b), Fig. 2(g), Fig. 2(l), Fig. 2(q), and Fig. 2(v) 
display the target heatmaps generated by Grad-CAM, in that 
order. Similarly, the heatmaps of the targets via Ablation-CAM 
are displayed in Fig. 2(c), Fig. 2(h), Fig. 2(m), Fig. 2(r), and 
Fig. 2(w), respectively. The heatmaps generated by Ablation-
CAM++31, an optimized version of Ablation-CAM that uses 
clustering and tree pruning techniques to reduce the number 
of forward passes and improve efficiency, are displayed in Fig. 
2(d), Fig. 2(i), Fig. 2(n), Fig. 2(s), and Fig. 2(x). Finally, the 
heatmaps of the targets by the proposed Pixel Ablation-CAM 
are displayed in the last column in Fig. 2(e), Fig. 2(j), Fig. 2(o), 
Fig. 2(t), and Fig. 2(y). The most significant discriminative 
zones are highlighted in red on this heatmap. The explanation 
map’s core concept is to create a new image that only includes 
the original image’s highlighted subregions through the use of 
visualization techniques. It has been observed that, compared 
to the other methods, the suggested method produces more 
precise and targeted maps, offering superior localisation and 
visualization of the discriminative regions.

We tested Pixel Ablation-CAM’s performance using 
the ResNet-50 model, which was previously trained on the 
ImageNet dataset. Among the crucial actions in our testing 
procedure are as follows.
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Original Image Grad-CAM Ablation-CAM Ablation-CAM++ Pixel Ablation CAM

(a) Original Image (b) Grad-CAM (c) Ablation-CAM (d) Ablation-CAM++ (e) Pixel Ablation CAM 

(f) Original Image (g) Grad-CAM (h) Ablation-CAM  (i) Ablation-CAM++ (j) Pixel Ablation-CAM

(k) Original Image (l) Grad-CAM (m) Ablation-CAM (n) Ablation-CAM++ (o) Pixel Ablation-CAM

(p) Original Image (q) Grad-CAM (r) Ablation-CAM (s) Ablation-CAM++ (t) Pixel Ablation-CAM

(u) Original Image (v) Grad-CAM (w) Ablation-CAM (x) Ablation-CAM++ (y) Pixel Ablation-CAM

Figure 2.  Visual impact: Fig. 2(a, f, k, p, u) Original image; Fig. 2(b, g, l, q, v) Grad-CAM visualization; Fig. 2(c, h, m, r, w) Ablation-
CAM visualization; Fig. 2(d, i, n, s, x) Ablation-CAM++ visualization; and Fig. 2(e, j, o, t, y) Proposed Pixel Ablation-CAM 
visualisation.

4.1.1 Selection of Thresholds for Pixel Ablation
• The threshold for pixel ablation was selected through 

empirical testing, with a focus on retaining the most 
relevant features while minimizing noise.

• Based on their activation levels, we concluded that the top 
20% of pixels from the localisation map should be kept. 
This decision guarantees that the most discriminative 
traits necessary for object recognition are highlighted in 
the explanation maps.

4.1.2 Evaluation Metrics
• Using a number of criteria, such as the average percentage 

rise in confidence and activation ratings as well as the 
average percentage decrease in confidence, we evaluated 
the visual impact of the heatmaps that were generated.

• Better localisation is shown by a lower confidence 
decrease, and improved explanatory power of the 
visualisation approach is indicated by a bigger percentage 
rise in scores.
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4.1.3 Key Experimental Observations
• Pixel Ablation-CAM consistently produces more precise 

and targeted maps compared to Grad-CAM, Ablation-
CAM and Ablation-CAM++.

• The explanation maps facilitate better understanding of the 
model’s decision-making process by clearly highlighting 
the critical regions within the images.

4.2  Comprehensive Assessment of Pixel Ablation-CAM
We take inspiration from the Grad-CAM assessment 

approaches and adapt and expand the methodology from 
the Ablation-CAM publication to empirically assess the 
performance of Pixel Ablation-CAM. Our goal is to produce 
class-conditional localisation maps and evaluate them with 
several quantitative criteria. We use Pixel Ablation-CAM to 
create a class-conditional localisation map (heatmap) for each 

image I, which we then compare to maps produced by Grad-
CAM and Ablation-CAM. The most significant discriminative 
areas of the image are highlighted in these heatmaps and are 
usually indicated in red. Tables 1 and 2 demonstrate that, on 
this criteria, Pixel Ablation-CAM outperforms Grad-CAM and 
Ablation-CAM due to a smaller output score loss by the pre-
trained VGG-16 and Resnet-50 models on ImageNet24.

Next, we create explanation maps by retaining the top 
20 % of pixels from the localisation map, setting these pixels 
to 1 and all other pixels to 0. This thresholding ensures a 
fair comparison between methods based on the number of 
highlighted pixels. The explanation map is generated by 
performing a point-wise multiplication of the original image I 
with the thresholded localisation map, retaining only the most 
relevant regions emphasized by the visualisation technique. We 
utilize the following metrics to assess the effectiveness of the 
explanation maps generated by Pixel Ablation-CAM: average 

Table 1. Results for Resnet-50 on ImageNet 2012 validation data24

Metric Grad- 
CAM

Ablation- 
CAM

Pixel Ablation- 
CAM

Average % drop in 
confidence (lower is better) 47.03 46.85 32.64

Average % in activation 
(lower is better) 33.87 33.58 24.82

Percent increase in 
confidence (higher is 
better)

12.70 14.26 23.36

Percent increase in 
activation (higher is better) 8.86 8.96 17.98

Figure 3.  Success of Pixel Ablation-CAM: (a) Original image. (b) Explanation map for Grad-CAM, (c) Explanation map of proposed 
Pixel Ablation-CAM, (d) Original image with multiple instances of subject of interest, (e) Explanation map for Grad-CAM 
and (f) Explanation map of proposed Pixel Ablation-CAM.

(d) Original Image (e) Explanation map for Grad-CAM (f) Explanation map for Pixel Ablation-CAM

(a) Original Image (b) Explanation map for Grad-CAM (c) Explanation map for Pixel Ablation-CAM

Table 2. Results for VGG-16 on ImageNet 2012 validation data24

Metric Grad- 
CAM

Ablation- 
CAM

Pixel Ablation- 
CAM

Average % drop in 
confidence (lower is better) 49.09 46.99 33.43

Average % in activation 
(lower is better) 35.77 33.78 25.76

Percent increase in 
confidence (higher is better) 15.92 17.10 26.43

Percent increase in activation 
(higher is better) 9.69 11.71 18.45
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reduction in confidence and activation score, a percentage 
increase in confidence and activation score, and a percentage 
of wins in confidence and activation score.

A high-quality explanation map should cover the most 
relevant parts of the object, resulting in a lower drop in the 
model’s output scores when the explanation map is used as 
input instead of the full image. This metric is calculated as: 

Average drop %=
1

1
max 0, 100

c cN
i i

c
i i

Y O

N Y=

æ ö- ÷ç ÷ç ´÷ç ÷ç ÷çè ø
å

            
(6)

  
where, c

i
Y  is the output score (confidence) for the original 

image and c
i

O  is the score for the explanation map. N is the 
total number of images. The max function ensures that negative 
values (where c

i
O  > c

i
Y ) are set to zero.

Another important metric is the percent increase in 
confidence and activation score, which assesses how often 
the explanation map increases the model’s output scores, 
especially when the context in the full image acts as noise. This 
is defined as: 

Rate of increase in scores=
1

1
1 100c c

i i

N
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iN <
=
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(7)

where, the function is an indicator that returns 1 in the case that 
the argument is true and 0 otherwise. 

Figure 3 shows the effectiveness of Pixel Ablation-
CAM for accurate target identification. The original image 
with the subject is displayed in Fig. 3(a). Figs. 3(b) and 3(c) 
depict the explanatory map for Grad-CAM and the suggested 
technique Pixel Ablation-CAM, respectively. Pixel Ablation-
CAM has been found to trace the subject of interest more 
accurately than Grad-CAM. Comparably, Fig. 3(d) is another 
set image that features multiple instances of the subject of 
interest. Figure 3(e) and Fig. 3(f) depict the explanatory map 
for Grad-CAM and the suggested technique Pixel Ablation-
CAM, respectively. It is evident that whereas the suggested 
Pixel Ablation-CAM successfully localizes all instances of the 
subject of interest, Grad-CAM only manages to localize one. It 
should be mentioned that the VGG-16 pre-trained model on the 
ImageNet dataset was utilized for inference. The experiments 
conclude that the suggested Pixel Ablation-CAM outperforms 
the Grad-CAM in terms of highlighting the object of interest.

In order to assess a channel’s significance, Ablation-CAM 
routinely eliminates (ablates) the entire channel from the final 
convolutional layer. Although this reveals broad contributions 
at the channel level, it oversimplifies the activity of the network 
and eliminates fine-grained pixel-level information that are 
essential for comprehending intricate visuals. In reality, this can 
result in less precise renderings, particularly when examining 
thick or detailed objects.

On the other hand, Pixel Ablation-CAM works at the level 
of individual pixels by methodically ablating every pixel in 
the final convolutional layer and tracking the resulting change 
in activation. This approach offers the following significant 
benefits:
• Granularity: It offers interpretability down to the pixel 

level, allowing for more granular and localized insights 
on model choices.

• Comprehensiveness: It recognizes many occurrences of 

an object or finer structures that channel-based approaches 
miss by capturing small changes within images.

• Precision: Pixel Ablation-CAM produces heatmaps that 
are crisper and more accurate, which is important for 
jobs like autonomous driving or medical imaging where 
precise item recognition is necessary.

By overcoming the dimensionality reduction inherent in 
channel-wise ablation, Pixel Ablation-CAM produces more 
comprehensive visual explanations, enhancing transparency 
and trust in CNN models.

4.3  Subjective Assessment of Pixel Ablation-CAM
In this section, we assess how trustworthy or human-

interpretable the suggested Pixel Ablation-CAM explanations 
are. Using ResNet-50 as the underlying model, we empirically 
investigated the reliability of the explanations produced by 
Pixel Ablation-CAM, Ablation-CAM, and Grad-CAM. Five 
classes with the greatest F1-scores (above 0.94), each from 
the ImageNet validation set24, were chosen for this assessment. 
This selection produced a total of 250 images (50 images per 
class), ensuring that the underlying model worked well on 
these categories.

For every image, explanation maps were produced using 
Grad-CAM, Pixel Ablation-CAM, and Ablation-CAM. Fifteen 
human volunteers were shown these maps and the associated 
original images; none of them had any prior information 
about deep learning or the topic matter. Each image’s class 
title was given to the subjects, who were then asked to choose 
the explanation map they thought best matched the object in 
that image. Additionally, if they thought the explanation maps 
that were generated were similar, they might have chosen 
“same.” The replies were standardized for each image so that 
the maximum possible score for each image was 1.00. After 
summing these normalized ratings for each image, a maximum 
score of 250 might be attained. Based on the results, Pixel 
Ablation-CAM scored 115.75, whereas Ablation-CAM scored 
78.50 and Grad-CAM scored 40.25. The remaining 15.50 were 
classified by the subjects as “same.”

This empirical investigation offers compelling evidence 
in favour of our hypothesis, which states that the suggested 
enhancement to Pixel Ablation-CAM facilitates human-
interpretable image localisation and hence increases 
confidence in the model’s judgment. Because Pixel Ablation-
CAM is based on the principles of both Ablation-CAM and 
Grad-CAM, it outperformed these techniques in about 49.35% 
of the cases. Nonetheless, Pixel Ablation-CAM was chosen in 
most cases, demonstrating its ability to produce more reliable 
explanations. 

Figure 4 shows a comparison between Grad-CAM and the 
proposed Pixel Ablation-CAM method for object localisation 
across three different images using explanation map thresholds 
of 10 %, 30 %, and 50 %, respectively. The original image, 
Grad-CAM explanation maps, and the Pixel Ablation-CAM 
explanation maps are displayed in the first, second, and third 
columns, respectively, and the green boxes represent ground 
truth annotations that show the actual region of importance in 
each image. It has been noted that, in comparison to Grad-CAM, 
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 (a) Original Image (b) Grad-CAM (c) Pixel Ablation-CAM

(d) Original Image (e) Grad-CAM   (f) Pixel Ablation-CAM

(g) Original Image (h) Grad-CAM (i) Pixel Ablation-CAM
Figure 4.  Object localisation capabilities of Grad-CAM and pixel ablation-CAM, with explanation map threshold of 10 %, 30 %, 

and 50 % successively. The green boxes represent ground truth annotations for the images.

Pixel Ablation-CAM offers more precise and comprehensible 
localisation of the regions of interest in the images. The Pixel 
Ablation-CAM maps show a better capacity to identify the true 
regions of relevance in distinct objects at varying thresholds, as 
they line more closely with the ground truth bounding boxes. 

4.4  Pixel-wise Ablation-CAM for Model Selection
We start by looking at the Pixel Ablation-CAM maps that 

were created for two different models, and then we compare 
the maps that were created for different classes using the same 
model. The purpose of this comparison is to investigate the 
theory put forward in the paper8 that better feature maps will 
be produced by a model with greater generalization capability. 
In particular, we contrasted the Pixel Ablation-CAM 
representations of VGG-16 with those of ResNet-50, a model 
that is recognised for its superior performance, with a top-1% 
test error of 1.69 as opposed to 2.68 for VGG-16.

The comparison of the suggested Pixel Ablation-CAM 
visualizations’ effects using the Resnet-50 and VGG-16 
models is displayed in Fig. 5(a) depicts the original image, 
and Fig. 5(b) and Fig. 5(c) show the matching heatmap created 
with Resnet-50 and VGG-16, respectively. In a similar vein, 
Fig. 5(d) displays the original image, while Fig. 5(e) and  
Fig. 5(f) display the equivalent heatmap created with VGG-16. 

For every sample, the subjects were asked to select which of 
the two explanation maps they believed to be most reliable. 
ResNet-50 generates a more trustworthy explanation than 
VGG-16 for the examples provided.

From the ImageNet dataset, we chose the top 1 % of 
classes with the highest F1 scores for our experiment. We were 
able to confirm our findings by making direct comparisons on 
the same collection of images after identifying five common 
classes among them. We only took into consideration images for 
which both models produced predictions that agreed with the 
ground truth to separate the effectiveness of the visualisations 
from the precision of the models.

Fifteen human participants were requested to score the 
dependability of the Pixel Ablation-CAM representations for 
ResNet-50 and VGG-16, without any prior understanding of 
deep learning or the subject matter. On a scale of +2/-2 one 
visualization was more/less dependable than the other, +1/-
1 one visualization was marginally more/less reliable, and 0 
indicated equally reliable, they judged which visualization best 
described the object in the image. To avoid bias, the visuals 
were shown at random, with no indication of which model 
generated which visualization.

According to the data, respondents gave ResNet-50 a 
score of 1.48, demonstrating its unquestionably higher level of 
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reliability than VGG-16. This result validates our hypothesis 
by showing that Pixel Ablation-CAM can distinguish the more 
accurate model based on how well its visuals are rendered. 
ResNet-50 often outperformed VGG-16 in highlighting 
pertinent areas of the object in the images. As a result, Pixel 
Ablation-CAM can support model selection and help users 
establish confidence in model results.

4.5  Computational Complexity
We mainly use the approach in the last convolutional 

layer, where the feature map dimensions are down sampled 
considerably, to assess the effect of pixel-wise ablation on 
computational resources. With n and m standing for height and 
width, respectively, a feature map of size n×m calls for n×m 
forward passes per picture. At this point, the computational 
effort scales linearly yet maintains efficiency due to the 
smaller size. The decision to concentrate on the final layer for 
an ideal balance is reinforced by testing pixel-wise ablation 
at earlier layers, which revealed that larger feature map sizes 
result in higher computational demands with little additional 
interpretative benefits.

5.  CONCLUSION 
To improve the interpretability of CNN-based models, 

we provide Pixel Ablation-CAM, a newly created pixel-wise 
ablation technique. In contrast to conventional channel-wise 
ablation techniques, the suggested method offers a more precise 
and detailed evaluation of pixel relevance by treating every 
pixel in the final convolutional layer as a one-dimensional 
vector over several channels. This change makes it possible 
to visualize data more finely and precisely, which successfully 

addresses the drawbacks of earlier techniques like Grad-CAM, 
Grad-CAM++, and Ablation-CAM.

Our comprehensive tests show that Pixel Ablation-CAM 
outperforms these techniques in terms of interpretability 
and localisation, providing more precise and comprehensive 
visual explanations. Through the resolution of problems 
with gradient saturation and spatial information loss, Pixel 
Ablation-CAM offers a strong and dependable instrument for 
comprehending and relying upon CNN judgments. Subsequent 
research endeavours will centre around refining the suggested 
methodology’s computational efficacy and investigating its 
possible integration in increasingly intricate and varied CNN 
structures and assignments.
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