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ABSTRACT

Autonomous ships will be an inevitable part of the maritime transportation industry. The maritime industry 
is working to ensure a safe and secure transition towards autonomous and effective vessel navigation. This paper 
presents a brief review of the Automatic Identification System (AIS) based Artificial Intelligence studies done in 
the domain of vessel trajectory prediction. Vessel trajectory prediction has significance in ensuring maritime safety, 
collision avoidance, and efficient trajectory selection. This paper thoroughly reviews various trajectory prediction 
methodologies used for training the models, the performance of models, and an in-depth discussion about the 
comparison of models using evaluation metrics. The study includes categorical analytics for the prediction techniques. 
The findings of this paper summarize various vessel trajectory prediction methodologies. 
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NOMENCLATURE
AIS : Automatic Identification System
ANN : Artificial Neural Network
Bi-LSTM : Bidirectional Long Short-Term Memory
BPNN : Back Propagation Neural Network
CNN : Convolutional Neural Network
COG : Course Over Ground
DCNN : Deep Convolutional Neural Network
DNN : Deep Neural Network
ELM  : Extreme Learning Machine
EM : Expectation-Maximization
FCNN : Fully Connected Neural Network
FDE : Final Displacement Error
GA-BP : Genetic Algorithm - Back Propagation 
GAN : Generative Adversarial Network
GAT : Graph Attention Network
GMM : Gaussian Mixture Model
GRU : Gated Recurrent Unit
HMM : Hidden Markov Model
KNN : K-Nearest Neighbours
LM-ANN : Levenberg-Marquardt Artificial Neural Network
LSTM : Long Short-Term Memory
MAE : Mean Absolute Error
MDPI : Multidisciplinary Digital Publishing Institute
MSE : Mean Square Error
MLNN : Multilayer Neural Network
MMSI : Maritime Mobile Service Identity
NPC : Non-Parametric clustering
PF : Particle-Filter

PSO : Particle Swarm Optimization
RGRU : Residual GRU
RMSE : Root Mean Square Error
SOG : Speed over Ground
SPNS : Single Point Neighbour Search
SSL : Semi-Supervised Learning
SVM : Support Vector Machine
T-GCN : Temporal Graph Convolutional Network
T-LSTM : Time Aware LSTM
TCN : Temporal Convolutional Network
VTC : Vessel Trajectory Classification
UTC : Coordinated Universal Time

1. INTRODUCTION
The Majority of global trade is supported by the maritime 

transportation system. Compromised vessel safety can result 
in significant loss of property, goods, and human lives and 
can further damage the marine environment. Given this, the 
safety and security of vessels are becoming increasingly 
important. Thus, an efficient vessel trajectory prediction model 
that ensures safe and secure navigation is required to achieve 
autonomy.

Vessel movement prediction provides useful information 
for other applications such as traffic management1, port 
operations2, planning of routes3, detection of anomalies in 
maritime traffic4, etc.

A transponder system called AIS is used to transmit 
data between ship to ship as well as between AIS-equipped 
shore stations and ships. AIS improves marine environment 
protection, vessel navigation, safety, and life at sea. The goals 
of AIS are to facilitate information sharing, aid in tracking 
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targets, aid in vessel identification, and increase situation 
awareness by supplying extra data.

The AIS transponder sends data to shore stations and 
other ships within its range. There are three different categories 
for the AIS data that ships transmit. Information that is either 
fixed or static, dynamic, or voyage-related. Examples of fixed 
or static data are information like the MMSI number, call sign, 
name of ship, IMO number, ship type, and antenna placement. 
During installation, this data is input into the AIS. The term 
“dynamic information” refers to the following: direction, 
geographical coordinates, navigational status, rate of Turn, 
COG, accuracy indication, SOG, and integrity state of the vessel 
and timestamp (UTC). This data is automatically updated by 
the onboard fitted AIS sensor, in addition to navigational status 
information. Predicting ship trajectories involves examining 
past AIS data, combined with environmental and other relevant 
factors, to anticipate future ship movements. This field is 
vital for enhancing both the efficiency and safety of maritime 
transport. Various methods exist for trajectory prediction, 
with statistical models being particularly prominent. These 
techniques leverage historical data to develop probability 
or regression models for forecasting future paths of ships. 
Prominent statistical models used in this context include linear 
regression, the Kalman filter, and ARIMA (autoregressive 
integrated moving average), which help in analyzing metrics 
such as the mean, variance, and distribution of trajectory data. 

The AIS is one of the main components of contemporary 
marine safety and navigation. The use of AIS has ushered in a 
new era of maritime efficiency and safety, which is noteworthy 
in several crucial areas. However, relying solely on AIS data 
for vessel trajectory prediction may not fully capture the 
complexities of maritime navigation. While AIS data provides 
valuable information about a vessel’s position, speed, and 
course, it often lacks detailed insights into operational factors 
that influence trajectory, such as rudder movements or engine 
performance. Integrating Voyage Data Recorder (VDR) 
information could significantly enhance trajectory prediction 
accuracy. VDRs record comprehensive data, including detailed 
navigational inputs, engine parameters, and crew actions, which 
offer a richer context for understanding a vessel’s behavior.  

By incorporating VDR data, predictive models could account for 
these additional variables, leading to more precise and reliable 
forecasts of vessel movements and a better understanding of 
the factors affecting trajectory. Therefore, emphasizing the role 
of VDR data in trajectory prediction would provide a more 
complete and nuanced approach to maritime navigation.

2. LITERATURE REVIEW
The examined research publications were produced to 

predict the trajectory of vessels. As you can see in Fig.  1. 
Numerous articles have been published since 2010, but since 
2018 a sharp rise can be seen in the count of articles published 
for vessel trajectory prediction using various statistical, 
machine learning, deep learning, and mixed method model 
approaches. 

Figure 1.  Counts of publications between 2010 and 2024. A 
notable upsurge is observed approximately around 
2023.

Figure 2.  Improved domains in the maritime shipping industry 
by using various predictions.

However, the prediction of vessel trajectory impacts 
several other domains such as resource utilization, improvement 
in navigation, maritime safety operations, collision prediction, 
route planning, and achieving autonomy of vessel navigation 
as depicted in Fig.  2.

The studies conducted on the prediction of vessel 
trajectory from 2019 to 2024 were included in this review 
analysis. Figure 3 shows that the review included around 
408 research articles published in journals such as Research 
Gate, IEEE Explore, Science Direct, Google Scholar, Defence 
Science Journal, Sensors, and Journal of Ocean Engineering & 
Science. From the journal above’s articles, a total of 251 articles 
were shortlisted based on keywords such as AIS, Trajectory, 
Vessel Trajectory, Ship Trajectory, and Machine Learning. 
Furthermore, out of 108 high-quality research articles filtered 
were high-quality published research papers, and 70 articles 
were selected for review.

A notable evolution in the methodologies employed for 
vessel trajectory prediction is shown in Fig.  4. Specifically, 
deep learning models have emerged as the predominant 
approach since 2019. In contrast, the utilization of machine 
learning models peaked between 2017 and 2020, subsequently 
experiencing a decline. The adoption of mixed method models 
is observed to have commenced in 2017, while the prevalence 
of statistical methods has diminished since 2019.
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3. PREDICTION MODEL(S)
Table 1, which presents a breakdown of research articles 

by year and adopted model, reveals several significant trends 
in vessel trajectory prediction methodologies. Statistical 

models, while initially prevalent, have seen a decline in usage 
since 2019. Machine learning models experienced a surge in 
popularity from 2019 to 2020 but have since plateaued. Notably, 
deep learning models have emerged as the dominant approach, 
with a marked increase in adoption since 2019. The use of 
hybrid models, while less frequent. These trends underscore 
the evolving landscape of vessel trajectory prediction research, 
with a clear shift towards more sophisticated, data-driven 
approaches. 

3.1 STATISTICAL METHOD MODELS
Statistical methods have been a cornerstone in vessel 

trajectory prediction, offering a robust framework to model 
the inherent uncertainty and randomness of vessel movements. 
These methods, grounded in mathematical and statistical 
principles, analyse historical data to uncover patterns and 
extrapolate future trajectories based on probabilistic models.

Figure 3. Summary of the filtering standards for the examined articles based on vessel trajectories.

Figure 4. Vessel trajectory prediction models publication trend.

Table 1.  Model-wise and year-wise count of vessel trajectory 
prediction research articles reviewed

Year Statistical 
models

Machine 
learning 
models

Deep 
learning 
models

Mixed 
models

2019 4 4 4 -
2020 2 5 6 1
2021 - 1 4 2
2022 - 1 1 1
2023 - - 15 3
2024 - - 10 -
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3.1.1 Methods Using Neighbourhood
To find the identical trajectories from AIS data and combine 

them to create a probability density field, Alizadeh2,5, et al. 
explored point-level and trajectory-level similarity measures, 
using criteria like spatial, speed, and course similarity, as well 
as Dynamic Time Warping, to predict vessel locations.

3.1.2 Methods Using Stochastic Process
Uney3, et al. employed the OU process-based hierarchical 

generative model to capture non-manoeuvring motion 
characteristics and forecast vessel trajectories, demonstrating 
its suitability for long-term prediction.

3.1.3 Markov Chain-Based Methods
Liu6, et al. proposed a model for predicting vessel 

trajectory having long duration, incorporating position, heading 
course, and speed information which is further used in building 
a state transition matrix within a structure that is grid-based. 
Zhang7, et al. applied wavelet transforms to convert trajectory 
sequences into input vectors for an HMM, showcasing its 
effectiveness in predicting trajectories of large vessels.

3.1.4 Filtering-Based Methods
Lian8, et al. demonstrated predicting AIS trajectories 

using PF, aiming to address the issue of latency in information 
which further causes blind spots.

3.1.5 Probabilistic Model Checking
Gao9, et al. applied probabilistic model-based checking 

to address the planning of paths in intelligent transportation 
systems, leveraging movable trajectories and data from 
statistical models for informed decision-making. 

These statistical methods collectively demonstrate a 
wide array of approaches to tackle the complexities of vessel 
trajectory prediction. However, challenges such as data quality, 
model assumptions, and computational efficiency need to be 
addressed to enhance their effectiveness and reliability in real-
world maritime applications.

3.2 MACHINE LEARNING MODELS
In the field of vessel trajectory prediction, machine 

learning (ML) techniques have become a potent tool thanks 
to their data-driven methodologies that can recognize intricate 
patterns in past data and extrapolate them to new and unknown 
scenarios.

3.2.1 Clustering
Clustering techniques group similar trajectories or data 

points, aiding in identifying patterns and reducing complexity.
Chen10, et al. explored NPC clustering as an unsupervised 

method for vessel movement trajectory prediction, showcasing 
its ability to group similar trajectories based on proximity to 
prototype points. Murray and Perera11 used Gaussian Mixture 
& Principal Component Analysis model clustering for 
trajectory analysis in their multiple predictions of trajectories 
for avoiding collision. By finding trajectory patterns in AIS 
data, Li12, et al. used DBSCAN clustering to model long-term 

vessel movements, demonstrating its effectiveness in handling 
huge and noisy datasets.

3.2.2 Support Vector Machines
SVMs excel at classification and regression tasks, making 

them well-suited for vessel trajectory prediction.
Liu13, et al. integrated SVM with ACDE to optimize 

hyperparameters and enhance prediction accuracy in their 
AIS-based trajectory prediction model. Liu14, et al. utilized 
LS-SVM for online multiple-output trajectory prediction, 
highlighting the method’s suitability for real-time processing 
of AIS data streams. Further Liu15, et al. combined LS-SVM 
with PSO for parameter optimization, demonstrating the 
potential for improving prediction accuracy through intelligent 
parameter tuning.

3.2.3 Artificial Neural Networks and Variants
ANNs offer flexibility and adaptability for modelling 

complex relationships in vessel trajectory data.
Zhou16, et al. and Zhang17, et al. employed BPNN for 

ship trajectory prediction, highlighting its capability to learn 
nonlinear relationships between input features and output 
trajectories. Volkova18, et al. used LM-ANN for predicting ship 
trajectories based on AIS data, leveraging the LM algorithm 
for efficient training and optimization.

These machine-learning methods have contributed 
significantly to the advancement of vessel trajectory prediction. 

3.3 Deep Learning Models
Deep learning, a machine learning branch, has emerged 

as a dominant force in vessel trajectory prediction due to its 
capacity to discern intricate patterns and representations from 
massive datasets. The trends in using Deep learning can be 
seen in recent years as compared to other categories of models. 

3.3.1 Recurrent Neural Networks (RNNs)
As long-term dependencies in sequential data can be 

captured by LSTMs, many studies have successfully used 
them for vessel trajectory prediction19-22. Their capacity 
to retain information over extended periods makes them 
particularly well-suited for modelling the temporal aspects of 
vessel movements. Recent research has seen the development 
of LSTM variants such as Difference LSTM by Tian and Suo23, 
which focuses on changes in consecutive positions to improve 
prediction accuracy.

Tang20, et al. also highlighted the effectiveness of LSTM in 
modelling vessel trajectories using AIS data, where the model 
was stacked with two layers and used a 10-minute observation 
window as input. GRUs, a streamlined variant of LSTMs, have 
also proven effective in trajectory prediction24-25. Their reduced 
number of parameters often leads to faster training times 
without compromising performance. Hybrid models integrating 
LSTMs, GRUs, and Transformers have also been explored to 
create hierarchical approaches, such as the G-Trans model 
proposed by Xue26, et al., for predicting vessel trajectories. 
An optimized Seq-to-Seq model with spatiotemporal features 
employing GRU blocks was presented by You24, et al. and 
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showed noticeable improvement in predicting short-term 
trajectory tasks compared to GRU architectures and vanilla 
LSTM. Bi-LSTMs have been employed in several studies 
for improved prediction accuracy27-30. Hu and Shi28 explored 
Bi-LSTM for ship trajectory prediction and demonstrated its 
potential in this domain. Zhou30, et al. introduced an Optuna-
BiLSTM model, incorporating hyperparameter optimization 
to enhance prediction performance in maritime applications. 
Ding31, et al. introduced variational LSTMs, incorporating 
variational inference to model uncertainty in vessel trajectory 
prediction. Attention22,27,32-35 mechanisms have been particularly 
effective in models such as the ACoAtt-LSTM proposed by 
Li22, et al. for enhancing maritime navigational safety. Wang 
and Fu33 also investigated the use of attention mechanisms in 
Bi-LSTM for ship trajectory prediction.

3.3.2 Encoder-Decoder Architectures
Forti36, et al. further validated the superiority of LSTM 

encoder-decoder models over traditional methods like 
the Ornstein-Uhlenbeck process. The adaptability of this 
architecture was highlighted in a recent study by Düz and van 
Iperen37 that investigated encoder-decoder-based deep learning 
models for ship trajectory prediction. A generative transformer 
model for AIS trajectory prediction called TrAISformer was 
proposed by Nguyen and Fablet38, and an enhanced model 
based on TrAISformer was introduced by Cheng39, et al.  
Furthermore, TATBformer, a divide-and-conquer strategy 
employing Transformers for ship trajectory prediction, was 
created by Xia40, et al.

3.3.3 Convolutional Neural Networks Architectures
Liu41, et al. proposed a model integrating Bi-LSTM 

with attention mechanisms and a CNN for vessel trajectory 
prediction, and Liu35, et al. introduced a CNN-RGRU-
Attention fusion model for ship trajectory prediction. Wu42, 
et al. proposed a ConvLSTM-based sequence-to-sequence 
model.

3.3.4 Other Deep Learning Models
Chen43, et al. utilized DNNs for ship trajectory 

reconstruction to model complex relationships in high-
dimensional data. CNNs’ potential in this field was further 
highlighted by Yuan44, et al. who presented a DCNN-based 
sequence-to-sequence model. Zhang45, et al. combined GANs 
with T-LSTM to research ship trajectory prediction. Duan46, 
et al. proposed an SSL approach for VTC, demonstrating the 
potential of utilizing both labelled and unlabelled AIS data.

Cui47, et al. employed CNN to capture spatial features 
effectively. Zhao48, et al. combined Temporal Graph 
Convolutional Networks with Gated Recurrent Units for 
temporal and spatial data fusion, while Li49, et al. utilized 
LSTM networks with Encoder-Decoder structures to handle 
sequential data. Additionally, Zhao50, et al. and Zhang51, et 
al. applied Temporal Convolutional Networks for sequence 
modelling, and Wu52, et al. integrated CNN with GRU for 
enhanced feature extraction. Dijt and Mettes53 combined LSTM 
ED with CNN, and Murray and Perera54 used autoencoders for 
dimensionality reduction and feature learning. Wang55, et al. 

and Zhao56, et al. both incorporated Graph Attention Networks 
with LSTM, demonstrating the effectiveness of graph-based 
models in capturing complex relationships. 

Gao57, et al. introduced SocialVAE, leveraging Variational 
Autoencoders for learning social interactions, while Hao58, et 
al. used Bi-directional GRU with GAT. Zhang59, et al. proposed 
a Gated Spatio-Temporal Graph Aggregation Network, and 
Wang60, et al. corrected LSTM predictions using a Genetic 
Algorithm-Backpropagation approach. Liu61, et al. combined 
MVS-TGP with VAE for multimodal data integration, and 
Li62, et al. applied Bi-directional LSTM for robust sequence 
modelling. 

3.4 Mixed Method Models
Various mixed-method models were reviewed, which 

have been used for the prediction of vessel trajectory. A model 
is called a mixed method model when there is a combination of 
statistical and machine learning method models to create one 
model for performing prediction of vessel trajectory.

A mixed framework63 was introduced to predict vessel 
trajectory, which consisted of three phases. Grouping of 
similar trajectories is done by using GMM clustering. Then 
kNN is used in the classification of selected trajectories to form 
a cluster. Then a cluster is fed to a dual linear autoencoder.

Gao64, et al. demonstrated a mixed method model called 
a multi-step prediction model which uses statistical and deep 
learning models. A deep learning model is used for predicting 
support points. Assuming that two trajectories satisfy many 
conditions, historical data is filtered for destination prediction. 
Using the cubic spline-interpolation technique, the trajectory is 
simulated from the support point and destination.

A mixed model using unsupervised clustering and deep 
learning method was devised by Suo65, et al., where the 
vessel trajectory zone is predicted by applying the DBSCAN 
algorithm to the AIS data and then the GRU model is trained. 
The author66 proposed a mixed-method model framework for 
predicting vessel trajectory in the Singapore Strait. Initially, 
COG and SOG are predicted by using a Neural Network with 
multiple layers. Then the vessel’s geographical coordinates 
are obtained by using motion modelling. To correct the COG 
sequence PF method is applied. In study67, COG and SOG are 
computed by using Expectation Maximization clustering and 
trajectory matching methods. Then, the future trajectory is 
predicted by using the motion model.

The authors4 introduced a mixed-method model framework 
by applying bootstrapping in the encoded-decoded form of the 
LSTM network. Wherein, geographical position distributions 
were obtained by constructing a wild bootstrapping technique 
from LSTM encoder-decoder.

Murray68, et al.’s mixed-method model. The clustering 
phase, the classification phase, and the local behaviour 
phase are the three stages of implementation. Initially, 
latent representations of each trajectory are extracted using 
a variational encoder-decoder structure. The HDBSCAN 
clustering method is applied to these latent representations. 

Next, the classification module’s training Bi-GRU model 
assigns several clusters to the new trajectory. Bi-GRU-based 
local models are trained differently for each cluster in the local 
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behaviour module. Cluster-wise predictions are then performed 
from clusters from the classification module.

4. DISCUSSION & FUTURE SCOPE
In the review of vessel trajectory prediction studies, the 

performance of prediction models has been evaluated through 
both qualitative and quantitative methods. The qualitative 
analysis involved subjective assessments, often using 
visualizations or case studies, while the majority of studies 
employed quantitative techniques.

Quantitative evaluations primarily used regression 
metrics, with many studies measuring error through 
geographical distance formulas such as Haversine distance. 
Other methods like Vincenty and Equirectangular distances 
were also explored. Non-geographical metrics, including Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), 
and Mean Square Error (MSE), were applied in studies that 
used Cartesian or Spherical Coordinate Systems.

4.1  Performance Analysis
Table 2. below summarizes key advancements in vessel 

trajectory prediction models, highlighting the strengths of 
various approaches and methodologies. Notably, Deep Learning 
Models, such as Long Short-Term Memory (LSTM) networks, 
frequently outperform traditional methods. Context-specific 
models and enhanced Recurrent Neural Network (RNN) 
architectures contribute to improved prediction accuracy by 
incorporating contextual information and advanced structural 
improvements. Hyperparameter optimization techniques, 
data pre-processing methods, and state-of-the-art models like 
Transformers and Generative Adversarial Networks (GANs) 
also play significant roles in enhancing prediction capabilities. 
Additionally, the impact of training data on model accuracy, the 
benefits of ensemble learning, and the superiority of statistical 
methods for curved trajectories are critical factors in advancing 
prediction performance.

Table 2. Summary of advances in vessel trajectory prediction models

Aspect Description

Deep learning models Long Short-Term Memory (LSTM) networks often outperform traditional machine learning methods like 
Backpropagation Neural Networks (BPNN) and Kalman Filters (KF).

Context-specific models Local models that account for specific contexts, such as geographical regions or ship types, generally 
provide better performance than global models trained on broad datasets.

Enhanced RNN architectures Improvements in Recurrent Neural Network (RNN) architectures, such as attention mechanisms, 
bidirectional structures, and variational schemes, enhance prediction capabilities.

Hyperparameter optimization Techniques like Adaptive Coordinate Descent Optimization (ACDE), Differential Evolution (DE), and 
Genetic Algorithms (GA) improve model accuracy, with ACDE showing the best performance.

Data pre-processing Techniques such as signal de-noising significantly improve prediction accuracy by enhancing data quality.

State-of-the-art models Advanced models like Transformers and Generative Adversarial Networks (GANs) have shown substantial 
improvements in prediction accuracy compared to earlier models.

Impact of training data The accuracy of Markov chain models improves with more training data, significantly reducing prediction 
errors as the dataset size increases.

Ensemble learning Combining multiple models through ensemble methods can enhance forecasting accuracy, with models like 
ensemble Extreme Learning Machines (ELM) reducing prediction errors more effectively.

Statistical methods for curved 
trajectories

Mixed Trajectory Estimation Methods (MTEM) outperform traditional methods like State Positioning 
Navigation System (SPNS) and Conventional Velocity Models (CVM), achieving better accuracy in curved 
trajectory predictions.

According to authors12, LSTM outperformed BPNN and 
Kalman-Filter. When it comes to curved trajectory prediction 
MTEM and SPNS perform better than the Constant Velocity 
Model.

Learning of models using historical vessel trajectory dataset 
seems to have improved by using variation reparameterization 
technique31, by using attention mechanism27,32-33 in RNN and 
demonstrated using bidirectional structure25.

Liu13, et al. proposed that vessel trajectory prediction 
precision can be improved by using a certain data pre-processing 
technique on the dataset for de-noising signals. The Ensemble 
Extreme Learning Model devised can reduce errors while 
predicting vessel trajectory by more than one-half compared 
to the Extreme Learning Model as evaluated by authors1. The 
authors38,69 have stated that models like Generative Adversarial 
Networks and transformers have been capable of achieving a 
significant reduction of prediction errors.

Both Mehri70, et al. and Murray46, et al. have demonstrated 
that models having parameters like geographical zone, the 
behaviour of vessel, type of vessel, etc performed better than 
models that were trained on a dataset having all data. Liu6, 
et al. concluded that when the training dataset increases, the 
errors encountered while predicting trajectory reduce when 
using the Markov-chain model.

These insights reflect the advancements and ongoing 
improvements in vessel trajectory prediction, emphasizing 
the importance of adopting advanced techniques and context-
specific models for better accuracy and reliability in maritime 
navigation.

4.2  Research GAP(s)
The future of maritime trajectory prediction holds 

significant potential for advancement through the integration of 
emerging techniques, multi-modal data sources, and enhanced 
privacy protection. Deep learning approaches, such as Temporal 
Convolutional Network (TCN), Reinforcement Learning (RL), 
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and Graph Neural Network (GNN), offer promising avenues 
for improving prediction accuracy. TCN, with its dilated 
causal convolutions, excels in capturing spatio-temporal 
dependencies, while RL and GNN enhance decision-making 
and feature extraction capabilities. Additionally, incorporating 
multi-modal data sources like satellite images, radar, LiDAR, 
and CCTV, beyond the traditional reliance on AIS data, could 
further refine prediction outcomes. As trajectory predictions 
become more precise, the risk of privacy leakage, particularly 
in long-term predictions, grows. Addressing this challenge, 
future research should focus on integrating privacy protection 
mechanisms, such as Federated Learning (FL), to safeguard 
sensitive information while advancing maritime trajectory 
prediction capabilities.

Despite the extensive review of current literature and 
methods for ship trajectory prediction, none of the examined 
approaches have accounted for voyage-related data such as 
rudder movement. This oversight highlights a significant 
gap in the existing research, as incorporating such data could 
greatly enhance the precision of trajectory forecasts. Future 
work should focus on integrating rudder movement and other 
voyage-related factors into predictive models to capture more 
nuanced navigational adjustments and improve the accuracy 
of trajectory predictions. Addressing this gap could offer new 
insights and advancements in maritime navigation, leading 
to more robust and reliable prediction systems. In addition 
to addressing the gaps related to voyage-related data, future 
research could benefit from exploring advanced predictive 
modeling techniques to enhance the accuracy of vessel 
speed predictions. Specifically, integrating Multiple Linear 
Regression (MLR) and Random Forest (RF) models presents 
a promising approach. MLR can offer insights into the linear 
relationships between vessel speed and influencing factors, 
while RF can capture complex, non-linear interactions and 
handle diverse datasets effectively. Combining these methods 
could provide a more comprehensive understanding of vessel 
speed dynamics, improving the overall prediction accuracy 
and robustness of maritime trajectory forecasting systems.

5. CONCLUSION
The maritime transport industry places great importance 

on the prediction of vessel trajectory. Achieving the desired 
prediction model which maintains reliability and accuracy 
in predicting trajectory is challenging. This paper brings 
advancements in the domain of vessel trajectory prediction with 
a comprehensive review of prediction methodologies, their 
strength, limitations, and challenges in achieving complete 
autonomy. Reviewed research papers demonstrate the growing 
usage of statistical and machine learning methods to achieve 
autonomy for vessel trajectory prediction using historical AIS 
Datasets. Promising outcomes have been achieved by using 
machine learning methods for predicting trajectories.

It has been noted prediction with accuracy for longer 
ranges has not been explored so far. Additional investigation is 
necessary to incorporate data from various sources, including 
radar and satellite data, and to fuse data from other data sources. 
The future scope also involves enhancing the capability of 
algorithms to accommodate the trajectory of a longer time/
range.  
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