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ABSTRACT

This study presents a novel predictive factor analysis of air-to-air engagement outcomes using a decade of 
air combat manoeuvring data (2009-2019) from the Air Combat Manoeuvring Instrumentation (ACMI) system of 
the Republic of Korea Air Force (ROKAF). The objective was to construct and evaluate an air-to-air combat hit 
prediction model using the ACMI system data to identify the critical factors influencing engagement outcomes. This 
methodology encompasses data preprocessing, feature engineering, binary classification model development, and 
model interpretation. This study utilises 17 features, including the attitude and speed of both aircraft, along with five 
additional features derived from the domain knowledge of the relative positions of the two aircraft. Four machine-
learning algorithms were employed: logistic regression, random forest, XGBoost, and CatBoost. The best-performing 
model achieved an accuracy of 83.0 %, noticeably outperforming the baseline at 76.2 %. The analysis revealed that 
positional information is more crucial than attitude information in predicting engagement outcomes, with the spatial 
separation between aircraft emerging as the most influential factor. This study showcasings a standard procedure for 
utilising ACMI system data and demonstrating the effectiveness of machine learning in analysing air combat data. 

Keywords: Air combat manoeuvring instrument (ACMI); Air-to-air engagement; Machine learning; Air-to-air 
combat hit-prediction model

1. INTRODUCTION
Air superiority is essential in modern warfare1-3. Air 

superiority refers to controlling the battlefield sky against 
an enemy. Once air superiority is achieved, friendly forces, 
including ground forces, can manoeuvre without prohibitive 
interference from enemy forces4,5. Air combat is a tactical 
method used to achieve air superiority, and various studies have 
been conducted to improve its efficiency6-9. In this study, we 
focus on the critical factors of air combat against an enemy’s 
aerial vehicle regarding Air Combat Manoeuvres (ACM).

Regarding ACM, it is essential to develop effective 
combat tactics and train fighter pilots to improve the win rate 
in air-to-air combat. However, due to costs, the use of fighters 
and weapons for developing or evaluating tactics and training 
or testing pilot skills is limited10. Thus, air-to-air combat 
training is mostly conducted in virtual environments, and the 
development of precise ACM performance measurements is 
becoming increasingly important to ensure the reliability of air 
combat tactics and pilot skills in real-world scenarios. 

Existing research approaches to ACM performance 
measurements mainly focus on combining analytical and 
empirical methodologies to develop appropriate measurement 
structures and algorithms11. Candidate measurements such as 

positional advantage and weapon events have been developed 
based on the state information of both aircraft and weapons, 
and various studies have utilised these candidates12-17. Waag18, 
et al. proposed a composite measure to predict engagement 
outcomes during ACM. Krusmark12, et al. assessed the 
effectiveness of the traditional Grade sheet used to measure 
air-combat performance.  ARAR19, et al. proposed a flexible 
rule-based framework for a pilot performance analysis.

However, while the utility and effectiveness of both 
simulation systems and ACM performance measurements 
have been demonstrated regarding training fighter pilots and 
developing air combat tactics, more debate still needs to be had 
on their reliability and validity in real-world environments20-21. 
Balcerzak22, et al. insisted that there was a shortage of research 
demonstrating the validity of simulation systems, citing the 
case of civilian aircraft, and that it was more apparent whether 
the skills learned in simulations were appropriately applied 
to actual flights. This debate has significant implications for 
the military domain. Therefore, providing feedback based 
on actual manoeuvring track data analysis is essential for 
calibrating measurements developed in a virtual environment. 
However, a statistical approach to ACM based on actual data 
has rarely been studied in this domain because acquiring the 
actual manoeuvring data of an aircraft is limited because of 
cost and safety concerns.
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Air Combat Manoeuvring Instrumentation (ACMI) 
systems may be an alternative to resolve these limitations. 
An ACMI system records in-flight data, such as positional 
information, aircraft state, and weapon events, using pod 
devices attached to the aircraft, and the recorded data are 
used for debriefing. The system consists of aircraft pods and a 
ground system. ACM data are transmitted from the pod to the 
ground system for recording, displaying, and debriefing23. In 
addition, these data have been consistently accumulated and 
managed for over a decade. Thus, given the various attributes 
and quantities of ACMI data, they can be used in data-driven 
research24-25.

Motivated by the need for more realistic and data-driven 
analyses of air combat engagements, this study presents a 
comprehensive study based on extensive real-world ACMI 
data from training engagements. Our objectives are threefold: 
First, to demonstrate a standard procedure for utilising ACMI 
system data, encompassing feature extraction, selection, and 
effective modelling of a hit-prediction problem. Second, an air-
to-air engagement hit prediction model was constructed using 
machine learning algorithms, which allowed us to determine 
the most dominant components of the ACM in deciding 
engagement outcomes. Third, interpretable machine-learning 
techniques were applied to rank the key factors for successful 
engagement. We analyze feature importance using correlation 
coefficients, feature importance scores, and SHAP (SHapley 
Additive exPlanations) values26. This approach also allowed 
us to validate conventional methods, differentiating our work 
from previous studies that relied primarily on simulated or 
limited flight test data.

The ACMI data are provided by the Republic of Korea 
Air Force (ROKAF) for research purposes only and are not 
publicly accessible. 

The remainder of this paper is organized as follows. 
Section 2 describes the problem definition and data. Sections 
3 and 4 demonstrate the results of feature engineering and the 
analysis details, respectively, followed by a discussion and 
conclusion in Section 5.

2. PROBLEM DEFINITION AND DATA
According to the ROKAF training protocol, air-to-air 

combat training can be divided into the five categories listed 
in Table 1. This study only focused on the BFM training 
procedure. Let BLUE be a fighter of friendly forces and RED 

Table 1. Categories of air-to-air combat training 

Category Description

BFM Basic Fighter Manoeuvring (Most basic form)
- Two fighters train together (attacker, defender)

ACM Air Combat Manoeuvring (Advanced BFM)
- Two fighters attack or defend against a RED

ACT/
DACT

Air combat tactics/dissimilar air combat training air-
to-air combat without prior agreements between BLUE 
and RED. (2:2, 2:4, 4:4, 4:2, etc.)

TI/TIN
Tactical intercept/tactical intercept night capture 
enemy aircraft using fighter radar with the assistance 
of air traffic control

WA Weapon to air fighter practices gun firing.

Table 2. Attributes of the data

Attribute
Type Description Unit

BLUE RED
B_xpos R_xpos Position X position coordinate degree
B_ypos R_ypos Position Y position coordinate degree
B_zpos R_zpos Position Z position coordinate m
B_roll R_roll Attitude Rotation around the front-to-back axis radian
B_pitch R_pitch Attitude Rotation around the side-to-side axis radian
B_yaw R_yaw Attitude Rotation around the vertical axis radian
B_aoa R_aoa Attitude Angle between the oncoming air and a reference line on the aircraft radian
B_speed R_speed Kinetic energy Speed of an aircraft Mach
B_g, R_g, Kinetic energy Gravity of an aircraft G

Figure 1.  Distributions of Attributes. (a) Probability of kill (PK) 
ranges between 0 and 1; and (b) ‘Hit’ and ‘Miss’ are 
defined by whether the probability of kill is greater 
than 0. 

(a)

(b)
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be an adversarial fighter in an air combat training scenario. 
BLUE and RED are the same type of fighter, F-16, who 
engage in Within-Visual Range (WVR) combat. BLUE fires 
AIM-9 IR (infrared) tracking-guided air-to-air missiles to 
shoot down RED27. During training, the ACMI pods collected 
the maneuvering data of both aircraft, except for the RED 
probability of kill (PK) value. The PK value, which represents 
the extent to which BLUE’s missile damages RED and ranges 
from 0 to 1, was calculated internally using the ACMI system. 
This calculation method has not yet been publicly disclosed. 
Thus, this study assumed that the PK value calculated by the 
system adequately reflects the damage to the actual air-to-air 
engagement.

Based on maneuvering data and PK values, we formulate 
the hit-prediction model to predict a ‘Hit’ or ‘Miss’ from the 
maneuvering and weapon event data of BLUE and RED. 
The ‘0’ PK value indicates ‘Miss,’ which means no damage 
to RED, and the others are converted to ‘Hit,’ which means 
sufficient damage to RED. The distribution of PK values and 
the distribution of ‘Hit’ and ‘Miss’ are shown in Fig. 1.

The data for training the hit prediction model were 
obtained from the ACMI system operated by the ROKAF, 
where the collection period was from 2009 to 2019. To 
prepare the data, we applied several pre-processing steps. 
First, we addressed data quality issues by removing outliers 
and missing data points, which often result from the high-
speed data acquisition inherent to the ACMI system. Next, 
data consistency was ensured by standardizing the units of 
speed and angle across all attributes. However, we did not 
perform data normalization because the machine-learning 
algorithms employed were designed to appropriately handle 
varying scales of input features. After pre-processing, the 
dataset contains 2,258 instances corresponding to 2,258 
missile launches (hits or misses). Of the total, 1,721 instances 
were labeled as ‘Hit’ and 537 as ‘Miss,’ yielding a hit ratio of  
76.2 % and establishing the baseline performance. Table 2 lists 
the 18 attributes used in this study.

3. FEATURE ENGINEERING
In this section, we leverage the domain knowledge 

extracted from the data to facilitate air-to-air missile hit 
predictions. We performed feature extraction by focusing on 
identifying pertinent features. Although the original attributes 
in the dataset alone may be sufficient for missile hit prediction, 
extracting additional features can enhance the predictive 
performance of machine-learning algorithms. To conclude 
this section, we examined the correlations to ascertain the 
relationship between the features and missile hits.

3.1 Feature Extraction
In this study, domain knowledge was employed to extract 

five features. Here, domain knowledge refers to the specific 
methodology of BFM used in air-to-air combat, which provides 
insight into attacking adversaries. In BFM air combat scenarios, 
BLUE manoeuvres to achieve an optimal position and energy 
state relative to RED before launching a missile. Based on the 
methodology concerning relative position, we first considered 
the differences in three-dimensional spatial distances  
(BR_dist) and altitudes (BR_alt) between BLUE and RED. 
These differences were computed from attributes representing 
the position types, namely, B_xpos, B_ypos, B_zpos, R_xpos, 
R_ypos, and R_zpos. These features are significant because air-
to-air missiles can only be hit within a specific range. Second, 
energy is divided into potential and kinetic energies, with the 

Table 3. Extracted features

Feature Description Unit

BR_dist Distance between blue and red m

BR_alt Difference of the altitude of blue and that 
of red m

BR_speed Difference of the speed of blue and that of 
red Mach

BR_hca Angular difference between the heading of 
blue and that of red degree

BR_aa Angle measured from the tail of red to blue degree

Figure 2.  Illustration of HCA and AA. The triangles represent blue and red aircraft. It is shown that (a) and (d) have the same 
relative position but have different HCA and AA according to the aircraft’s heading, which also can be applied to  
(b) and (c).
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altitude difference (BR_alt) and speed difference (BR_speed) 
playing a pivotal role. Higher altitudes and speeds increase the 
potential and kinetic energies, allowing aircraft to strategically 
exchange altitude and speed in three positions based on the 
BFM principles during air-to-air combat. 

In addition to the features based on the relative values 
above, we further incorporated crucial features considering 
the BFM. These features encompass the Heading Cross Angle 
(HCA) and Aspect Angle (AA), as shown in Fig. 2. HCA 
represents the angular difference in the headings between 
the two aircrafts, and AA indicates the angle from the tail 
of RED to the direction of BLUE. Because missiles exhibit 
higher hit probabilities within specific angular ranges, HCA 
and AA are recognised as significant features. A summary of 
the five features mentioned above and their respective units 
is presented in Table 3. Similarly, in addition to considering 
the relative positions of the two aircraft, one may also regard 
the relative values of attributes, such as attitude and gravity, as 
features. 

However, based on domain knowledge, the relative values 
of the aircraft attitude and gravity have limited significance. By 

contrast, the absolute values of an aircraft’s attitude and gravity 
are more important than their relative values. Consequently, 
we refrained from using the relative values of attitude and 
gravity as additional features. 

3.2 Feature Selection
Finally, we obtained 23 features comprising 18 original 

attributes and five additional features derived through 
feature extraction. To refine the feature-selection process, we 
utilized domain knowledge to exclude unnecessary features. 
Specifically, we omitted six attributes related to the aircraft 
position. Although three-dimensional terrain information 
is crucial in air-to-air combat, the data under analysis lacks 
such terrain data. In addition, utilizing terrain information in 
model construction may hinder generalization. Ultimately, we 
obtained a final set of 17 features: B_roll, B_pitch, B_yaw, B_
aoa, B_speed, B_g, R_roll, R_pitch, R_yaw, R_aoa, R_speed, 
R_g, BB_dist, BR_alt, BR_speed, BR_hca, and BR_aa, as 
shown on the vertical axis in Fig. 3.

Figure 3.  Correlation coefficient between ‘Hit’ and 17 features. Only one feature (BR_dist) has a significant correlation coefficient, 
and the features using relative position between BLUE and RED tend to be relatively more significant than the others.

(a) (b)

(c)

(b)
Figure 4.  The distribution of missile hit and miss. Blue and red represent ‘Hit’ and ‘Miss.’; (a) boxplots for BR_dist (b) BR_aa.; (c) 

half-polar plots for BR_dist; and (d) BR_aa.
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3.3 Relation Between Missile Hit and Features 
We investigated the impact of the features on missile 

hit prediction using correlation coefficients. The correlations 
between each feature and the missile hits are shown in Fig. 3. 
Most of the correlation coefficients were relatively low. Only 
BR_dist showed a strong linear correlation with the number of 
missile hits. In addition, features using the relative positions 
between BLUE and RED, such as BR_hca and BR_aa, tended 
to be relatively significant.

We also constructed hit prediction models using a 
single feature. However, the results demonstrated overfitting, 
indicating poor generalisation. Although the training accuracy 
ranged from 60 % to 80 % depending on the feature, the 
test accuracy for most features remained at approximately  
50 %. Only BR_dist achieved a test accuracy of approximately  
60 %, which is below the baseline performance. This implies 
that single features alone cannot adequately distinguish 
between hits and misses and that multiple features must be 
combined for successful classification.

When combining the features for modeling, it outperforms 
the baseline, as discussed in Section 4. For instance, Fig. 4 
shows two boxplots for BR_dist (left) and BR_aa (middle), 
and two half-polar plots of BR_dist (upper) and BR_aa (lower) 
for missile hits and misses. The combination of these two 
features improves the prediction performance.

4. EXPERIMENT
4.1 Experimental Setting

In this study, we investigate the performance of four 
machine learning algorithms: logistic regression (LR), random 
forests (RF), XG Boost (XGB), and Cat Boost (CATB) for 
classification. Logistic regression served as the baseline 
model, providing a simple yet effective means of examining 
the relationships among variables. Random forests, XG Boost, 
and Cat Boost, while all tree-based ensemble algorithms, 
differ in their approach: random forests use bagging 
techniques to create independent trees, XG Boost employs 
gradient boosting to sequentially improve weak learners, 
and Cat Boost introduces ordered boosting and processing 
of categorical features. These algorithms excel in handling 
tabular data classification problems, each leveraging its unique 
strengths28,35-37. Furthermore, we also explored the performance 
of Gradient Boosting and Light GBM within the boosting 
family38-39. However, a comparative evaluation revealed 
that their performances were closely aligned with those of 
XG Boost and Cat Boost. We also evaluated Multilayer Per 

Ceptrons (MLPs) that are generally known to underperform on 
tabular data such as those used in our experiments; indeed, the 
results were not promising28. The training and test data were 
divided at an 8:2 ratio. The hyperparameter selection for each 
algorithm was accomplished through Bayesian optimization, 
and the determination of optimal hyperparameters was 
achieved through 5-fold cross-validation. 

4.2 Performance Result
Table 4 presents the experimental outcomes of the 

four algorithms using the two feature sets. The first set, 
labelled ‘All,’ encompasses all 17 features, while the second, 
‘Observable,’ is composed of only 12 features, excluding four 
features that cannot be acquired in (near) real-time from RED. 
The ACMI data included information from both the BLUE 
and RED gathered from POD sensors in the training scenarios. 
However, in actual air-to-air combat cases, BLUE can only 
access a partial, near real-time stream of RED’s information, 
with ‘observation’ referring to data obtained through sensors 
or surveillance systems and transmitted to BLUE almost 
instantly. Capturing real-time observations of RED’s attitude 
features (R_roll, et al.) and gravity (R_g) from BLUE is 
difficult. In contrast, positional features (R xpos, et al.) and 
speed (R_speed) are more easily observable and collectible. 
Thus, the features BR dist, BR_alt, BR_speed, BR_hca, and 
BR_aa were derived from the observable positional features 
and speed to construct the model. 

Performance assessment was based on accuracy, 
precision, recall, F1 score, and area under the receiver operating 
characteristic curve (AUC). Given the class imbalance of the 
data, it is crucial to interpret the accuracy carefully. Table 4 
shows that the performances of the four algorithms are similar, 
with random forests and XG Boost slightly outperforming the 
others for the five performance metrics. This indicates a potential 
link between algorithmic behavior and data characteristics, 
which can affect performance measures differently.

The performance of the model with the’ Observable’ 
feature set is nearly on par with using all features, as 
demonstrated in Table 4. This is consistent with the fact that 
the RED features have less influence, as reflected by their 
reduced importance in the evaluation process, as illustrated 
in Figs. 3, Fig. 5, and Table 5. In summary, given a baseline 
accuracy of 76.2 %, the performance enhancement with the 
‘All’ feature set ranges from approximately 5.9 % to 6.5 %. In 
contrast, with the ‘Observable’ feature set, it falls within the 
range of approximately 5.0 % to 6.8 %.

Table 4. Performance comparison of ‘All’ and ‘Observable’ feature sets using four algorithms

Feature set Algorithm Accuracy Precision Recall F1 score AUC
All LR 0.821 0.815 0.985 0.892 0.653

RF 0.827 0.826 0.976 0.895 0.676 
XGB 0.821 0.828 0.962 0.890 0.677 
CATB 0.823 0.823 0.974 0.892 0.670 

Observable LR 0.812 0.807 0.985 0.887 0.636
RF 0.825 0.827 0.971 0.893 0.677 
XGB 0.830 0.833 0.968 0.895 0.689 
CATB 0.827 0.828 0.974 0.895 0.679 
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Table 5.  Feature rankings based on both feature importance and SHAP values. Orange, blue, and red represent features belonging 
to BR, BLUE, and RED, respectively. Each column lists the rankings of the 17 features in descending order, with higher 
rankings indicating more significant influence.

Rank Overall Correlation
coefficient

Feature importance SHAP value
RF XGB CATB RF XGB CATB

1 BR_dist BR_dist BR_dist BR_dist BR_dist BR_dist BR_dist BR_dist
2 BR_alt BR_aa BR_alt B_aoa R_speed BR_alt BR_alt B_aoa
3 BR_aa B_speed BR_aa BR_alt B_yaw BR_aa BR_aa BR_aa
4 B_aoa B_aoa B_roll R_speed BR_aa B_roll B_aoa BR_alt
5 R_speed BR_hca BR_hca B_g B_roll B_aoa BR_speed R_speed
6 B_roll B_g B_aoa BR_hca B_aoa B_speed B_roll B_yaw
7 BR_hca R_speed B_speed BR_speed BR_alt B_g R_speed BR_speed
8 B_g R_aoa B_pitch BR_aa R_roll B_pitch BR_hca B_roll
9 B_yaw B_yaw R_speed R_g R_yaw BR_hca R_g R_yaw
10 B_speed B_roll BR_speed B_pitch R_pitch R_speed B_yaw BR_hca
11 R_pitch BR_speed B_g B_roll R_aoa BR_speed B_pitch B_g
12 BR_speed R_pitch B_yaw B_yaw B_pitch R_g R_yaw B_speed
13 R_yaw R_g R_pitch R_aoa BR_speed B_yaw R_roll R_aoa
14 R_aoa R_yaw R_yaw B_speed B_g R_pitch R_aoa R_roll
15 R_roll B_pitch R_roll R_pitch BR_hca R_roll B_g B_pitch
16 B_pitch BR_alt R_aoa R_roll B_speed R_aoa R_pitch R_pitch
17 R_g R_roll R_g R_yaw R_g R_yaw B_speed R_g

(a) (b)
Figure 5.  Comparison of feature importance and SHAP values. The values representing the length of the bars are normalised to the 

largest value per algorithm and measure, thus presented as relative values; (a) Feature importance; and (b) SHAP value.

4.3 Feature Importance 
For missile hit prediction, we analysed the feature 

importance and SHAP values of random forests, XG Boost, 
and Cat Boost to assess the individual significance of the 
features. The decrease in the average impurity within each tree 

determines the feature importance values in random forests. In 
XG Boost and Cat Boost, the feature importance is evaluated 
by the number of times a feature is used to split the data across 
all trees. The SHAP values represent the average of all the 
marginal contributions across all possible coalitions. In Fig. 5, 
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these values are normalised to the largest value per algorithm 
and measure and are therefore presented as relative values. 
Despite potential variations owing to algorithmic differences, 
both the feature importance and the SHAP value consistently 
emphasize that BR_dist is significantly more influential than 
the other features, echoing the results in Fig 3.

To identify primary features, we conducted a single-feature 
ranking analysis using the method outlined by Guyon34. We 
ranked features based on seven normalized measures: feature 
importance, SHAP values from three tree-based ensemble 
methods, and correlation coefficients. The overall rank for each 
feature was determined by averaging the rankings across the 
seven measures.

The features in Table 5 are ranked and color-coded 
according to each measure. BLUE, RED, and BR are 
represented by orange, blue, and red, respectively. The 
rankings of the 17 features were listed in descending order, 
with higher rankings indicating a more significant influence. 
While slight color variations exist across measures, orange 
features generally dominate the top positions, followed by blue 
in the middle, and red at the bottom. In the overall ranking, 
three of the top five positions belonged to BR, whereas five of 
six features of RED ranked outside the top ten.

5. DISCUSSION AND CONCLUSION 
5.1 Comparison with the Conventional Performance 

Measurement
Our hit prediction model, built on ACMI data, shows 

promising effectiveness in predicting engagement outcomes. 
With accuracies ranging from 82.1 % to 83.0 % across the 
different algorithms and feature sets (Table 4), the model 
outperformed the baseline accuracy by 76.2 % and by 5.9 % to 
6.8 %. This improvement suggests that the model effectively 
captures the complex dynamics of hit predictions from 
ACMI data. The results in Fig. 5 and Table 5 show that the 
positional features of the two fighters were significant for the 
outcome of the air-to-air engagement. This result is analogous 
to those of conventional ACM performance-measurement 
studies. As demonstrated in reference18,35, positional advantage 
measurements, such as the all Aspect Manoeuvring Index 
(AAMI)15, were the most related to air-to-air engagement 
outcomes. The AAMI includes a range of fighters.

Experimental results can also be rationally translated 
using the air combat manoeuvring manual. According to 
reference36, BLUE requires the ability of the BFM to enter 
the RED weapons envelope, and this BFM aims to reduce 
the range, aspect angle, and angle off to ensure that it can fire 
weapons at the RED. Based on this analogy and rationality, a 
data-driven analysis can be used as a verification or refinement 
methodology for conventional performance measurements in 
simulation systems.

5.2 Limitation
One of the two limitations of this study is that only the 

data from the time and from 0.1 s before the missile launch of 
BLUE was utilised for analysis out of the entire manoeuvring 
data. Although the information at the missile launch moment 
is crucial for predicting the hit probability of air-to-air 

missiles, it is probably necessary to consider the manoeuvres 
of both BLUE and RED before the launch, as they influence 
the positioning at the launch moment. Therefore, we must 
incorporate data from the period preceding a missile launch to 
extend the applicability of the findings beyond hit prediction 
and utilize them as feedback information in actual training 
scenarios. Utilizing such time-series data and employing deep 
learning algorithms of the RNN family, such as Long Short-
Term Memory (LSTM) or Gated Recurrent Unit (GRU), 
could potentially enhance both predictive performance and 
interpretability37-42.

The second is the inherent limitation caused by the use 
of the ACMI system. While manoeuvring information is 
acquired from the pods, weapon events, including engagement 
outcomes, are simulated by the ACMI system. Therefore, the 
data utilized can be regarded as partially simulated data and 
analyzed with respect to hit probability.

5.3 Contribution and Future Work
This study demonstrates a standard procedure for 

utilising ACMI system data, encompassing feature extraction, 
selection, and effective modelling of a hit-prediction problem. 
By employing interpretable machine learning techniques, 
we developed an accurate predictive model and uncovered 
the most influential factors affecting air-to-air engagement 
outcomes. This approach bridges the gap between data-driven 
analysis and traditional air combat performance metrics, 
thereby offering valuable insights for tactical development and 
training.

In future work, a refinement model design for fine-tuning 
the parameters of conventional performance measurements 
using a data-driven analysis can be suggested. In addition, 
building an enhanced hit prediction model can be recommended 
using the RNN family algorithm to exploit the time-series 
features of the ACMI data. Finally, a multimodal hit prediction 
model can be proposed for development. Various aspects of air-
to-air engagement can be analyzed to train the hit-prediction 
model using different types of information, such as the aircraft 
state or pilot information. 
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