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ABSTRACT

Fast and accurate estimation of trgjectory is important in tracking and intercepting reentry
vehicles. Validating model is a read challenge associated with the overall trajectory estimation
problem. Input estimation technique provides a'solution to this challenge. Two input estimation
dgorithms were introduced based on different assumptions about the input applied to the model.
This investigation presents approaches consisting of an extended Kalman filter and two input
estimation_ %Jorithms to identify the reentry venicle trgectory in its terminal phase using data
from a sngle radar source. Numerica smulations with data generated from two models
demongtrate superior capabilities as measured by accuracy compared to the extended Kaman
filter. Evaluation using rea flight data provides the consistent results. The comparison between
two input estimation agorithms is also presented. The trajectory estimation approaches based
on two agorithms are effective in solving the reentry vehicle tracking problem.

Keywords: Reentry vehicle, trgectory estimation, input estimation, extended Kaman filter, reentry
vehicle tracking, reentry vehicle interception, reentry vehicle trgjectory, validation models,
trgjectory estimation agorithms, smulation and modelling

NOMENCLATURE k Sating index of input

aqa.a, Laed accelerations L Kamen gan

a,, a5, 3, Model errors P  Covaiance matrix of predicted dtate
C, Bdligic  coefficent Q Variance of process noise

C oo Zerolift drag  coefficient R Vaiance of measurement noise

g Gravity s Stopping index of input

G Gan S Reference area of the reentry vehicle

HI Identity  matrix YV, Velocity components
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v, Variance of the esimated input
w Weight of the reentry vehide
b AT Pogtions

Xyt State vector with input

Xiu State vector with no input

At Sampling period

p Air dengty

£ Process noise

£ Measurement noise

& Variance of resdud

¥ Fading factor

1. INTRODUCTION

The online edimation of the trgectory of a
reentry vehice (RV) is very important for radar
tracking and interception. The main task related to
trgectory edtimation problems concerns model
vaidation, associated with modd error between
the mahematicd modd and the physca system.
The modd error is typicaly caused by the smplifying
assumptions, manoeuvre and unpredictable externa
forces during flight, parameter uncertainty, and other
sources. To reduce edtimation error, al or most
quantities in the mathematicd mode ac required
to be measurable. Most researchers have addressed
post-flight anaysis to identify states and key parameters
from the flight data measured by sensors such as
radar, satellite, and onboard sensors'*. Stepwise
regression, an offline estimation method, is extensvdy
used to determine modd dtructure from flight data
measured by radar and inertid sensors. An online,
fast, and accurate trgectory estimation agorithm
with data measured by a single radar is needed to
solve a general reentry vehicle tracking problem.
It is more difficult and complex than offline estimation.

Changé, et al. defined an online filter for a
manoeuvring reentry vehicle based on an augmented
Kaman filter. Pogtion, veocity, drag force, and
manoeuvre forces yidd the augmented date vector
and are edimated by an extended Kadman filter.
The peformance of the proposed Kaman filter,
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however, is degraded if a non-manoeuvring vehicle
is considered. Manohar and Krishnan? reconstructed
a rocket trgectory usng differentid corrections
with measurements that could not be provided by
a gngle rada’. A smple modd that includes the
unmodelled accderation input seems to be applicable
to estimating trajectory ontine if a recursive determination
of input is wel defined.

Chen and other researchers introduced input
estimation technique to solve tracking problems® .
Batched and recursve least-squares method were
aso successfully used to estimate input in inverse-
heat conduction problems'’'2, The proposed input
esimations were derived by assuming that the input
are condant within the entire operation time of the
systlem. Meanwhile, Lee and Liu assumed the input
to be congant over the sampling period to form
a recursve dgorithm for input estimation'*'s. It
provided an accurate estimation in reentry vehicle
trgectory esimation and initiad leveling in a strapped-
down inertid navigetion sysem. These two input
esimators are built under different hypotheses about
the input. This invedtigation presents the reentry
vehicle trgectory estimation methods with these
two'input esimation agorithms and compares their
accuracy in terms of trgectory esimation errors
by smulations

This study formulates a reentry vehicle trgectory
model with the norma gravity formula'. Two agorithms
for input estimation arc derived under two assumptions
about input to estimate mode! errors of the formulated
reentry vehicle trgjectory model. Traectory estimation
method is then built when the estimated input are
subdtituted into the extended Kamean filter. Smulation
results, based on a set of data generated from the
reentry vehicle trgectory modd with manoeuvring
forces, show that the proposed trgectory methods
with two input edtimators are quite satifactory.
Sets of amulation data from amodd with Six degrees
of freedom (6-DOFs) and of red fight data arc
used to evauate the performance of the scheme.

2. TRAJECTORY MODEL

Congder a flight vehicle in the reentry phase
over a flat and nonrotating earth as illustrated in Fig. 1.
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Figure 1. Reentry vehicleflight geometry

Assume the reentry vehicle to be a point mass with
condant weight following a bdligic trgectory in
which two types of dgnificant forces drag and
gravity, act on the reentry vehicle. The manoeuvring
reentry vehicle trgectory modd in radar coordinate
(Op Xp Y, Z,) centred & the radar site, can be
expressed as'’

2

P i
v, == ,zcbgcosYxsm'Yz ta, (1)
) pv?
v, = —-z-agcosy, COSYZ +a, (2)
pv*
vz=-2?b-gsmyl—g+as 3)
where
C = W
b 8Cph

—_ v, %
Yl - tan—l( 2 2 ) 'Yz = tan_l (_L)
A ;vx + v, vy

The normd gravity modd g, which is a function
of dtitude, is employed.

Equations (1) to (3) are formulated with certain
assumptions such as point mass and constant weight
of the reentry vehicle. Extra acceleration is considered
to describe the modd error induced by violation
of assumptions, unpredictable and unexpectable
forces during flight, parameters uncertainty, and
other sources. Let input of the mode be

u =a, +a i = 4,5,6 4)

The modd can be rewritten as

2

‘ pv .

v, u—ia—;gcosy, siny, +u, (5)

, sz +

v, = --2—Cbgcosyl COSY, T ¥Us (6)
2

. vioo

vz-gcbgsmy, -g+ug (7

Let the state vector be

X=[x 5 5 % 5 %]

T 8
:[xy z v, VZ]. ®
The nonlinear date equation can be written as
X=F(X)+qu+ IoeC )
where

. .
Xs
Xg

——‘é—(xf +x% +x2)gcosy, siny,
b

F(X)=

P 2. 2 .2
———(x%+ x5+ x5)g cOSY, COS
2Cb(4 5 6 Yl YZ
P 2,2, 2y
—(x; +x5 +x5)gsiny, -
2C5(4 s 68 1-9
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u=[0 0 0 u, u u]

A precision digita phase aray radar is considered
in the system for detecting the reentry vehicle. The
detected target’ s position is transferred into Cartesian
frame fird and filtered as pogtion, velocity, and
accderation by an o-p filter. Snce the filtered
accderation has less accuracy, the filtered postion
and velocity are usualy taken as the main measurements
of the radar. The measurement equation ignoring
the process indde radar is then formulated as

Z=HX +¢ (10)

in which noise vector ¢ is assumed to be a set of
independent random variables with diagona covariance

matrix R. Equations (9) and (10) form the dynamic
equations for the vehicle during reentry.

The predicted and updated state vectors of the
extended Kaman filter (EKF) with input vector «,
from t = nAtto ¢t = (n+1)At, n = 0,1,2 ,..., &€
given'® by

/\‘}nﬂln = q>n)?n/n + (pun (l l)
Xn+l/n+l = Xn+l/n + Kn+l (Zn+l - HXn+l/n) (12)
where
oF (X)
o, =1+ At
n 6x6 aX X=X’,/~

3. RECURSIVE INPUT ESTIMATION

The extended Kaman filter will typicaly converge
with long time propagation if «_is omitted in Egn (11).
However, a long convergence time is unacceptable
for online requirement. An agorithm must be developed
to edimate the input acceeration and achieve a
rgpid and accurate trgectory estimation that yields
some desred levd of accuracy.
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Let X,,,, ad X, , denote the predicted

and updated dates, respectively, for the EKF
with no input at ¢ = (n+1)At. For simplicity,

denote X,,, =X, ., , X, =X and let

n+l n+l/n+l

Mn+l = (I "'K,,.HH)(P" SN,H-] = (I - Kn+]H)(p . The up-
dated state can be organised as

_ atl _ P
Xn+l =(H M')X" + 2(1—[ Mn+i)Kn+qu+j +Kn+lzn+l

i=n+] j=1 i=l+j

1=0,12,.. (13)

Assume that an input is applied during
kAt <t <(k+s)At,

= {
u
k+l

The updated date vector in the EKF formation
with input is given by

t<kAt,t>(k+s5)At k,s>0
KAt <t<(k+5)At 1=012 .., s (14

k+l
Xy = (HMi)Xk
i=k+1
|

||
¥ Z(H M"*")(Kkﬂ'zle t+ Nk+juk+j—l)

=RED
v KiwZp o Negen (15)
with ,{'k = )?k . Let the difference between these

two formations be

AXi- X~ Xy (16)

Define the redduds for the EKF formation
without and with input to be

Z, =2,,~-HX,,, Z2,,=2,,-HX,

3.1 Algorithm 1

Suppose u,,,, I =1, 2 ,..., s to be congtant
vector within kAr < ¢ < (k + s)At . Substituting X, ,
and X,,, into Egn (16), one has
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(I-K,  HY$,4X 1y T Q@ up,y) kAt St<(k+5)At

AX,, =

| 0 otherwise

(17)
Since the input are dl congant, let

AXpu - Ay Oy (18)

where A,, isacondant matrix a « = (k+I) At
and 4,=0.

Substituting Egn (18) into Eqn (17), it yidds
(1 - Koo HO Apisa + ) kAt <t <(k+s)At

Agur = (1 9)
0 otherwise

The regresson eguation can then be written
as

ZI:H - By U+ Zyy (20)
where

BIH-I = HA/H,’([)

The recursve least-squares input estimator,
named agorithm 1, can be expressed''? by

By = Upprea+ Grat (Zpwy ™ Brar iy ) (21)

where
G VW1 Be By Y Visia B &J”
ko= ¥V Vi Bear Bewt? Vit Bewr o €
V/‘H—l = [I - Gk+l—l Bk+1—l ]7-1 Vk+1-—2

§- R, HPk+I+I/k+IHT

From the regression equation, Z,,, excites the
input estimation mechanism. Z,,, can be rewritten
as

Zisy -(Zoy = HX 3 )+ HX gy = X))

The terms of Z,,, = HX,, and X,y — X,
represent the estimation errors induced by the input
and the EKF with no input a ¢ = (k + I)At , respectively.
It means that the estimated input contains not only
input but dso date estimation errors conssting of
truncation eror, uncerttainty of initid vaues,
measurement noise, and so on. Although an actud
input cannot be edtimated, a precise trgectory
estimation is reached. In addition, both batched
and recursve input edimators are avalable for
dgorithm 1.

3.2 Algorithm 2

Assume u,, to be a congtant vector over the

sampling period At. The difference induced by the
abrupt input, AX, can be written as

k+l !
AXpy - My DXy + Ny gy

The resdud is then expressed by
Zw: HM,, AXyyy+ HNyy Upsi-1 + Zyy
It leads to the regresson equation

Yeur = Qpy i« Ziw (22)

where Y,,, means the pseudo measurement vector,
Yyt =Zk+l —HM ) AXpo

(Dktlz I{Nk+l

Therefore, dgorithm 2 for input estimation'?
IS given by

~

G Yu- d’mﬁm—z) (23)

A — A
Dyt =ty + Gru(

where
Yiss = Zpyy = HM ) DXy,

AX o -Mpy ) AX 2+ Ny Uy
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Gk+l = Vk+1—1 (Dk+1 i_l

Viria1 = Viwiz
- Vk+1-2 (D:+l[d)k+l Visia ‘DL: + 5]-14’“1 Viriea
where § is the same as dgorithm 1.

The pseudo measurement vector Y,,, can be
rewritten as

}‘;k+l = [(Zk+l - HXI:H) + HM]H.[ (Xhl—l - flc+l—l )]

+ H(X;+1 - qu)

The term, X,,,_, — X,,., . epresents the difference
between the EKF with no input and with input at
the previous time interval. It is an extra term as
comparing to adgorithm 1 that leads dgorithm 2
to be more accurate than agorithm 1. However,
dgorithm 2 is more complex and recursive input
edimator is its only choice

In Egn (14), k and s represent the gtarting and
sopping indices of the sysem input, respectively,
and can be determined by testing. The test for
detection of input for two dgorithms is defined
asls

A

ot
A

otherwise u, is absent where ¥, denotes the iitt
element of V and [, ¢,, ] is the confidence interval.
Suppose the test defined in Egn (24) to be normally
digtributed, then, the value oft., can be determined
by inspecting the cumulaive normd digribution
table for a preset confidence coefficient a

for i=4,5,6 (24)

> 1, exigence of

4. TRAJECTORY ESTIMATION

Once the input is estimated, the EKF is corrected by
the estimated input at the same time. By incorporating
the online input estimator into the EKF, the predicted

and updated dtates a time interval kAz <t < (K +  s)At
are
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)2;+I/k+1—l TV, SVRYIPRI . (25)

Xlt+l/k+l = XI:+I/k+l—l + KI:+I (Zk+1 - HXI:+I/k+I—l) (26)

The Kdman gain becomes.
Ko = PoognaH (HR i H + R) (27)

with the covariance matrices of the adaptive filter
at kAt <t < (K + 5)At being

T T
Pioneiat = Pomrict + OxsraliniOksicy + OVissn@
(28)
= Plz+l/k+1-l + Pk,+l/k+1-l

Feones = (I =Ky H) Piopai (29)

where

— T T
) A = 04101 L Orsr OV @

L =0 L, =N Vi NkT+2
-1

!
Ley= Z( HMI:H—I WNis; Vi1 Ni; (UM[H'-I)

J=l iste i=l+j

— T
=M k+1-1 Lk+l—l M k+i-1

P,z 41— denotes the increment in covariance
introduced by #,, i =kk+1,.... k+IL Fortime
beyond the intervel kAt <t < (k + s)Ar , State estimation
can aso be based upon the origind EKF. It is
noted that the initid States and covariance matrices
a t> (k + s)Ar are reinitiated by x7, ., ad B .
Figure 2 schematically depicts the proposed method
which consgs of the EKF and dgorithm 1 or
dgorithm 2. The detailed steps of the proposed
method are given in Appendix 1.

5. SSIMULATION ANALYSS

This section evduates the performance of the
trgectory esimation methods with two agorithms
in terms of trgjectory estimation errors by smulations.
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RV MOVEMENT —=p| RADAR DETECTION

EKF WITH

INPUT

"| EKF WITHOUT

’+
\ INPUT
—"O—'ﬂ ESTIMATOR EQN |

INITIAL INPUT
CONDITIons »

EQN (24

- CHOR(23)

Figure 2. Mechanism of the proposed filter scheme

Two cases of amulation, whose data are generated
from the two different models, have been presented.

Case 1

A typicd manoeuvring trgectory is generated
from Egns (1)-(3) with €, =2524 kg/m? and latera
accelerdtions, ¢, =59, 4, =59, and a, = 15 g
duing §s £t <£10s,12s<£t<£16s ad
15 st s 20 s respectively. Figures 3 and 4
demondrate the measured trgectory with normaly
digributed measurement noise.

During esimation, C, = 5048 kg/m? is assigned
to increase the model error for showing the necessity
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Figure 3. Measured position for Case 1

of input esimation. Let a = 095 R = 0.03 I,
Q=0.031, and At = 0.05 s. Initid of ¥V is taken
as 20 I. Fgures 5 and 6 illustrate the estimation
erors in pogdtion and velocity, respectively, usng
the EKF with no input. Figure 7 shows the standard
deviation for podtion and veocity. Large estimation
errors dong downrange, offrange, and dtitude axes
are unacceptable for tracking and interception. The
dandard deviations of the estimated date are all
bounded and smal. Figures 8 and 9 display the
egimation errors in postion and velocity generated
by the EKF with two input esimation agorithms.
Obvioudy, it is much less than by the EKF with
no input and shows that the EKF with input estimator

1000 T T T

Measured velocity(m/sec)

Tima (sec)

Figure 4. Measured velocity for Case 1
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Figure 5. Position estimation error using EKF without input
estimation for Case 1.
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Figure 6. Velocity estimation error using EKF without input
estimation for Case 1.

Is much better than the origind EKF. Input estimation
indeed plays an important role. Figures 10 and 11
compare the standard deviation of the estimated
postion and veocity, respectively, for two input
dgorithms that are smal and bounded too. It represents
that the estimated trgectories using these three
methods are deviated from ther own in a smadl
region with certain probabilities.

Comparing these two dgorithms, the estimation
errors induced by the EKF with dgorithm 2 are
haf of errors provide by the EKF with dgorithm 1.
It is reasonable since the assumption of the agorithm 2
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EKF without input
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Figure 7. Standard deviation of the estimated states for
Case 1.
Algorithm 1

Errors in position(m)

Errors in position{m)

0
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Figure 8. Position estimation error using EKF with input
estimation for Case 1.

about the input is more close to the redl. Algorithm 2
is more accurate than agorithm 1 but more complicated.
Sdection of agorithm 1 or adgorithm 2 depends
on what the man concern is

Case 2

A st of data, generated from a 6-DOFs modd,
was employed to demonstrate how the proposed methods
process the model error. The 6-DOFs model of a
flying vehide is a sat of equations of motion including
both trandationd and rotationd motion. It is more
detailed than the 3-D modd indicated in Eqns(1)-(3).
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Figure 17. Position estimation error usng EKF with input
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Figure 20.Standard deviation of the estimated velocity fo~

Case?.

estimation for Case 2.
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Figures 12 and 13 show the measured trgjectory
from¢ = 270 sto ¢t = 440 s, detected by a precision
radar. The noises in the measured trgectory are
dmulated from a noise modd of that radar. Let
C, = %6465 kgm*, =095 R = 0.03 1,Q=0031,

and At = 05 s Initid of ¥ istaken as 20 | too.
Figures 14 and 15 show the edtimation erors in
pogtion and velocity dong three axes usdng the
EKF with no input and figure 16 displays thar
dandard devigtion. The maximum erors of the
edimated postion and velocity in dtitude reach
to 17 km and 610 nV/s, respectively. It seems too
large for tracking and intercepting a reentry vehicle.
Figures 17 and 18 illudrate the estimation errors
usng the EKF with two input esimation agorithms.
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Figure 21. Position estimation in downrange
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Figure 22. Position estimation in offrange

These are dgnificantly less than usng the EKF
that the proposed approach is gill much better
than the EKF like the results of Case 1. Input
estimation contributes to reduction of error. Furthermore,
algorithm 2 provides a more accurate trajectory estimation
under a 6-DOFs model which has a large modd
error. Figures 19 and 20 display the standard deviations
of the estimated error induced by the EKF with input
esimation. The plots of standard deviation for three
methods are consgtent for Case 1.

6. REAL FLIGHT ANALYSS

A =t of red flght data is ultilised to demonstrate
the peformance of the two dgorithms of input

w : : T T T T L4 ]
[}
o bN--- reeens TR denmann tecoens peemee Aeeeeee .E......-J
i EKF without irfput : : . ,
70 -------- - LEE R L [ ER] T ETE T LR ] qe.n-- -
[ ] 1 L 1 1
H H H H H H
B0~~~ vowen densnas deanaca banasaw [N, P [y, damean -
O T
e S \ T e
6 ) ] ]
KRR/ SR A (TS T R I, e qeenm- ~
> ¥ L] [}
= [} 1 )
e | TP s SRR R TS M.
Me: ] 1 1
) L )
m ................... | MR —— [ N — P PO -
: H ;
+ 1] 1] 1
10}------ omeeedeann-- R -+ mmnme {meee- -
' : : H ' : : :
R e e e At Sl
o ! ! : ! ! ! |
0 5 10 15 20 p.] 0 35 4
Time {sec)
Figure 23. Position estimation in altitude
m I| l .l L T ¥ ]
200}------ e - L T R Lt
' :
o Ofee--a- N B AT .
2 : . 1 Measured 1
% : : f , : :
O] R A R S
2 : : : : : .
g d 1 : : : :
§ A0p-tooorofes Tt Hab H i T Hh .
° H : : : : :
£ . 1] ] I ] '
z BOr-f-fr---g- R R [t Foeees el 1
g : : ! : ' :
@ ' . ’ ] ' 1
> B0p-qpf----t-- SREELED fouv--- froone- beseond fmen-- feecn- -
B S A R M
4 i H i i H H H
2m0 3 10 15 2 0 » 40
Time (sec)

Figure 24. Velocity estimation in downrange
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Velocity in offrange (m/sec)

Tine  (ssc)

Figure 25. Velocity estimation in offrange

edimation conddered. The reentry vehicle was
launched a about 400 km from the impact point.
The raw measured 40 s data span of the reentry
vehicle by a precison radar with sampling rate
4 Hz in this flight tes was utilised for this study.
The reentry vehicle was first detected by the radar
after reentry in the coast phase a a range of 1325 km
with 0, 0 000000° and O, 0 000007 wrt the radar. Let
C, = 96465 kg/m? during estimation. Figures 21 to 26
show the comparison of the measured and estimated
trgectories in downrange, offrange, and dtitude,
respectively. The filtered trgectories, including
postion and velocity, usng the EKF with input
edimation follow the measured trgectory well, as
opposed to estimation usng the EKF without input
esimation. Algorithm 2 provides a trgectory more
close to the measured trgectory than agorithm 1.
It is congdent with the smulaion results

7. CONCLUSIONS

The model error is the main difficulty for trgectory
edimation and is solved by the proposed input
edimation method. Two recurdve dgorithms for
input estimationunder  different assumptions about
input have been introduced. This invedtigation presents
estimation methods, composed of the extended Kaman
filter and two input estimation agorithms, to improve
the accuracy of the reentry vehicle traectory estimation.
Algorithm 1 is derived by assuming the input to
be constant over operation time of a system. Assumption

312

Velocity in altitude (m/sec)

Time  (ssc)
Figure 26. Velocity estimation in altitude

of condant input within the sampling period yields
agorithm 2, which is more accurate but complicated
than adgorithm 1. The peformance of these two
dgorithms has been evaduated by smulations, in
terms of trgectory esimation errors, and red flight
analysis. Algorithm 1 or 2 may be chosen by examining
the major concern. The trgjectory estimation approach
based on dgorithm 1 or dgorithm 2 is worthy of
further study and applications.

REFERENCES

1. Abutaeb, A.S. Improved trgectory estimation
of manoeuvring reentry vehicles using a nonlinear
filter based on the Pontryagin minimum principle.
In |EEE International Radar Conference, Arlington,
VA, 1985. pp. 424-29.

2. Lindgren, A.G.; Irz, A. J. & Nardone, S.C. Trgectory
edimation with uncertain and nonassociated
data. |IEEE Trans. Aerospace & Elect. Syst.,
1986, AES-22, 71-78.

3. Denis, N.J Space-based tactical bdligic missile
launch parameter edtimation. IEEE Trans.
Aerospace & Elect. Syst., 1993, AES-29,
412-24.

4. Chu, QP.; Mulder, JA. &van Woerkom, P.T.L.M.
Modified recursve maximum likdlihood adaptive
filter for nonlinear arcraft flight-path reconstruction.
J. Guid. Cont. Dyn., 1996, 19, 1285-295.



LIU, et. al: INPUT ESTIMATION ALGORITHMS FOR REENTRY VEHICLE TRAJECTORY ESTIMATION

5. Klein V., Bateson JG. & Murphy, P.C.
Determination of arplane mode dructure from
flight data by usng modified stepwise regresson.
NASA-TP-1916, 1981.

6. Chang, C.B.; Whiting; RH. & Athans, M. On
the state and parameter estimation for maneuvering
reentry vehicles. |EEE Trans. Auto. Cont., 1977,
AC-22( 1), 99- 105.

7. Manohar, D.R. & Krishnan, S. Trgectory
recongruction during thrusting phase of rockets
usng differentid corrections. J, Guid. Cont.
Dyn., 1985, 8, 406-08.

8. Chan, Y.T. & Hu, A.G.C. A Kaman filter based
tracking scheme with input estimation. IEEE
Trans. Aero. Elect. Syst., 1979, AES-15,
237-44.

9. Chan, Y.T.; Plant JB. & Bottomley, J. A Kaman
tracker with a smple input egtimator. |EEE
Trans. Aero. Elect. Syst.,, 1982, AES-18,
235-41.

10. Bogler, P.L. Tracking a maneuvering target using
input estimation. JEEE Trans. Aero. Elect. Syst.,
1987, AES-23, 298-10.

11. Tuan, P.C; J, C.C; Fang, L.W. & Huang,
W.T. An input esimation gpproach to online

two-dimensional inverse heat  conduction  problem.
Num. Heat Trans., Part B, 1996, 29, 345-63.

12. Tuan, P.C. & Fong, LW. An IMM tracking
dgorithm with input esimaion. Int. J. Syst.
Sci., 1996, 27, 629-39.

13. Liu, C.Y.; Lee, SC. & Hou, W.T. Initid leveing
using an adaptive Kaman filter. J. Chung Cheng
Inst. Technol., 1997, 25, 147-62.

14. Lee, SC. & Liu, CY. Fast autométic leveling
Subject to abrupt input. |EEE Trans. Aero. Elect.
Syst.,” 1999, AES-35, 989.

15. Lee, SC. & Liu, C.Y. Trgectory edimation of
reentry vehicles by use of online input estimation.
J. Guid. Cont. Dyn., 1999, 22, 808-| 5.

16. Siouris, G.M. Aerospace avionics sysem: A
modern synthesis. Academic Press Inc, 1993.
460p.

17. Zarchan, P. Tacticd and strategic missile guidance,
American Inditute of Aeronautics and Astronautics
Inc, 1994. pp. 363.

18. Gelb, A. Applied optimad estimation. In The
M.I.T. Press, MA, 1974. pp. 107-12.

373



374

DEF SCI J VOL. 55, NO. 4, OCTOBER 2005

Appendix 1

It gives the detailled steps for the proposed extended Kaman filter with two
input agorithms. Assume tha the input to be esimated is exising from beginning,
that is / = 1. The detection process will automaticaly stop inserting the estimated

input into the extended Kaiman filter with input if the input is absent. The detalled
deps ae illusrated as follows

Step 1 Seting initial values and letting 1 = 1, k= 1.

Sep2  Taking new messurement Z,,, and estimating states using the extended
Kaman filter with no input.

Sep3  Cdculaing resaud from Z,,, = Z,,, - HX,,, .

Note that Step 4 has two pats for different input estimation adgorithms.
Algorithm 1

Step4.1 Cdculating A, from Egn (19).

Step 4.2 Cdculding B,,, From By,, = HA,, ¢ .

Step4.3 Edimating input from Egn (21).
Algorithm 2

Step 4.1 Cdoulating A)?m-n = My A"2'1”1—2 + Niw sz .

Sep 4'_3 CdCU|aIIng ¢k+l = HNk'H .

Sep 4.4 Cdculaing the pseudo messurement }"k”:Z’M— HM,,, Ai’m-l-
Sep 4.5 Estimating input #,,,, from Eqn (23).

Step § Detecting input usng Egn (24). If 4,,,, satisfies Egn (24), then go
to Step 6. Otherwise, let k = k + 1 and go back to Step 2.

Step 6 Egtimating states usng Egn (25) and Egn (26) with the estimated
inpu[ ﬁk+l-l )

Step 7 Letting k = k + 1 and returning to Step 2.
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