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ABSTRACT

Fast and accurate estimation of trajectory is important in tracking and intercepting reentry
vehicles. Validating model is a real challenge associated with the qverall  trajectory estimation
problem. Input estimation technique provides a’solution  to this challenge. Two input estimation
algorithms were introduced based on different assumptions about the input applied to the model.
This investigation presents approaches consisting of an extended Kahnan  filter and two input
estimation algorithms to identify the reentry vehicle trajectory in its terminal phase using data
from a single radar source. Numerical simulations with data generated from two models
demonstrate superior capabilities as measured by accuracy compared to the extended Kalman
filter. Evaluation using real flight data provides the consistent results. The comparison between
two input estimation algorithms is also presented. The trajectory estimation approaches based
on two algorithms are effective in solving the reentry vehicle tracking problem.

Keywords: Reentry vehicle, trajectory estimation, input estimation, extended Kalman filter, reentry
vehicle tracking, reentry vehicle interception, reentry vehicle trajectory, validation models,
trajectory estimation algorithms, simulation and modelling

NOMENCLATURE

a,,a,,a, Lateral accelerations
* * .

ad, as,  a6 Model errors

Cb Ballistic coefficient

C DO Zero-lift drag coefficient

g Gravity

Gi Gain

H.I Identity matrix

k

KII+,
P k+,,k+,-,
Q
R

Starting index of input

Kalman gain

Covariance matrix of predicted state

Variance of process noise
Variance of measurement noise

Stopping index of input
Reference area of the reentry vehicle
Velocity components
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T Variance of the estimated input

W Weight of the reentry vehicle

XYJ Positions

Xk+, State vector with input

x’tt, State vector with no input

At Sampling period

P Air density

6 Process noise

;

Measurement noise

Variance of residual

Y Fading factor

1. INTRODUCTION

The online estimation of the trajectory of a
reentry vehicle (RV) is very important for radar
tracking and interception. The main task related to
trajectory estimation problems concerns model
validation, associated with model error between
the mathematical model and the physical system.
The model error is typically caused by the simplifying
assumptions, manoeuvre and unpredictable external
forces during flight, parameter uncertainty, and other
sources. To reduce estimation error, all or most
quantities in the mathematical model arc required
to be measurable. Most researchers have addressed
post-flight analysis to identify states and key parameters
from the flight data measured by sensors such as
radar, satellite, and onboard sensorsr4. Stepwise
regression, an offline estimation method, is extensively
used to determine model structure from flight data
measured by radar and inertial sensors’. An online,
fast, and accurate trajectory estimation algorithm
with data measured by a single radar is needed to
solve a .general reentry vehicle tracking problem.
It is more difficult  and complex than oRline  estimation.

Chang6,  et al. defined an online filter for a
manoeuvring reentry vehicle based on an augmented
Kalman filter. Position, velocity, drag force, and
manoeuvre forces yield the augmented state vector
and are estimated by an extended Kalman filter.
The performance of the proposed Kalman filter,

however, is degraded if a non-manoeuvring vehicle
is considered. Manohar and Krishnan’  reconstructed
a rocket trajectory using differential corrections
with measurements that could not be provided by
a single radar’. A simple model that includes the
unmodelled acceleration input seems to be applicable
to estimating trajectory online if a recursive determination
of input is well defined.

Chen and other researchers introduced input
estimation technique to solve tracking problems’.rO.
Batched and recursive least-squares method were
also successfully used to estimate input in inverse-
heat conduction problems”~12.  The proposed input
estimations were derived by assuming that the input
are constant within the entire operation time of the
system. Meanwhile, Lee and Liu assumed the input
to be constant over the sampling period to form
a recursive algorithm for input estimationr3.“.  It
provided an accurate estimation in reentry vehicle
trajectory estimation and initial leveling in a strapped-
down inertial navigation system. These two input
estimators are built under different hypotheses about
the input. This investigation presents the reentry

’ vehicle trajectory estimation methods with these
two.input  estimation algorithms and compares their
accuracy in terms of trajectory estimation errors
by simulations.

This study formulates a reentry vehicle trajectory
model with the normal gravity formula’6.  Two algorithms
for input estimation arc derived under two assumptions
about input to estimate model errors of the formulated
reentry vehicle trajectory model. Trajectory estimation
method is then built when the estimated input are
substituted into the extended Kalman filter. Simulation
results, based on a set of data generated from the
reentry vehicle trajectory model with manoeuvring
forces, show that the proposed trajectory methods
with two input estimators are quite satisfactory.
Sets of simulation data from a model with six degrees
of freedom (6-DOFs)  and of real fight data arc
used to evaluate the performance of the scheme.

2. TRAJECTORY MODEL

Consider a flight vehicle in the reentry phase
over a flat and nonrotating earth as illustrated in Fig. 1.
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I g

Figure 1. Reentry vehicle flight geometry

Assume the reentry vehicle to be a point mass with
constant weight following a ballistic trajectory in
which two types of significant forces, drag and
gravity, act on the reentry vehicle. The manoeuvring
reentry vehicle trajectory model in radar coordinate
(O,, X,, Y,, 2,)  centred  at the radar site, can be
expressed asi7

PV2* ---gcosy,siny,  +a,
vx  - 2c, (1)

--gcosy, cosy,  +a, (2)

2
- -Kg&y,-g+a,
" - 2cb

where

y1 = tan-I(-  vz
JVX

)

(3)

y2  = tan+)
V

Y

The normal gravity model g, which is a function
of altitude, is employed.

Equations (1) to (3) are formulated with certain
assumptions such as point mass and constant weight
of the reentry vehicle. Extra acceleration is considered
to describe the model error induced by violation
of assumptions, unpredictable and unexpectable
forces during flight, parameters uncertainty, and
other sources. Let input of the model be

ui =aI  +a; i = 4,5,6 (4)

The model can be rewritten as

. PV2---gc0sy,siny,+u,
” - 2cb

* -pv2gcosy,  cosy,  +u,
vY= 2c (6)

b

2
’ -Egsiny,  -g+u,
" - 2cb

Let the state vector be

x=[x1 x2 5 x4 '4 alT
[ 1T

= x y z v, vy v,

(5)

(7)

The nonlinear state equation can be written as

k=F(X)+  qu  + I,,& (9)

where

x4

x5

'6

-P(x,Z  +x,2  +x,2)gcosy,siny,
F(X)=  2cb

--$x: + x5’ + x,‘)g  cosy, cosy,
b

1 J&x: +x,Z  +x,2)gsiny,  -g
b 1
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O 03x33x3

(I)= 03x3 13x3[ 1
u= 0 0 0 u4 u5  uJT[

A precision digital phase array radar is considered
in the system for detecting the reentry vehicle. The
detected target’s position is transferred into Cartesian
frame first and filtered as position, velocity, and
acceleration by an a-P filter. Since the filtered
acceleration has less accuracy, the filtered position
and velocity are usually taken as the main measurements
of the radar. The measurement equation ignoring
the process inside radar is then formulated as

Z=HX+& (10)

in which noise vector s is assumed to be a set of
independent random variables with diagonal covariance
matrix R. Equations (9) and (10) form the dynamic
equations for the vehicle during reentry.

The predicted and updated state vectors of the
extended Kalman filter (EKF) with input vector u,,
from t = nAt to t = (n+l)At,  n = 0,1,2  ,...,  are
givenI by

k+,,n = o”in/n + <pun (11)

%+lh+, =R+lln  +Kn+l(Zn+l  -HR+*,n) (12)
where

3. RECURSIVE INPUT ESTIMATION

The extended Kalman filter will typically converge
with long time propagation if un is omitted in Eqn (11).
However, a long convergence time is unacceptable
for online requirement. An algorithm must be developed
to estimate the input acceleration and achieve a
rapid and accurate trajectory estimation that yields
some desired level of accuracy.

Let x”+,,,,  and gn+,,n+,  denote the predicted
and updated states, respectively, for the EKF
with no input at t = (n+l)At.  For simplicity,

denote z,,+,  =kn+,,“+,  , I”+, =X,+,,,,+,  , and let

M,+, = (I - K,+,Hh,  9 N,z+, = (I -  K,+,H)(p  . The up-
dated state can be organised as

ll+1 I-I I

I",, =(n Mi)x* + Lc(n Mn+i)Kn+jzn+j +Km+lZn+I
i=n+l j-1  i=l+j

I = 0,1,2,  . . (13)

Assume that an input is applied during
kAtItI(k+s)At,

0 t<kAt,t>(k+s)At k,s>O
u=

‘k+l kAtItS(k+s)At  1=0,1,2  ,...,  s (14)

The updated state vector in the EKF formation
with input is given by

k+l

 (n”ijik
i=k+l

I-I I

+ c(n Mk+i)(Kk+jZk+j  +Nk+juk+j-l)
j=l i=l+j

+  Kk+lzk+l  +  Nk+IUk+l-I (15)

with ik =zk . Let the difference between these
two formations be

A Xk+l = ‘k+l  - ‘k+, (16)

Define the residuals for the EKF formation
without and with input to be

zk+, = Zk+, - HFk+, ; ik+, = Zk+, - Hik+,

3.1 Algorithm 1

Suppose uk+, , I = 1, 2 ,...,  s to be constant
vector within kAt I t I (k + s)At  . Substituting kk+,

and xk+, into Eqn (16)  one has:
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I

(1 -K+,WN’nAXt+,-, + cp  %+,-I) kAtStS(k+s)At

a+, =
0 otherwise (17)

Since the input are all constant, let

Axk+i = AktI (puk+l-1 (18)

where A,, is a constant matrix at t = (k+Z) At
and A,=O.

Substituting Eqn (18) into Eqh (17), it yields:

(r - Kk+,  ff..(@dk+,-,  +  I) kAtItI(k+s)At
A k+I  =

i
(19)

0 otherwise

The regression equation can then be written
as

zk+, = Bk+l uk+I-l  +  ikt, (20)

where

BktI = H&,+4’

The recursive least-squares input estimator,
named algorithm 1, can be expressed”*‘*  by

,.
uk+l-l =  ;k+,-2 +  Gkt, (z,+, - Bkt, u^k+,-2) (21)

where

G k + , =  7-l vk+,-, Bk+, bk+,  Y-lvk+,-, BkT, +  d-l

Vk+,-I  = [I - %+,-,  B/c+,-1 II’-’ vk+,-2

6 =  R +  f&+,+,/k+,H T

From the regression equation, zk+, excites the
input estimation mechanism. zk+, can be rewritten
as

zk+, = &+,  - HX;,, I+  H(X;+, - Xk+,  >

The terms of Zk+,  - HX;,,  and Xi,, -zk+,
represent the estimation errors induced by the input
and the EKF  with no input at t = (k + Z)At  , respectively.
It means that the estimated input contains not only
input but also state estimation errors consisting of
truncation error, uncertainty of initial values,
measurement noise, and so on. Although an actual
input cannot be estimated, a precise trajectory
estimation is reached. In addition, both batched
and recursive input estimators are available for
algorithm 1.

3.2 Algorithm 2

Assume uk+, to be a constant vector over the
sampling period At. The difference induced by the
abrupt input, AXk+,  , can be written as

mkt,= Mk+, mk+,-l +  Nkt, ukt,-l

The residual is then expressed by

Fkt, =  H”k+, Mk+,-, +  HNkt, uk+l-l  +  ik+,

It leads to the regression equation

Yk+l  = @kt, uktl-l +  ik+, G-9)

where Yk+,  means the pseudo measurement vector,

Y =zk+,ktl -H-k,, ~ktl-l

Q, k t l = HN,t,

Therefore, algorithm 2 for input estimation’5
is given by

A 1
uktl-l ='ktl-2 +  Gk+,  @k+, - ‘k+,‘k+,-2  ) (23)

where

fkt,= zkt, - H"kt,  Gkt,-,

Gkt,-, = Mkt,-, &kt,-2 +  Nkt, ikt,-2
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G  = vk+I-l  Ok+, 5-l Xs.  k/k+,-’ =  +k+l-l  i;+l-l/k+l-l  +  v’k+l-l (25)

vk+I-I  = vk+l-2

- vk+l-2  @:+,[@k+, vk+l-2  @;+I  + @@k+l vk+I-2

where 5 is the same as algorithm 1.

The pseudo measurement vector Yti, can be
rewritten as

?k+, = [tzk+, - Hx;,,) + H”k+,  @k+,-,  - xk+,-l  11

+ H(X;+,  - Fk+,)

ne tm9 i?k+,-, - Fk+,-,  , represents the difference
between the EKF with no input and with input at
the previous time interval. It is an extra term as
comparing to algorithm 1 that leads algorithm 2
to be more accurate than algorithm 1. However,
algorithm 2 is more complex and recursive input
estimator is its only choice.

In Eqn (14),  k and s represent the starting and
stopping indices of the system input, respectively,
and can be determined by testing. The test for
detection of input for two algorithms is defined
asIs

lz.1
d-V,

’ ts, existence of 24, for i=4,5,6  (24)

otherwise U,  is absent where Vii denotes the iit”
element of V and [-la,,  5, ] is the confidence interval.
Suppose the test defined in Eqn (24) to be normally
distributed, then, the value oft., can be determined
by inspecting the cumulative normal distribution
table for a preset confidence coefficient a.

4. TRAJECTORY ESTIMATION

Once the input is estimated, the EKF is corrected by
the estimated input at the same time. By incorporating
the online input estimator into the EKF, the predicted
and updated states at time interval kAt  I t I (k + s)At
are:

-vXk+Uktl = -km,-,  + K;+, cz,,,  - H-;tl/k+,-,)  (26)

The Kalman gain becomes:

K’k t l =  P,‘,,,,_,HT(HPr,,,,_,HT  +  W’ (27)

with the covariance matrices of the adaptive filter
at kAt  I t 5 (k + s)At  being

P’ktMtI-1 = pktDktI-l + @ktl-ILkt16tl-l + 'PhtdT

= PktMtI-I  +  &iktI-I
(28)

Kmktl  = (I  -Kit, fo fLkt,-I (2%
where

Pktifktl-l =+ktH  Lkt,  &,-1  +<P'kt,-l<PT

Lktl =’ =kt2 =Nkt2  vk N:t2

‘kti  = g( fi”k+i-l  INktj  Vktj-1  Nit/  (hM:ti-I>
j=l  i=ltj i=l+j

P’ktUkt,-,  denotes the increment in covariance
introduced by Gi, i = k,  k + 1, . . . . k + l-l. For time
beyond the interval kAt  I t 5 (k + s)At  , state estimation
can also be based upon the original EKF. It is
noted that the initial states and covariance matrices
at t > (k + s)At  are reinitiated by iit;s/kts  and P”+s,kts  .
Figure 2 schematically depicts the proposed method
which consists of the EKF and algorithm 1 or
algorithm 2. The detailed steps of the proposed
method are given in Appendix 1.

5. SIMULATION ANALYSIS

This section evaluates the performance of the
trajectory estimation methods with two algorithms
in terms of trajectory estimation errors by simulations.
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RV MOVEMENT B RADAR DJ~‘EcMON

INPUT
EKF WITHOm

INITIAL
ESTIMATOR EQN

INPUT
coNDrlTons  -

ww23)

Figure 2. Mechanism of the proposed filter  scheme

Two cases of simulation, whose data are generated
from the two different models, have been presented.

Case 1

A typical manoeuvring trajectory is generated
from Eqns (l)-(3) with Cb  -2524  kg/m2  and lateral
accelerations, a, = 5 g, uY = 5 g, and aZ = 15 g
during 5 s I t I 10 s , 12 s 5 f I 16 s, and
15  s I t 5 20 s, respectively. Figures 3 and 4
demonstrate the measured trajectory with normally
distributed measurement noise.

During estimation, Cb = 5048 kg/m2  is assigned
to increase the model error for showing the necessity

I : i I

h. . . . . . . . . . . . . . . ..i......... I,+j . . . . . . . . ;........;.......I 1
u] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~.......
tt  I t -I

E
= 15

c
. . . . . . . . . . . . . y-/fqz . . . . . . i...

. . . . . . . . . . . .

of input estimation. Let a = 0.95, R = 0.03 I,
Q = 0.03 I, and At = 0.05 s. Initial of V is taken
as 20 I. Figures 5 and 6 illustrate the estimation
errors in position and velocity, respectively, using
the EKF with no input. Figure 7 shows the standard
deviation for position and velocity. Large estimation
errors along downrange, offrange, and altitude axes
are unacceptable for tracking and interception. The
standard deviations of the estimated state are all
bounded and small. Figures 8 and 9 display the
estimation errors in position and velocity generated
by the EKF with two input estimation algorithms.
Obviously, it is much less than by the EKF with
no input and shows that the EKF with input estimator

1000 I I I
I

.~
lime (SW)Time(sec)

Figure 3. Measured position for Case 1 Figure 4. Measured velocity for Cuse 1
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EKF without input

sm,  .-.-....L-.-....-L.----

t

f L.yI --__I  --_-___-i --_---_

-7om;
1

I
10 M 30 40 50 60

Time (set)

Figure 5. Position estimation error using EKF without input
estimation for Cuse 1.

400
EKF without input

I I I I I
: dcwnrang$

\ i/altitude i
--------;------ -; -------;--------r--------I - - - - - - -

.,po  --___-_-  L _--__--

I

i.y ;--------,--------‘--------t---------

-14001
10

zb I
0 33 40

sb
60

Time (WC)

Figure 6. Velocity estimation error using EKF without input
estimation for Care 1.

is much better than the original EKF. Input estimation
indeed plays an important role. Figures 10 and 11
compare the standard deviation of the estimated
position and velocity, respectively, for two input
algorithms that are small and bounded too. It represents
that the estimated trajectories using these three
methods are deviated from their own in a small
region with certain probabilities.

Comparing these two algorithms, the estimation
errors induced by the EKF with algorithm 2 are
half of errors provide by the EKF with algorithm 1.
It is reasonable since the assumption of the algorithm 2

EKF without  input

I i i i i i I

Tima  (sac)

Figure 7. Standard deviation of the estimated states for
Case 1.

Algorithm t

Algorithm 2

Time (WC)

Figure 8. Position estimation error using EKF with input
estimation for Case 1.

about the input is more close to the real. Algorithm 2
is more accurate than algorithm 1 but more complicated.
Selection of algorithm 1 or algorithm 2 depends
on what the main concern is.

Case 2

A set of data, generated from a 6-DOFs  model,
was employed to demonstrate how the proposed methods
process the model error. The 6-DOFs  model of a
flying vehicle is a set of equations of motion including
both translational and rotational motion. It is more
detailed than the 3-D model indicated in Eqns (l)-(3).
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Algorithm 1

0 10 m a 40 50 60

Algorithm 2

lime (set)

Figure 9. Velocity estimation error using EKF with input
estimation for Case 1.

Algorithm 1

Figure lO.Standard  deviation of the estimated position for
Case 1.

Algorithm 1

0 10 20 33 40 50 60
Time (set)

Figure 11. Standard deviation of the estimated velocity for
Case 1.

Time(sec)

Figure 12. Measured position for Case 2

Time (WC)

Figure 13. Measured velocity for Case 2

Time (SEC)

Figure 14. Position estimation error using EKF without input
estimation for Case 2.
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Time (SK)

Figure lS.Veiocity  estimation error using EKF without input
estimation for Case 2.

EKF without input

L --.-L-----C-----L-----L------,--------,-----

:~~~~~::::~~~~:-_

-C-----C-----t-----t-----.----t-------

2m 3m 320 340 360 380 400 420 440

EG  dhoul  input

283 300 320 340 360 333 400 420 440
Time (WC)

Figure 16.Standnrd deviation of the estimated states for
Case 2 .

Algorithm 1

Time  (sac)

Figure 17.Position  estimation error using EKF with input
estimation for Case 2.

Algorithm  I

Time (WC)
Figure 18.Veiocity  estimation error using EKF with input

estimation for Case 2.

Alootithm  1

Algori thm 2

Time (sac)

Figure 19.Standard  deviation of the estimated position for
Case 2.

Alaorilhm  1

Algorithm 2

2m m 320 340 360 3sJ 400 420 440
Time (SEC)

Figure 20.Standard deviation of the estimated velocity fo-
Case 2 .
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Figures 12 and 13 show the measured trajectory
from t = 270 s to t = 440 s, detected by a precision
radar. The noises in the measured trajectory are
simulated from a noise model of that radar. Let
C,  = 9646.5 kg/m*, u = 0.95, R = 0.03 I, Q = 0.03 I,
and At = 0.5 s. Initial of V is taken as .20  I too.
Figures 14 and 15 show the estimation errors in
position and velocity along three axes using the
EKF  with no input and figure 16 displays their
standard deviation. The maximum errors of the
estimated position and velocity in altitude reach
to 17 km and 610 m/s, respectively. It seems too
large for trr+ing and intercepting a reentry vehicle.
Figures 17 and 18 illustrate the estimation errors
using the EKF with two input estimation algorithms.

These are significantly less than using the EKF
that the proposed approach is still much better
than the EKF  like the results of Case 1. Input
estimation contributes to reduction of error. Furthermore,
algorithm2providesamoreaccuratehrajectoryestimation
under a 6-DOFs  model which has a large model
error. Figures 19 and 20 display the standard deviations
of the estimated error induced by the EKF with input
estimation. The plots of standard deviation for three
methods are consistent for Case  1.

6. REAL FLIGHT ANALYSISI
A set of real fight  data is ultilised to demonstrate

the performance of the two algorithms of input

0 5 10 15 20 25 30 35 40
Time (set)

Figure 21. Position estimation in downrange

95 : : : :‘----T-----,.--.--,------,------~------;------,-----hi j / i 1 / 190 _-__ -S-----I------I------~------~-----~------~----- i
: Meaaur6d

2 i ,Algorit(m  1 i I I

I
I  .a

10 0 ; 1 0 l b 2 0 2i 3l 35 4 0
Time (set)

Figure 22. Position estimation in offrange

I I
00 ____-; ___---I 1------ ;------’ r  -----:  -_-___:  ____- -I

m I

80
* I ; I

i - - - - ? - - - - - - ! - - - - - - t - - - - - - , - - - - - ” - - - - - - , , - - - - -’ 1

-101 I
0 5 10 15 al 25 33 35 40

Time (set)

Figure 23. Position estimation in altitude

4m I I I I

Time (set)

Figure 24. Velocity estimation in downrange
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--:------:------;------:-----: __---_  ~ -___--II
-mo 5 lo 15 20 25 xl 3s 40

Time (ssc)

Figure 25. Velocity estimation in offrange

estimation considered. The reentry vehicle was
launched at about 400 km from the impact point.
The raw measured 40 s data span of the reentry
vehicle by a precision radar with sampling rate
4 Hz in this flight test was utilised for this study.
The reentry vehicle was first detected by the radar
after reentry in the coast phase at a range of 132.5 km
with /IsO  ~~~O~~”  and Us! ~O~~~”  wrt the radar. Let
Cb = 9646.5 kg/m2  during estimation. Figures 21 to 26
show the comparison of the measured and estimated
trajectories in downrange, offrange, and altitude,
respectively. The filtered trajectories, including
position and velocity, using the EKF with input
estimation follow the measured trajectory well, as
opposed to estimation using the EKF without input
estimation. Algorithm 2 provides a trajectory more
close to the measured trajectory than algorithm 1.
It is consistent with the simulation results.

7. CONCLUSIONS

The model error is the main difficulty for trajectory
estimation and is solved by the proposed input
estimation method. Two recursive algorithms for
input estimationunder different assumptions about
input have been introduced. This investigation presents
estimation methods, composed of the extended Kalman
filter and two input estimation algorithms, to improve
the accuracy of the reentry vehicle trajectory estimation.
Algorithm 1 is derived by assuming the input to
be constant over operation time of a system. Assumption

NO. 4, OCTOBER 2005

.,m,  --_-_  - --~------.------.------c------~------.------
t vi 1

-1ZlO I
0 5 la 15 20 25 30 35 40

Time (ssc)

Figure 26. Velocity estimation in altitude

of constant input within the sampling period yields
algorithm 2, which is more accurate but complicated
than algorithm 1. The performance of these two
algorithms has been evaluated by simulations, in
terms of trajectory estimation errors, and real flight
analysis. Algorithm 1 or 2 may be chosen by examining
the major concern. The trajectory estimation approach
based on algorithm 1 or algorithm 2 is worthy of
further study and applications.
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Appendix 1

It gives the detailed steps for the proposed extended Kaiman filter with two
input algorithms. Assume that the input to be estimated is existing from beginning,
that is 2 = 1. The detection process will automatically stop inserting the estimated
input into the extended Kaiman filter with input if the input is absent. The detailed
steps are illustrated as follows:

Step 1 Setting initial values and letting I = 1, k = 1.

Step 2 Taking new measurement Z,, and estimating states using the extended
Kaiman filter with no input.

Step 3 Calculating residual from zk+!  = Z,, - Hk+i.

Note that Step 4 has two parts for different input estimation algorithms.

Algorithm

S t e p 4.1

S t e p 4 . 2

S t e p 4 . 3

Algorithm

Step 4’.1

Step 4’.2

Step 4’.3

Step 4’.4

Step 4’S

S t e p 5

Step 6

Step 7

1

Calculating A, from Eqn (19).

Calculating B,,  From B&+,  = HAL+,  cp  .

Estimating input from Eqn (21).

2

Calculating Gk+,-, = Mk+,-,  Gk,  + N,,  i&+,-2  .

Calculating Mk+, = (I - Kk+,  fO$,  , and Nk+r  = U - &+,Hh  .

Calculating (pc+,  = HN,,, .

Calculating the pseudo measurement ?k+r = zk+, - HMk+,  Akk+,-,  .

Esitimating input &+,-,  from Eqn (23).

Detecting input using Eqn (24). If Gt+l-l satisfies Eqn (24), then go
to Step 6. Otherwise, let k = k + 1 and go back to Step 2.

Estimating states using Eqn (25) and Eqn (26) with the estimated
input ilr+,-,  .

Letting k = k + 1 and returning to Step 2.
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