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1.  INTRODUCTION
Numerous research studies that offer computational or 

analytical solutions to impact problems apply a step in stress or 
velocity on the surface of the medium as a boundary condition 
without considering the impact1-4. In reality, whenever atleast 
one of the bodies between the impactor and target is finite, 
or has multiple layers or is inhomogeneous, reflected waves 
reach the impact surface and change its velocity and stress. 
As a result, the velocity and stress profiles generally vary with 
time, making it difficult to predict them before the problem 
is solved. Meyers5 investigated the interaction between elastic 
waves and the interface between two layers with varying 
properties. Meyers5 used equilibrium and continuity equations 
at the interface to calculate the strength of reflected and 
transmitted waves. Chen6-7 presented an analytical solution 
for an impactor’s impact on a target with periodic layers and 
obtained the expression of asymptotic stress using Floquet’s 
theory. Their conclusions show that the target’s heterogeneities 
raise the average stress relative to the stress in the homogeneous 
target.The behaviour of a layered medium to shock loading 
was observed by implementing the nonlinearities through the 
shock and particle speed relation. One of the limitations of the 

studies is that it was restricted to semi-infinite target-impactor 
systems and periodic laminates. Agrawal and Bhattacharya8 
studied the shock propagation in a layered media using the 
jump conditions along with maximal dissipation criteria and 
assumed the medium was homogeneous to elastic waves. 
However, the materials are not homogeneous to elastic waves 
because of different impedances.

Singh9, et al. modelled the interaction of two shock waves, 
two rarefaction waves, and a shock wave with a material 
interface between two layers, a free and fixed boundary. 
Singh10, et al. examined how elastic waves, which are typically 
neglected during shock propagation, affect the behaviour of a 
multilayered media to an impact loading. The effect of wave 
propagation and debonding in a metallic system with multiple 
layers with continuously varying impedance under impact 
loading was investigated by Fernando11, et al. and Kevadiya 
and Singh12. Singh13 numerically found the shock response by 
approximating the non-linear Hugoniot with a multi-linear 
behaviour. The present study is not explicitly correlated to 
recent studies on the shock response of layered medium8-13, 
which concentrate on layered media that are shocked with 
stress above the Hugoniot Elastic Limit (HEL) level.

In order to obtain the formulas for the velocity and stress 
in the layered medium for the impact problem for shocks below 
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When an impactor strikes a layered target, both the impactor and the target experience waves. The waves 
produced travel and engage in interactions with other waves as well as the interfaces in the impactor-target system. 
For the impact problems on a layered mediumwith periodic properties and layered elastic media of Goupillaud-type 
(each layer has the same wave travel time), researchers have presented an analytical solution for stress variation with 
position and time within the target. However, the solution for an elastic media not satisfying the above conditions 
is not available in the literature. The present study fills this gap and finds the behaviour of a generalized layered 
medium to an impact problem. The response of the material at any position inside the layered medium is found by 
solving the interaction between waves, interfaces, and boundaries. The mass, momentum balance and constitutive 
relationship are solved to get the exact analytical expressions for particle velocity and stress for each possible wave 
interaction happening in the impactor and the layered medium. The expressions are utilized in a computer program 
to study the impact behaviour of a layered media. The code tracks each wave as it travels through the system and 
identifies those interactions that occur in the shortest time, uses the stress and velocity expression for that interaction, 
and updates the state of the material. When stress produced at the impact surface is tensile in nature, the impactor 
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the HEL, Gazonas14 combined d’Alembert’s wave equation 
solution with that of the Laplace transform technique. The 
study of Gazonas14 was only applicable to a single target, but 
Gazonas15 expanded it to include targets with multiple layers of 
the Goupillaud type (each layer has the same wave travel time). 
They examined a one-dimensional impact in which a semi-
infinite Goupillaud-layered elastic target collides with a semi-
infinite impactor. Using the Riemann invariants method, they 
created a set of recurrence relations for the elastic impactor and 
the target’s one-dimensional impact. They showed that the type 
of heterogeneity in the target does not affect the asymptotic 
velocity and stress. Gazonas14-15 made the study for a semi-
infinite target and impactor. They did not permit the detachment 
of the target and impactor when the stress of a tensile nature is 
produced at the impact interface.

symbols stand for particle velocity, stress, and strain: up, σ, and 
ϵ. The change from state 0 to state 1 in strain value is represented 
by the expression 1 0[[ ]] = −   . In a similar way, the variation 
in velocity and stress is defined. The wave propagation 
velocity is represented by U. The wave propagation speed 
for elastic waves (c) is calculated to be / ( / )U c E ρ= + − =  
where ρ and E represent the density and elastic modulus of the  
layer, respectively.

Figure 1.  Abstract representation of an impactor moving with 
velocity upImpact strikes the layered medium with layers 
L1, L2 … Ln.

The primary objective of this research is to study the 
behaviour of an elastic medium with multiple layers to a low-
velocity one-dimensional impact by observing interactions 
happening in the layered medium. A schematic representation 
of an impact between an impactor flying at velocity upImpact and 
a target made up of layers L1, L2 … Lnis shown in Fig. 1. The 
method performs well for finite, non-periodic, non-Goupillaud 
targets because it is applicable to arbitrary impactor and target 
systems and, therefore, is more general. The remainder of 
the article is structured as defined. The governing equations 
and the method used for determiningthe impact response of 
the layered medium are covered in Section 2. The various 
wave interactions happening in the impactor-target system are 
discussed in Section 3 of the article. Section 4 validates the 
proposed model using the results reported in the literature and 
discusses the behaviour of the layered medium to low and high-
velocity impacts that result in elastic waves in the medium. 
The finite element analysis results and the comparison of the 
stress and particle velocity variation in the layered target are 
also done in Section 4. The conclusions of the current work are 
outlined in Section 5.

2.  GOVERNING EQUATIONS AND METHODOLOGY
The particle velocity, stress, and strainat a time t for a 

particle at position X in the reference configuration are denoted 
as up(X,t), σ(X,t), and ϵ(X,t), respectively. Eqns (1) and (2) 
describe the Lagrangian form of the jump equations derived 
from the mass and momentum.10-13

[[ ]] [[ ]] 0pU uσ ρ+ =
                                                      

(1)

[[ ]] [[ ]] 0pu U+ =
                                                       

(2)
Superscripts 0 and 1 represent the states prior to and 

following wave propagation, respectively. The following 

Figure 2.  Schematic diagram representing the wave propagation 
and the different characteristics attributedto each 
wave in the impactor and the target.

Waves are produced in the impactor and first layer of the 
medium as a result of the impactor hitting the layered medium. 
The waves produced in the impactor and the first layer of the 
medium during the impact propagate and interact in various 
ways. Exact analytical expressions for particle velocity and 
stress are obtained using the mass and momentum balance for 
each possible wave interaction happening in the impactor and 
the layered medium (discussed in section 3). The expressions 
are utilized in a computer program to study the behaviour of 
a layered medium subjected to an impact. Every interaction, 
including the repeated interactions, in the impactor and the 
layered medium system is tracked and solved by the created 
program. The code is written to solve the repeated interactions 
in the flyer-target system. After every interaction, the final state 
of the material is evaluated in terms of velocity and particle 
velocity.

The wave is stored in the code with the material state as 
particle velocity, stress, and strainbefore and after the wave, 
and wave attributes as its direction of travel, the origin, and the 
end coordinates of the wave from the X-t graph, the layer in 
which the wave is moving, its status, and its propagation speed.
The status of the wave informs whether the wave has already 
interacted (active, status=1) or is yet to undergo the interaction 
(passive, status=0). It helps in wave tracking as only the 
active waves have to be traced for the wave interactions in the 
algorithm. Figure 2 represents an example of an active wave 
which starts from (X1, t1), propagates in material A with speed 
cA, moves in +veX direction and ends at (X2, t2). It shows that 
the material state is changed from (σ1, up1, ϵ1 ) to state (σ2, up2, 
ϵ2 ) due to the propagation of the wave.

The impactor-target system’s interactions have all been 
solved by a computer program that analyses each wave as it 



SINGH, et al.: STUDYING THE INTERACTION OF WAVES TO DETERMINE THE IMPACT RESPONSE OF A LAYERED ELASTIC MEDIUM

347

travels through the system. The code initially solves the wave 
interaction that happens at the earliest. The wave interaction 
causes the system to produce additional waves and changes the 
material’s condition. After each interaction, the parameters are 
changed, and the procedure is repeated until all the interactions 
in the system have occurred. Fig. 3(a) represents the input 
variables fed into the computer program and the output sought 
from it. In order to specify the steps followed in the developed 
code to get the impact response, a flow chart representing all 
the tasks performed inside the program in a stepwise manner is 
shown in Fig. 3(b).

The advantage the present model offers is that it provides 
the exact solutions for the impact problem in terms of stress and 
particle velocity. The algorithm finds the solution by studying 
the wave interactions in the layered medium. The model 
doesn’t have to find the solution by time marching, as it uses 
the exact expressions for the stress and velocity and only has to 
follow the wave interactions occurring in the layered medium. 
The other advantage is its good computational efficiency,as 
this algorithm does not require the mesh requirement over the 
whole domain. Only the heterogeneity in terms of material 
interfaces and boundaries needs to be modelled; only wave 
tracking is required, and the analytical expressions are used to 
get the updated material state.

3.  VARIOUS INTERACTIONS OCCURRING IN 
THE LAYEREDMEDIUM
The generated waves in the impactor and the layered 

medium during the impact spread out and interact with the 
boundaries, interfaces, and other waves in the system. Elastic 
waves are produced when an elastic impactor collides with 
an elastically layered object. These elastic waves experience 
many interactions, and resolving them results in the target’s 
impact response. These interactions have been thoroughly 
discussed and are included below.

3.1  Elastic Waves in the Impactor and the Layered 
Media Generated after the Impact
Elastic waves begin to propagate in the impactor and 

layered target media when an elastic impactor travelling at 
a velocity upImpact impacts an elastic layered media. The X-t 
schematic of the generation of an elastic wave inside the first 
material of the layered mediumdue to impact is shown in  
Fig. 4(a), and the σ- ϵ state of the layer is shown in Fig. 4(b). 
The mass and momentum balance equations described in  
Eqns (3) and (4) are used to compute the final output in the 
impactor and the first layer of the elastic layered media.

1 0 1( ) 0Impactor Impactor p pImpactc u uσ σ ρ− − − =           (3)

1 0 1 0( ) 0A A p pc u uσ σ ρ− + − =                            (4)
where, σ0 = up0 =0. σ0 and up0 are zero as the target is initially 
at rest and stress-free. The above equations form a set of two 
equations in two variables where σ1 and up1 are variables. 
Solving Eqns (3) and (4), we get the expression for the final 
stress and velocity state after impact. 

3.2  Elastic Wave Interaction with an Interface Between 
Two Layers of the Medium
At the moment of impact, the wave created in the first 

layer moves toward the material interface and interacts with it. 
Elastic waves are reflected and transmitted when they interact 
with a material’s interface. The type of the reflected wave is 
dependent on the elastic impedance difference between the two 
layers of the medium forming the interface. The reflected wave 
may be of a loading or unloading type. Mayers5 determined the 
reflection and transmission ratios based on the impedances of 
the material composing the interface to determine the strength 
of transmitted and reflected waves. The material gets loaded 
by the reflected elastic wave when the impedance of layer B 

(a)

(b)

Figure 3.  Schematic diagram showing the working of the 
computer program by means of (a) Input and Output 
diagram for the code, (b) Flow chart mentioning the 
various steps followed in the code to get the material 
response.
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Type of interaction     X-t diagram    σ-ϵ curve

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Impactor hits the
layered medium

Elastic wave interacts with
the interface between the
layers of the medium

Two elastic waves interact
with each other inside a
layer of the medium 

Elastic wave interacts with
the free surface of the 
medium

Two elastic waves interact with
each other at an interface
between the layers
of the medium

Figure 4.  The various interactions occurring in the layered medium, the update in the impactor, and the different layers of the 
medium are depicted using X-t and σ- ϵ graphs. 
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is more than that of layer A, and it gets unloaded when the 
impedance of material B is lower. The material state is depicted 
in the X-t and σ- ϵgraphs, respectively, in Fig. 4(c) and 4(d) for 
elastic wave interaction with an interface between two layers, 
A and B, of the medium. Eqns (5) and (6), respectively, provide 
the material’s final value of stress and particle velocity. 

3 1 2 1 2( ( )) / ( )A A B B A B A B p p A A B Bc c c c u u c cσ ρ σ ρ σ ρ ρ ρ ρ= + + − +

3 1 2 1 2( ( )) / ( )A A B B A B A B p p A A B Bc c c c u u c cσ ρ σ ρ σ ρ ρ ρ ρ= + + − +                                       (5)
3 1 2 2 1( ) / (( ))p A A p B B p A A B Bu c u c u c cσ σ ρ ρ ρ ρ= − + + +

                                                             (6)

3.3  Interaction of Two Elastic Waves Within a Layer 
of the Medium
In a linearly elastic material, two elastic waves interact 

to create two elastic waves. Depending on how the interacting 
elastic waves behave, the material’s final condition may be 
more or less stressed. The material gets unloaded as a result of 
the interaction of two elastic waves. Two loading elastic waves 
interact with each other to load the material. The strength of the 
loading and unloading elastic waves determines the final state 
following an interaction between loading and unloading elastic 
waves. Eqns (7) and (8), respectively, provide the material’s 
final state of stress and particle velocity. The material state 
when two elastic waves interact with one another inside a 
layer of the medium is depicted in the X-t and σ- ϵgraphs, 
respectively, in Fig. 4(e) and 4(f).

4 2 3 2 3( ( )) / 2A A p pc u uσ σ σ ρ= + − −                              (7)

4 3 2 2 3( ( )) / (2 )p A A p p A Au c u u cσ σ ρ ρ= − + +           (8)

3.4  Elastic Wave Interaction with the Free Surface 
of the Medium
A wave on interaction with a free surface gets completely 

reflected, and no part of the incident wave is transmitted. The 
stress level at the free surface must remain zero. The stress 
on the free surface remains zero because the reflected elastic 
wave is of tensile form and has the same strength as that of the 
initial elastic wave that interacts with the free surface of the 
medium. The particle velocities produced by the incident and 
the reflected waves are equal (magnitude and direction). Two 
particle velocities added together provide twice as much initial 
particle velocity. The final particle velocity increases by two 
times only when the free surface is initially at rest. It is noted 
that the particle velocity varies upon interaction with the free 
surface by a factor of two times that produced by the elastic 
wave. The stress at the free surface is always zero, and the 
final state of zero stress is shown in Eqn (9). Eqn (10) provides 
the resultant particle velocity, represented by up3, which also 
accounts for the velocity of the free surface. 

3 0σ =                                                                                                                            (9)
3 1 1 22( )p p p pu u u u= − −                                                  (10)

where, up3 is the resultant particle velocity after an elastic 
wave undergoes interaction with a free surface. The particle 
velocities prior to and following the incident elastic wave 
are represented by up1 and up2, respectively. The change in 
particle velocity caused by the incident elastic wave is given 
by up1 - up2. The expression for resultant velocity mentioned in  

Eqn. (10) is valid for both the cases of initially at rest and 
moving free surface. When the free surface is at rest,up1=0, 
and when it is moving, up1=upf, where upf is the velocity of the 
free surface. Figures 4(g) and 4(h) represent the material state 
in X-t and σ- ϵ for the interaction, respectively. 

3.5  Interaction of Two Elastic Waves With Each Other 
at an Interface Between the Layers
Two elastic waves can also interact with each other at the 

interface between layers A and B of the layered medium. The 
interacting elastic waves and the elastic waves generated after 
interaction propagate in different layers of the target, resulting 
in different wave properties of the interacting and the resulting 
waves after the interaction. Eqns (11) and (12) provide the 
material’s final state of stress and particle velocity after the 
interaction. The material state for the case when elastic waves 
interact with one another at the interface between layers A and 
B is depicted in the X-t and σ- ϵ graphs, respectively, in Fig. 
4(i) and 4(j). Material A is moved from state 2 and changed to 
state 4 in layer A by means of an elastic wave travelling back 
into layer A, and the state of layer B is moved from state 3 to 
state 4 due to an elastic wave moving forward in layer B.

4 3 2 2 3( ( )) / ( )A A B B A B A B p p A A B Bc c c c u u c cσ ρ σ ρ σ ρ ρ ρ ρ= + − − +

4 3 2 2 3( ( )) / ( )A A B B A B A B p p A A B Bc c c c u u c cσ ρ σ ρ σ ρ ρ ρ ρ= + − − +                                             (11)

4 3 2 2 3( ) / ( )p A A p B B p A A B Bu c u c u c cσ σ ρ ρ ρ ρ= − + + +                                                             
             (12)

4.  RESULTS AND DISCUSSIONS
The impact of an elastic impactor on a multilayered elastic 

target is studied. The results are first validated with the results 
present in the literature. Figure 5(a) shows the comparison of 
stress obtained by Chen6, the present model, and FE analysis. 
Figure 5(b) compares stress and particle velocity obtained 
in the middle of a single-layered target backed by a semi-
infinite backing obtained by Gazonas14, the present model, and 
FEA analysis. However, the models reported by Chen6-7 and 
Gazonas14-15 are limited to periodically layered, single-layer 
targets and only Goupillaud-type elastic layered media. The 
method presented in this article solves those and is applicable 
to any arbitrary elastic impactor and layered elastic target 
media. 

The following is a case study of an elastic impactor 
striking a six-layered elastic target. The impactor, moving at 5 
m/s, collides with the target, causing the propagation of elastic 
waves in the impactor and the first layer of the target. The 
target’s properties are chosen so that each layer has a different 
elastic impedance. The X-t graph for the case mentioned 
above study is shown in Fig. 6. The impactor is shown from 
X=0m to X=2m, while X=2m to X=4m represents the target. 
The impactor’s free surface is represented by X=0m, and the 
target’s free surface is shown by X=4m. The material states 
0, 1, and 2 are marked in the X-t diagram shown in Fig. 6. 
State 0 is the initial state of the target and the impactor before 
the impact. It is observed that the impact generates the elastic 
waves in the impactor and the first layer of alayered medium 
(L1). The generated waves take the impactor and the target from 
the material state 0 to state 1 and can be observed in Fig. 6 at 
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 Figure 5.  (a) σ variation at the impact surface of the periodically layered target obtained by Chen6 (Figure 5(b) of [6])), FEA and 
present model, (b) σ  and up profiles at the middle of a single layer target obtained by Gazonas14 (Figure 6 of [14]), FEA 
and present model.

(a) (b)

Figure 6.  X-t graph for the general case studied showing the wave propagation in the impactor and the layered medium with layers 
L1, L2 … Ln.

X=2 m and t=0 ms. σ1 and up1 are calculated using Eqns (3) and 
(4). The particle velocity and stress values across the interface 
between the two layers are continuous. Thus, the state of both 
the impactor and the layer (L1) goes to state 1 from state 0. The 
next wave interaction in the layered medium is the interaction 
of an elastic wave propagating in layer L1 with the interface at 
location X=2.2m. The state of layer L1 changes to state 2, and 
layer L2 observes the shift from state 0 to state 2 because of 
the interaction of the wave with the material interface located 
at X=2.2m. σ2 and up2 are calculated using stress and particle 
velocity expressions given in Eqns (5) and (6). The interaction 
results in a reflected and a transmitted wave in layers L1 and 
L2, respectively, which further propagate and interact in the 

impactor and the layered medium. In the same way, wave 
interactions are solved repeatedly, and the impact response 
is obtained in terms of stress and particle velocity. The first 
instances of the interaction of two elastic waves inside a layer 
and the interaction of an elastic wave with a free surface are 
highlighted in the X-t diagram using a black and green circle, 
respectively. A red circle in Fig. 6 marks the interaction of two 
elastic waves at a material interface. The variation of stress and 
particle velocity with time is obtained at the impact interface 
(X=2m) and an arbitrary location (X=2.6 m, denoted by a red 
dashed line) in the layered medium. 

The identical problem is also studied by doing a finite 
element analysis using ABAQUS to validate the results. A 
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Table 1. Material properties of the impactor and different layers of the medium

Property (Units) Impactor  L1  L2  L3  L4  L5  L6

Density (kg/m3) 1800 1000 1000 1000 1000 1000 1000

Wave speed (m/s) 4500 2800 1500 3500 2000 2500 1000

Thickness (m) 1 0.2 0.3 0.4 0.35 0.5 0.25

(a) (b)
Figure 7. (a) σ variation, (b) Upvariation with time obtained at the interface formed by the impactor and the layered medium (X=2m)

using FE analysis and the present model.

(a) (b)
Figure 8. (a) σ variation, (b) up variation with time obtained at the X=2.6m, an arbitrary position inside the layered medium, using 

FE analysis and the present model.

three-dimensional element of type C3D8R with hourglass 
control and reduced integration is applied to represent the 
layered medium. Uniaxial strain behaviour is simulated by 
permitting the translation only along the X axis. The layered 
material’s end face (X=4m) is kept free. The impactor’s initial 
velocity is set to 5m/s. Table 1 lists the properties of the 
impactor and the layers of the medium used for the analyzed 
problem.

The variation of stress and velocity with time at X=2m 
and X=2.6m is procured. Figures 7(a) and 7(b) show the 
comparison of the stress and velocity value calculated 
from the FE analysis and the MATLAB code at X=2m, and  

Fig. 8(a) and 8(b) show the comparison of the stress and velocity 
value calculated from the FE analysis and the MATLAB code 
at X=2.6m, respectively. Both stress and particle velocity 
outcomes calculated from FE and the developed code match 
with reasonable accuracy at the interface between the impactor 
and layered medium and any position inside the layered 
medium. The magnitude and the pattern of variation in the 
stresses and the particle velocities are a good match; some 
changes that occur in short duration are not followed in the FE 
results as the finite element method can not take jumps in the 
material state due to wave interactions. The primary purpose 
for comparing the results obtained using the code with FE 
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analysis is to verify the algorithm for the generalized case of 
an impact problem on an elastic layered medium.  

5.  CONCLUSIONS
In this research, the authors have examined the interaction 

between elastic waves and the interfaces formed by the layers 
of the medium to investigate the behaviour of an elastic layered 
media to a one-dimensional impact. The impact behaviour of 
the layered medium is determined by analyzing the interactions 
occurring in the impactor and the layered medium. A layered 
medium with layers having varying elastic impedances has 
shown the interaction of the elastic wave with the interface 
between the layers, producing reflected and transmitted waves. 
Exact analytical expressions for particle velocity and stress are 
obtained using the mass, momentum balance and constitutive 
relationship for each possible wave interaction happening in 
the impactor and the layered medium. The expressions are 
utilized in a computer program to study the impact behaviour 
by tracking each interaction in the impactor and the layered 
medium system. The results found using the present method 
are validated by investigating the identical problem using the 
finite element method. The present model uses expressions 
of stress and particle velocity to provide the exact solutions 
for the impact problem and also offers good computational 
efficiency over the finite element method as this algorithm 
does not require the mesh requirement over the whole domain, 
unlike FEM where the meshes following the CFL (Courant–
Friedrichs–Lewy) criteria are required to get accurate results. 

The proposed model can also be used for studying the 
mitigation of stress waves by using a layered medium with 
decreasing elastic impedance in the layers. The exact location 
in the layered medium where tensile stress is generated and 
whether that leads to a separation between the layers can 
also be studied using the present model. The work can be 
extended for the high-velocity impact cases that generate the 
stress above HEL, and only a shock wave is generated in the 
layered medium. There are some limitations to the current 
model. It finds the impact response of the layered medium with 
isotropic layers. The current version of the code is limited to 
one-dimensional analysis as tracking the waves and getting 
the material response in two and three-dimensional becomes 
complex. However, future projects can extend the present work 
to two-dimensional or three-dimensional impact conditions.
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