
893

Defence Science Journal, Vol. 74, No. 6, November 2024, pp. 893-903, DOI : 10.14429/dsj.74.19877 
 2024, DESIDOC

Received : 06 February 2024, Revised : 23 July 2024 
Accepted : 12 September 2024, Online published : 25 November 2024

Fuzzy Soft Set-Based Identification of Best Chaotic System for Security Applications

Meenakshi Agarwal#,*, Arvind$, Chaman Arya!, and Ram Ratan!

#Department of Mathematics, University of Delhi, Delhi – 110 007, India 
$Department of Mathematics, Hansraj College, University of Delhi, Delhi – 110 007, India 

!DRDO-Scientific Analysis Group, Delhi - 110 054, India 
*E-mail: ameenakshi68.ma@gmail.com 

ABSTRACT

Identifying the most suitable chaotic system from a pool of options to embed in a cipher system is crucial for 
ensuring the security of sensitive information. Selecting the wrong chaotic system can have serious repercussions on 
data security. This paper proposes an identification methodology that uses fuzzy soft set criteria to identify the best 
chaotic system. The methodology quantifies the graphical representation of chaotic system attributes. Then it uses 
these quantifications to make decisions based on score values computed from the fuzzy soft set, fuzzy soft matrix, 
and dominancy matrix. Simulation results demonstrate that this methodology allows for the accurate identification 
of the most suitable chaotic system without any uncertainty. Moreover, it may also help identify weaker chaotic 
systems and improve them to meet the desired level of security.
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1. INTRODUCTION
With the advancements in science and technology, 

accessing and exchanging information has become convenient 
for users over current computer and communication networks. 
Securing vital digital data is one of the major issues faced by users 
in the digital world. An encryption system plays an important 
role in information security to prevent critical information from 
being unauthorized. The encryption algorithm of an encryption 
system transforms vital plane data into cipher data which 
does not show any intelligible information. Such ciphered 
data is kept in storage media or communicated securely over 
a channel from sender to receiver. The data to be secured by 
an encryption system may be speech, text, video, image, map, 
and multimedia. An encryption system is designed by applying 
appropriate cryptographic design principles, which are based 
on the concepts of information security which deal with the 
privacy, confidentiality, authenticity, and non-repudiation of 
information1-2. The security strength of an encryption system 
depends on the difficulties of cracking its encryption algorithm 
apart from other security measures such as access control, 
integrity, key management, emergency erasure, tamper 
detection, and response mechanisms. Within the cutting-edge 
time of advanced innovations, communication, and computer 
systems if a user does not have the appropriate encryption 
systems and enough security measures, an adversary may 
get access to sensitive data and misuse it. The utilisation of 
encryption systems is expanding continuously because of their 
major part in endless security applications in defense services, 
banking, telemedicine, and indeed within the entertainment 

industries. Conventional encryption methods do not seem 
more suitable for encrypting certain data types such as images 
and videos and for encrypting such data, researchers have 
suggested new based on chaotic theory and quantum theory3-4.

Chaos is a common objective phenomenon found in nature 
which is required in chaotic cipher systems. The characteristics 
of chaos make chaotic theory very useful in various scientific 
fields including cryptography. The chaotic maps are categorised 
as One-Dimensional (1D) or High-Dimensional (HD) based 
on state variables5-7. The 1D chaotic maps are not so secure 
as compared to the HD chaotic maps having better chaotic 
performance but they have complex structures. The Hybrid 
chaotic systems consist of multiple chaotic maps to achieve high 
chaotic characteristics values and randomness. Chaos-based 
cipher systems provide good security strength depending on 
the structure of encryption algorithms and the characteristics of 
chaotic maps employed8-11. Numerous developers are providing 
chaos-based cipher systems to the customers and everybody 
is claiming that their systems attain high security to sensitive 
information. It has been found that due to some flaws in the 
embedded chaotic map, some of the encryption algorithms 
that were claimed to be secure are insecure, and ciphered data 
can be analysed to gain meaningful information about the key, 
algorithm, and data12-17. Before acquiring a chaos-based cipher 
system, it is an essential task for users to gather the specifics 
of security parameters and select the chaotic system that best 
meets their needs in terms of security. 

The inherent difficulties are often immense in the 
selection of a chaotic system. There are no simple and precise 
quantitative measures that enable an automatic decision, a 
chaotic system is better than others. A chaotic system consists 
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of numerous attributes and sub-attributes. The attribute values 
of a chaotic system that appear in graphical form are quantified 
by measuring the proportionate area covered in the graphs of 
chaotic characteristics. When numerous attributes are present 
and ambiguous situations are arrived then choosing the best 
becomes complex and challenging. To better handle this 
issue, researchers have presented different decision-making 
methodologies. Various multi-criteria decision-making 
techniques have been documented by researchers18-19 including 
the forced decision matrix approach18, the analytic hierarchy 
process18, the Delphi method18, and the decision matrix 
approach18. These techniques rely on the judgment of experts 
and are useful when quantitative measures about the systems 
are accessible.

A pattern recognition-based identification approach can be 
applied to find an appropriate chaotic system. Various decision-
making methods are reported. A classical method cannot be 
used to handle the complexity of vagueness and to arrive at the 
right decision. For making the right decision in complex and 
ambiguous situations the fuzzy set-based approaches are found 
more suitable20. The study built a game model for production 
decisions related to new energy vehicles and traditional fuel 
vehicles under a dual credit policy18-19. Decision-making 
models in agriculture are reviewed which targets the potential 
of mathematical model-based decision making20. Roy, et al. 
studied soft set theory and found its applications in decision-
making problems21. The validity of the Roy–Maji method is 
discussed and its limitations are found22. The study considers 
the selection of light machine guns as a multiple-criteria 
decision-making problem23. The techniques18-23 utilising multi-
decision criteria based on a decision matrix are applicable 
when quantitative data about the systems is available. The 
recognition methods from imprecise data involving fuzzy soft 
sets are reported20-22,24-26 for finding the best decision. The fuzzy 
soft set theory22,27-29 developed is being used in many different 
areas. A method under an interval-valued intuitionistic fuzzy 
environment is reported by linear programming30. A fuzzy 
decision approach based on an opinion score matrix is reported 
to solve multi-criteria decision problems that require experts’ 
intervention31. Fuzzy soft sets were used by Kirişci32 to help 
in decision-making in medical applications. They are utilized 
to help energy planners to utilize resources for sustainable 
development33. A fuzzy soft set-based group decision procedure 
is developed to solve multi-attribute group decision-making 
with linguistic Z-numbers34.

 The soft set theory has yielded valuable insights into how 
decisions are made and applied in different situations. Since 
the soft set handles the binary case, but to handle the non-
binary case, the soft set needs to express itself in fuzzy form. 
Many researchers have studied fuzzy soft sets, and shown their 
applications in decision-making problems3,23,35-38. It is seen that 
methods22,38 are failing to arrive at the correct decisions. These 
methods use dominancy values and general scoring alone to 
decide the option. The use of dominancy values as well as 
scoring values provides the results correctly without ambiguity 
and stuck the decision39. 

This paper presents a fuzzy soft set decision criterion-
based identification methodology to find the best chaotic system 

among several chaotic systems. The fuzzy soft sets, fuzzy soft 
matrix, Σ-fuzzy set, dominance matrix, and score matrix are all 
used in the suggested methodology. As the approaches, using 
either score values or dominancy values, do not give correct 
options, the method suggested using both values provides 
an accurate decision for more extensive data. Simulation 
study and observations on catered data for attributes and sub-
attributes demonstrate the identification results correctly. The 
attributes used in the methodology are computed appropriately 
by the algorithm discussed in the paper.

1.1  Highlights
• Identification methodology finds the best chaotic system 

among several systems using multivariable fuzzy soft 
decision criteria

• Computed attribute values quantitatively for chaotic 
characteristics represented graphically by measuring 
proportionate regions covered in the figures

• Decision is obtained based on the score values computed 
from the fuzzy soft set, fuzzy soft matrix, and dominancy 
matrix

• Methodology performs well for several chaotic systems 
and provides the best suitable systems without mistakes

• The methodology can be extended for various 
cryptographic and hardware security measures to find the 
best system.

2. FUZZY SOFT SETS AND CHAOTIC CIPHER 
SYSTEM
The section presents a brief introduction to a chaotic 

cipher system and the definitions of fuzzy soft sets utilized 
in our decision methodology. We extract the fuzzy soft set 
definitions from several relevant papers39-41.

2.1 Chaotic Cipher System
A chaotic cipher system40 is a software/hardware 

unit that uses chaotic functions and cryptography to 
secure vital information. It utilizes a Random Number 
Generator (RNG) based on different approaches such as shift 
registers, non-linear functions, and chaotic maps. The input/
output, RNG, and encryption/decryption modules are the main 
components of a cipher system. The RNG may be pseudo 
or true depending on deterministic and non-deterministic 
nature. The RNG module creates arbitrary bits when a call 
is started by a sender. The key planning module receives these 
bits and produces initial bits. These initial bits are utilized to 
initialize the encryption algorithm module. After initializing 
with specific initial bits for each message, the stream cipher-
based encryption algorithm module generates a key sequence 
that is added bit-by-bit using the XOR operation with an 
input message coming from the input module to deliver the 
encrypted message. The output module sends the encrypted 
message via secure communication protocols to the recipient 
where encrypted data is decrypted to get a plain message. To 
protect the chaotic cipher system from cryptanalytic attacks, 
the embedded chaotic system should be carefully developed 
and examined for its cryptographic strength. The chaotic 
function employed plays an important role in achieving the 
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security strength of chaotic cipher systems. The mathematical 
and statistical robustness of the embedded chaotic system are 
essential measures for a secure encryption system. The goal 
of an attacker is to extract the details of the algorithm, keys, 
sequences, and message. Even with unlimited computational 
power and encrypted data, a chaotic cipher system should not 
leak any information by the Shannon criteria. Security solely 
depends on the keys and not on obscuring cryptographic 
algorithms by Kerckhoff’s criteria, which means that 
everything about the algorithm aside from the keys is available 
to the public. Thus, the security strength of a chaotic cipher 
system is based on the embedded chaotic system which is 
further based on its attributes each of which is dependent on 
the sub-attributes.

2.2 Fuzzy Soft Sets
This paper denotes U as an initial universal set and E as the 

set of possible parameters which are attributes, characteristics, 
or properties of the objects in U. The set of all subsets of U will 
be denoted by P(U), and A B⊆  is the choice attribute set.

Fuzzy set18 is given by { ( ) | , ( ) [0,1]}A AA x x U xm m= ∈ ∈  where, 
: [0,1]A Um →  is the membership function of A, which describes 

the membership degree of each element x to the fuzzy set A. 
The closer mA(x) is to 1, the more likely x belongs to A.

Soft Set21 A pair (F, A) is a soft set over U, where F is a 
mapping given by : ( )F A P U→ . In other words, a soft set over 
U is a parametrised family of subsets of the universe U. For 

, ( )a A F a∈  is called the set of a- approximate elements of the 
soft set (F, A).

Fuzzy soft set21 Let gA(e) be a fuzzy set over U for all 
e E∈ . A fuzzy soft set AG   over U is a set defined by a 
function gA representing a mapping : ( )A E F Ug →  such that 

( )A e ∅g =  if e A∉ . Here, gA is called the fuzzy approximate 
function of the fuzzy soft set AG  and the value gA(e) is 
a fuzzy set called e- element of the fuzzy soft set for all 
e E∈ . Thus, a fuzzy soft set AG  over U can be represented by 
the set of ordered pairs {( , ( )) : , ( ) ( )}A A Ae e e E e F UG = g ∈ g ∈ . 
Since ( )( ) ( ), : [0,1]

AA ee F U Umgg ∈ →  is a membership function of 
the fuzzy set gA(e) for every e E∈ . Therefore, A fuzzy soft set 
can also be represented as

( ){( , ( )) : , , ( ) ( )}
AA e Ae u e E u U e F UmgG = ∈ ∈ g ∈           (1)

Characteristic function and Fuzzy soft matrix28 Let AG be 
a fuzzy soft set over U. Then a subset of U×E is uniquely 
expressed by ( ){ | , ( ) 0}

AA eR u e e A umg= × ∈ > , this is a relation of  
AG . The characteristic function of RA is defined as : [0,1]A U Eχ × →  

and it is given by

( ) ( ), ( , )
( , )

0,
A e A

A

u if u e R
u e

otherwise

m ∈ 
χ =  

               
(2)

If 1 2{ , , , }mU u u u=  , 1 2{ , , , }nE e e e=  , A E⊆  and
, ( , ), 1, 2, , ,

Ai j R i jA u e i m= χ =   1, 2, ,j n=   then fuzzy soft matric 
is given by:

11 1

,

1

[ ]
n

i j m n

m mn

A A
A

A A
×

 
 =  
 
 


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

              (3)

This fuzzy soft matrix is of size m×n of fuzzy soft set 
GA  over U. The fuzzy set GA is uniquely characterised by the 
matrix [Ai,j]m×n. Accordingly, we can identify any fuzzy soft set 
by its fuzzy soft matrix.

Dominancy matrix39,41 is created by comparing the 
parametric values of the objects, and dik defines each entry 
where, 

#{ : }, , {1,2, , }, {1, 2, , }ik ij kjd j A A i k m j n= ≥ ∈ =        (4)

S-Fuzzy set39 A S-Fuzzy set corresponding to the fuzzy 
soft set ( )A FS UG ∈  (set of fuzzy soft sets over U) is denoted by 

AGg  and defined by:

{ / | }
A A

u u Um
GG gg = ∈

             (5)
Membership function18 : [0,1]

A
Um

Gg →  is defined by 
1 ( ),

| |A e
e A

f u u U
A

m
Gg

∈

= ∈∑ . Here, ( )( ) min( ( ), ( ))
Ae eu U

f u AV e umg∈
=  for each 

e A∈  and : [0,1]AV U →  is given as ( )( ) max( ( ))
A eu U

AV e umg∈
= .

3. ATTRIBUTES VALUES FOR CHAOTIC AND 
RANDOMNESS CHARACTERISTICS
This section discusses the computing of attribute values 

for chaotic and randomness characteristics. These values are 
computed by quantifying graphical details of various chaotic 
characteristics42-46. Thus, minimizing human intervention in 
the automatic decision process. The precision in computing 
the attribute values is taken of the order of degree 4 (up to 4 
decimal digits). 

3.1 Values for Chaotic Attributes
The first attribute set, we consider stands for chaotic 

characteristics in which phase diagram, sensitivity, Lyapunov 
exponent spectrum, bifurcation diagram, entropy, 0-1 test, and 
variability represent its sub-attributes. 

3.1.1 Phase Diagram
It shows the movement path of a dynamical system’s 

outputs obtained by plotting a xn v/s xn+1 graph. It reflects the 
randomness of a chaotic map. For a cryptographically useful 
map, the trajectory never closes or repeats. Moreover, a 
chaotic map occupying larger distribution areas exhibits higher 
ergodicity and randomness. The sub-attribute is measured by 
finding the proportion of the phase plane occupied by the phase 
diagram. For this, a sequence of length n is generated and 
the phase diagram is plotted. Since each term of the chaotic 
sequence takes a value from the interval (0,1). Therefore, the 
phase diagram lies in the rectangle (0,1)×(0,1). In the figure, 
the rectangle is divided into n×n grids of equal area. A matrix 
C of order N×N is generated whose elements correspond to 
n×n grids. The entries are either 0 or 1. It is 1 if any one point 
of the trajectory lies in the corresponding grid and if, not even 
a single point lies in the grid, then the corresponding entry is 
taken 0. A counter is run on a total number of elements of C 
which takes an increment for every non-zero entry of C. The 
final counter value is divided by n2 to find the proportion of the 
phase space occupied by the phase diagram. For illustration, 
the phase value attribute for the phase diagram given in  
Fig. 1(a) obtained is 0.0007 for a chaotic sequence of 1000 
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terms generated by a logistic map with control parameter  
r = 3.9.

3.1.2 Sensitivity
It is the property that shows the dissimilarity and 

deviating trajectories for a small change in control parameters 
and seed values. A good chaotic system exhibits high 
sensitivity concerning small changes in its control parameters. 
A chaotic map should be highly sensitive concerning its 
control parameter and initial value. To find the coefficient 
of key sensitivity of a chaotic system, we choose a control 
parameter value K1 and change only one decimal digit of K1 
to get K2 and use them to generate chaotic sequences {x(i)} 
and '{ ( )}x i  of the desired length n. The difference profiles of 
these two sequences are considered to present the sensitivity. 
The sequence '

1{ ( ) { ( ) ( )}}n
iz i x i x i == -  lies in the interval 

[-1,1]. To calculate the sub-attribute value, the interval is 
divided into n sub-intervals of equal length. An array, C, of 
order 1×n is generated. Out of n terms of z(i) If m are lying in 
the jth sub-interval then C(j)=m. A counter is run on the total 
number of elements of C which takes an increment for every 
non-zero entry of C. The final counter value is divided by n 
to evaluate the proportion of the interval [-1,1] occupied by 
the sequence 1{ ( )}n

iz i = . For illustration, the sensitivity attribute 
value computed is 0.599 for the logistic map. The difference 
profile '{ ( ) ( )}x i x i-  of two sequences generated from a logistic 
map varying in the interval [-1,1] is obtained. The difference 
profile is evaluated by change in the least significant digit of 
the value of the control parameter, i.e., r=3.9 and r=3.91 shown 
in Fig 1(b). The sensitivity attribute value obtained is 0.599.

3.1.3 Bifurcation
The bifurcation diagram is obtained by plotting chaotic 

map outputs against the control parameter. It shows the relation 
between values of changing parameters and the solutions to 
the system. The point where bifurcation appears indicates the 
chaotic behavior of the system at this point. The areas of control 
parameters with dense points show good chaotic behavior 
and the areas of control parameters with solid lines and blank 
zones show their non-chaotic property. From the bifurcation 
diagram, one can observe how the map behaves for different 
values of the control parameter. For illustration, we evaluate 
the sub-attribute value of logistic map output. Fig 1(c) shows 
the bifurcation results for r∈ [0, 1]. It is found that only 37 % 
of the area [0,4] x [0,1] is occupied by the bifurcation diagram 
of the logistic map which gives us 0.37 as a sub-attribute value.

3.1.4 Lyapunov Exponent
It is a measure of the chaotic behavior of a chaotic map 

f(x). The following Eqn. gives it. 

1

1
lim ( log | '[ ] |)

n

in
i

f x
n→∞

=

λ = ∑
   

where, '( )f x  represents the derivative of f(x). The chaotic 
behaviour of a map is indicated by a positive LE value. A 
higher positive LE value indicates a faster divergence of the 
output’s trajectory and higher chaoticity of the chaotic map 
whereas negative LE indicates converging trajectories. A 

strong chaotic map should have a higher LE for a good system. 
For illustration, the LE attribute value computed is 0.125 for 
the logistic map. This map has a positive Lyapunov exponent 
when r is in range [3.5,4] as can be seen from Fig 1(d). 

3.1.5 Entropy
The Entropy H(S) of a random binary sequence S is given 

by the following Eqn.,
1

2
0

( ) ( ) log ( )
N

i i
i

H S p s p s
-

=

= -∑
where, p(si) is the possibility of the symbol si appearing with 
N number of symbols. The value of H(S) lies between 0-1. The 
ideal entropy value is 1. In this way, we calculate the entropy 
sub-attribute which equals H(S) for a chaotic sequence S. The 
entropy measure for the chaotic sequence generated from the 
logistic map by taking the control parameter as 3.9 is 0.9815. 
So, the entropy sub-attribute value is 0.9815.

3.1.6 0-1 Test
It is a measure to study chaotic characteristics43-44. This 

test evaluates the system from generated sequences each 
of length N. For sequences D(N)n=1,2,…,N, we find K by the 
following equation

log ( )
log

M n
K

n
=

  where.

2 2

1

1
( ) lim [ ( ) ( )] [ ( ) ( )]

n

n
i

M n p i n p i s i n s i
n→∞

=

= + - + + -∑ ,
 

1

( ) ( ) cos( )
n

i

p n D i ic
=

= ∑
 , 1

( ) ( ) sin( )
n

i

s n D i ic
=

= ∑ . 

Here, c is a real value constant 
4

( , )
5 5
p p

∈ . We say the 
system is chaotic if 1K ≈  and non-chaotic for 0K ≈ . The 
relative range in which a chaotic sequence passes the 0-1 test 
represents its sub-attribute value. For illustration, the 0-1 test 
attribute value for the logistic map is computed and it is found 
to be 0 Since g(K) never takes a value greater than 0.99 as can 
be seen from Fig 1(e).

3.1.7 Variability
In chaotic cryptosystems, the chaotic parameters also 

play the role of key. Variability refers to the sum of widths 
of chaotic parameters of a chaotic system, i.e., the length of 
all control parameter intervals, where the motion exhibited by 
the system is chaotic, are added to compute the variability of 
a system. 

The variability sub-attribute value for a system Ci with 
variability mi is equal to mi/k. However, if im k>  for some 
i, then the sub-attribute value for the system Ci is defined to 
be 1. Here, k denotes a large number that symbolizes enough 
variability to resist brute-force attack. In this paper, we take 
k=100. As an example, the logistic map is chaotic for [3, 4]r ∈  
which gives us variability equal to 4-3=1. The variability sub-
attribute value, therefore, is equal to 1/100=0.01.

3.2 Values for Randomness Attributes
The randomness of the output of the chaotic map is tested 

using the NIST test suite45-46. Chaotic randomness attribute 



AGARWAL, et al.: FUZZY SOFT SET-BASED IDENTIFICATION OF BEST CHAOTIC SYSTEM FOR SECURITY APPLICATIONS

897

has 14 sub-attributes i.e., a set of 14 tests that must be passed 
by the data if it is random. The p_value is computed for the 
input sequence of length N for each test. A sequence that has 
a p_value higher than the significant level a, pass a test else 
fail. For a significance value of a=0.01, one would expect 
1 sequence to fail out of 100 sequences. The sub-attribute 
value for a test is taken to be 1 if the test is passed by chaotic 
sequence else it is taken to be 0. There are the 14 sub-attributes 
of chaotic randomness attribute corresponding to fourteen 
different tests namely: frequency test, run test, longest run of 
ones in a block test, binary matrix rank test, non-overlapping 
template matching test, overlapping template matching test, 
Maurer universal test, linear complexity test, serial test, 
approximate entropy test, cumulative sums (Cusum) test, 
random excursions test, and random excursions variation test. 
As an illustration, these 14 tests are performed on the chaotic 
map45. The results of randomness tests are given in Table 1 
which shows that the p_value for different tests are quite higher 
than the value of a=0.01 for chaotic sequences and hence the 
generated sequence passes all the tests. Also, the chaotic map 
should have all sub-attribute values equal to 1.

4. IDENTIFICATION METHODOLOGY
Let U={CHS1,CHS2,…,CHSm} be the set of given chaotic 

systems, and let E={E1,E2,…En} be the set of attributes for a 
security system on which the best system is to be identified. 
The knowledge representation for all systems is taken as 
S=(U,E). Each attribute has Ek,k=1,2,…n sub-attributes. 

Let : ( )
KE kE F Ug →  represent a mapping from the set 

of sub-attributes Ek to the set of fuzzy sets F(U) over U. 
For each 1,2,..., ,

KEk n= G  are fuzzy soft sets over U. The 
number of sub-attribute parameters in Ek are nk, and A is 
the fuzzy soft matrix corresponding to the fuzzy soft set  

.
kEG . Each sub-attribute value here denotes how much better it 

is over other systems and domains of attributes when [0,1]
KEV =

. Let { | 1, 2,..., }j
k k kE e j n= =  where : , 1, 2,...,

k

j
k Ee U V k n→ = , the 

membership function of a fuzzy set ( )
k

j
E keg  is defined as

( ) ( ) ( ),i ij
E kk

j
ke CHS CHSem

g
=  1,2,..., ,i m=  1,2,..., ,kj n=  1,2,...,k n= .

For 
k ln n k lE E E= Λ , a new attribute set 

k ln nE  is now created 
from the sets Ek and El. The number of attribute parameters 
in 

k ln nE is nk*nl. Then, 
n nk lEG  is a fuzzy soft set over U and the 

corresponding soft matrix is: 
, ( ) , ,[ ] min{[ ] ,[ ] },

k l k li j m n n i j m n i r m nE A B× × × ×=  i=1,2,…,m, j=1,2,…
,nk, r=1,2,…,nl, k=1,2,…,n-1, nl=1,2,…,n. The fuzzy soft 

Figure 1.  Dynamics of logistic map, (a) Trajectory; (b) Difference profile for sensitivity test; (c) Bifurcation diagram; (d) Lyapunov 
exponent; and (e) 0-1 test.

Table 1. Statistical test results for chaotic sequences

Name of test p_value Sub-attribute value
Frequency test 0.0519 1
Frequency within a block test 0.4073 1
Runs test 0.0294 1
Longest run of ones in a block test 0.7593 1
Binary matrix rank test 0.0243 1
Non-overlapping template matching test 0.6964 1
Overlapping template matching test 0.9684 1
Maurer’s universal test 0.2766 1
Linear complexity test 0.7895 1
Serial test 0.0188, 0.1964 1
Approximate entropy test 0.5750 1
Cumulative sums (cusum) test 0.0617, 0.0743 1

Random excursions test 0.8328, 0.6746, 0.7320, 0.3020, 
0.4651, 0.8546, 0.9819, 0.0244 1

Random excursions variant test
0.1778, 0.1881, 0.2261, 0.1882, 0.2192
0.4417, 0.4075, 0.2897, 0.5451, 0.3221
0.2995, 0.5715, 0.7030

1



DEF. SCI. J., VOL. 74, NO. 6, NOVEMBER 2024

898

matrices  ,[ ]
ki j m nA ×  and ,[ ]

li r m nB ×  corresponds to fuzzy soft sets 
kEG  and 

lEG  respectively. Likewise, the attribute set can also 
be created by combining all the sub-attribute sets E1,E2,…,En. 
The combined attribute set is therefore given by the formula 

1 2 n... 1
n

n n n k kE E== Λ . The number of attribute parameters is 
n1×n2×…×nn. 1 2, ( ... )[ ]

ni j m n n nE × × × ×  is a fuzzy soft set, and its fuzzy 
soft matrix is 

...1 2 nn n nEG . 
The block diagram of identification methodology shown 

in Fig. 2 works in two different ways (i) at the attribute 
level and (ii) sub-attribute level to identify the best one. The 
presented methodology is inspired by the methodology already 
introduced in Study47. At the attributes level, the methodology 
takes the following steps.
• Form fuzzy soft sets concerning desired attributes 

...1 2 nn n nEG  
using Eqn. (1).

• find fuzzy soft matrix 
1 2, ( ... )[ ]

ni j m n n nA E × × × ×=  using Eqn. (2).
• Find dominancy matrix Dm×n using Eqn. (3)
• Find S-fuzzy set using Eqn. (4) and corresponding final 

score matrix Mm×1 using Eqn. (5).
• Find the final score matrix S=D×M using Eqn. (6).
• Find a decision that corresponds to Sm×1 (Select m for 

which the decision score is maximum).

5. RESULTS AND FINDINGS
In identification, one can take any number of chaotic 

systems and the desired number of attributes and sub-attributes 
for identifying problems to select the best system among 
available different such systems to meet the requirement. We 
consider a set of systems, U={CHS1,CHS2,…,CHS10} where 
elements CHS1,CHS2,…,CHS10 indicate ten chaotic systems. 
Let the attribute set E={E1,E2} represents the chaoticity of a 
chaotic map (E1), the randomness of a chaotic sequence E2. Let 
the following are the sub-attributes of each attribute:
• E1= {Phase diagram 1

1( )e , Sensitivity 1
2( )e , Bifurcation 

1
3( )e , Lyapunov exponent spectrum 1

4( )e , Entropy 1
5( )e , 0-1 

test 1
6( )e , Variability 1

7( )e },
• E2={Frequency (Monobit) Test 2

1( )e , Frequency Test 
within a Block 2

2( )e , Runs Test 2
3( )e , Test for the Longest 

Run of Ones in a Block 2
4( )e , Binary Matrix Rank Test 

2
5( )e , Non-overlapping Template Matching Test 2

6( )e
, Overlapping Template Matching Test 2

7( )e , Maurer’s 
Universal Statistical Test 2

8( )e , Linear Complexity Test 
2
9( )e , Serial Test 2

10( )e , Approximate Entropy Test 2
11( )e , 

Cumulative Sums (Cusum) Test 2
12( )e , Random Excursions 

Test 2
13( )e , Random Excursions Variant Test 2

14( )e }.
We consider the following ten recently reported hybrid 

chaotic systems with the above attribute set to demonstrate the 
identification methodology to find the best among these:

BZCL48 system (CHS1) consists of a control sequence 
generator logistic map and two chaotic sequence generators 
tent and sine maps given by following:

1

1

1

1, ( ) 0.5
( ) ( ) (1 ),

0, ( ) 0.5
n

n n n n n

n

f Y
f Y L Y rY Y q

f Y

<
= = - =

≥

 
 
  ,

2

1

3

( ), 0
( , )

( ), 1
n n

n n n

n n

f X q
X F X q

f X q+

=
= =

=

 
 
 

2 3

, 0.5
( ) ( ) , ( ) ( ) sin( )

(1 ), 0.5
n n

n n n n n

n n

uX X
f X T X f X S X a X

u X X
p

<
= = = =

- ≥

 
 
 

where, (0,1)nX ∈  are state variables of the system and u,r,a are 
three control parameters of the system.

• PTM3 system (CHS2) is expressed by a mathematical 
model given by the following:

sin( ) cos( )
4n n n

u
X X X

k k

p p
+

=

where (0,1)nX ∈  are state variables of the system and  
u ∈ [2.5410,5.180] and k ∈  (0,2.558) are two control 
parameters of the system.

• FFF49 system (CHS3) is composed of three chaotic 
functions: logistic map 1( : )n nf x x +→ , tent map 

1( : )n ng y y +→  and sin map 1( : )n nh z z +→  and it is given 
by the following: 
xn+1=(r10h(xn)o(g(xn))o(f(xn)))mod1 where, 0 4r≤ < and o 

stands for composition function.

• ZLGYM50 system (CHS4) is a non-linear combination 
of three different 1D chaotic maps given by the following:

1

mod( sin( ) (1 ),1), 0 0.5

mod( sin( (1 )) (1 )(1 (1 )),1), 0.5 1
n n n n

n
n n n n

a x x x x
x

a x x x x

pm m m

pm m m+

+ g - < ≤
=

- + g - - - < ≤

 
 
 

where, [0.5,0.9], [1,1.9]m ∈ g ∈ and [0.975,0.995]a ∈  are the 
control parameters.

• PHBM51 system (CHS5) is a nonlinear mixture of three 
different chaotic maps, i.e., Logistic map, Tent map, and 
Sine map described by the following:
xn+1=Logistic(Tent(SINE(xn)))mod1 where (0,1)nX ∈  are 

        state variables.

• MARCS45 (CHS6) is a hybrid system that utilizes modified 
versions of three chaotic maps, logistic map, sine map, 
and exponential map as ai+1=mod(rai(1-ai),1),bi+1=mod(s 
sin(pbi),1) and 1 mod( ,1)ic

ic t+ =  respectively and these are 
combined through the following:

Figure 2.  Block diagram of identification methodology.
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xi+1=mod(2d(aibi+bici+aici+xi),1) where, (0,1)nx ∈  are state 
variables of the system and r,s,t and ( ]0,60d ∈  are four control 
parameters of the system.

 
• ZBC52 (CHS7) combines the Logistic and Tent maps as 

given by the following:

1

(4 )
mod( (1 ) ,1), 0.5

2
(4 )

mod( (1 ) (1 ),1), 0.5
2

n n n n

n

n n n n

r
rx x x x

x
r

rx x x x
+

-
- + <

=
-

- + - ≥

 
  
 
 
  

where, (0,1)nx ∈  are state variables of the system and r is 
a control parameter of the system.

• AAKE53 (CHS8) combines the Logistic, Sine, and Tent 
maps given by following:

1

(1 )(1 | 0.5 | ), 0.5

mod( sin( )(1 | 0.5 | (1 )),1), 0.5
n n n n n

n
n n n n

rx x cx c x x
x

r x cx c x x

m

p m+

- - - + <
=

- - + - ≥

 
 
 

where, (0,1)nx ∈  are state variables of the system and r, m 
and c are the control parameters of the system.

• DYCWE54 (CHS9) is an extension of a 1D Tent map with 
multiple parameters given by the following:

1 2 3

1

4 5 6

10
(1 cos( ) | sin( ) | a tan( ) |), 0.7

7
10

(1 )(1 cos( ) | sin( ) | a tan( ) |), 0.7
3

n n

n

n n

x x
x

x x
+

- a | λ -a | λ -a | λ <
=

- - a | λ -a | λ -a | λ ≥

 
  
 
 
  

where, 1 2 3 4 5 6, , , , ,λ λ λ λ λ λ ∈  and 4 2[10 ,10 ]- -a ∈  are the 
control parameters.

• MZBKK55 (CHS10) combines the characteristics of 
Tent and Sine maps. it is mathematically represented as 
follows:

1

mod(4sin(2 ) ,1), 0 0.5

mod(4sin(2 ) 1 ,1), 0.5 1
n n n

n
n n n

rx x x
x

rx x x

p

p+

+ < <
=

+ - ≤ <

 
 
 

where, (0,1)nx ∈  are state variables of the system and r is 
a control parameter of the system.

The methodology of identification and computing 
procedures to find the attributes values are simulated in 
MATLAB programming. The values corresponding to each 
attribute set for different chaotic systems mentioned above in 
terms of the Fuzzy soft set computed are given as follows: 

1

1 2 3 4 5 6

7 8 9 10

1 2 3 4 5 6

7 8

1
1

1
2

,{ / 0.06, / 0.04, / 0.63, / 0.04, / 0.09, / 0.63,

/ 0.0008, / 0.0008, / 0.0008, / 0.0008};

,{ / 0.73, / 0.61, / 0.67, / 0.7, / 0.63, / 1,

/ 0.614, / 0.5

{

E

CHS CHS CHS CHS CHS CHS

CHS CHS CHS CHS

CHS CHS CHS CHS CHS CHS

CHS CHS

e

e
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1 2 3 4 5 6

7 8 9 10

1 2 3 4 5 6

7

1
3

1
4

88, / 1, / 0.562};

,{ / 0.8, / 0.57, / 0.65, / 0.01, / 0.9, / 1,

/ 0.2231, / 0.0022, / 0.2585, / 0.5456};

,{ / 0.87, / 0.5, / 0.73, / 0.19, / 0.89, / 1,

/ 0

CHS CHS
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7 8 9 10
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1
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.975, / 1, / 0.9995, / 1};

,{ / 1, / 1, / 1, / 0.86, / 0.99, / 1,

/ 0.9999, / 0.9985, / 0.9999, / 0.9651};

{ / 0.44, / 0.32, / 0.7, / 0.49, / 0.73, / 1,,

CHS CHS CHS

CHS CHS CHS CHS CHS CHS

CHS CHS CHS CHS

CHS CHS CHS CHS CHS CHS

CHS

e

e

7 8 9 10

1 2 3 4 5 6

7 8 9 10

1
7

/ 0.005, / 0.0825, / 0.0001, / 0.09};

,{ / 0.06, / 0.05, / 0.03, / 0.01, / 0.03, / 1,

/ 0.04, / 0.04, / 1, / 0.09}}

CHS CHS CHS

CHS CHS CHS CHS CHS CHS

CHS CHS CHS CHS

e
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1 2 3
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2
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3

{ / 1, / 1, / 1, / 0.04, / 0.09, / 0.63, / 0.0008, / 0, / 1, / 0};
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{ / 0, / 0, / 0,

,
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Here, the values of the first and second attribute sets are 
computed for the above-said chaotic systems6,44,46-53 using 
computing methods discussed in Section 4. We consider the 
following examples to demonstrate the identification of the 
best chaotic map by considering two attributes.

Example 1: Decision based on attributes with few sub-
attributes

To illustrate the computing of methodology, we restrict 
U={CHS1,CHS2,CHS3}, and 1 2

1 1 1 2 2
1 2 3 1 2{ , , }, { , }E Ee e e e e= =  so 

that E1 has three sub-attributes and E2 has two sub-attributes 
to identify the best system. Here, the sub-attribute values 
corresponding to each chaotic system are taken from the major 
set 

1EG and 
2EG . The fuzzy soft sets are  

1

1 1
1 1 2 3 2 1 2 3{ ,{ / 0.06, / 0.04, / 0.63}; ,{ / 0.73, / 0.61, / 0.67};E e CHS CHS CHS e CHS CHS CHSG =  

1

3 1 2 3,{ / 0.8, / 0.57, / 0.65}}e CHS CHS CHS  and 2

2

1 1 2 3{ ,{ / 1, / 1, / 1};E e CHS CHS CHSG =
2

2 1 2 3,{ / 0, / 0, / 1}}e CHS CHS CHS . 
Let , 3 3[ ]i jA ×  and , 3 2[ ]i kB ×  are the fuzzy soft matrices 

corresponding to 
1EG  and 2EG  fuzzy soft sets respectively.

Then  

, 3 3

0.06 0.73 0.80
[ ] 0.04 0.61 0.57

0.63 0.67 0.65
i jA ×

 
 =  
 
 

and
  

, 3 2

1 0
[ ] 1 0

1 1
i kB ×

 
 =  
 
 

Corresponding to the choice attributes sets E1 and E2, 
the combined attributes set is given by 12 1 2E E E= Λ . It has 

1 2| | | | 3 2 6E E× = × =  attribute parameters. 
12EG  is a fuzzy soft set 

over U and 

12

1 2 1 2
1 1 1 2 3 1 2 1 2 3{( ,{ / 0.06, / 0.04, /1}),( ,{ / 0, / 0, / 0}),E e e CHS CHS CHS e e CHS CHS CHSG = Λ Λ

12

1 2 1 2
1 1 1 2 3 1 2 1 2 3{( ,{ / 0.06, / 0.04, /1}),( ,{ / 0, / 0, / 0}),E e e CHS CHS CHS e e CHS CHS CHSG = Λ Λ

1 2 1 2( ,{ / 0, / 0, / 0}), ( ,{ /1, /1, /1}),2 1 1 2 3 2 2 1 2 3e e CHS CHS CHS e e CHS CHS CHSΛ Λ

1 2 1 2
3 1 1 2 3 1 2 1 2 3( ,{ / 0, /1, / 0}),( ,{ / 0, / 0, / 0})}e e CHS CHS CHS e e CHS CHS CHSΛ Λ

The corresponding fuzzy soft matrix is given by 
3 (3 2) 3 3 3 2[ ] min{[ ] ,[ ] }ij ij ikE A B× × × ×=  and equals to

E=
0.06 0.00 0.73 0.00 0.80 0.00
0.04 0.00 0.61 0 0.57 0.00
0.03 0.67 0.67 0.67 0.656 0.65

The dominancy matrix is given by 
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3 3[ ] #{ : },ik ij kjD d j E×= = ≥ Ε   , {1,2,3},i k ∈

{1,2, ,6}j = 

 

6 6 2
3 6 0
4 6 6

 
 =  
 
 

.

The S-fuzzy set is obtained using Eqn. (5) and given as  
12 12

{ }/ ( ) | ,i i iE E
CHS CHS CHS Um

GG g ∈=g  
where

6

1

1
( ) ( ),

6
.

ji e i i
j

A
CHS f CHS CHS Um

=
GΕg = ∈∑

  
So,

1

1
( ) (0.06 0 0.73 0 0.8 0) 0.265

6A
CHSm

GΕg = + + + + + = .

Similarly, 
2( ) 0.2033

A
CHSµ

ΓΕγ =  and 3( ) 0.65
A

CHSm
GΕg =

which gives 1 2 312
{ / 0.265, / 0.2033, / 0.65}

E
CHS CHS CHSG =g  .

 The matrix corresponding to the S-fuzzy set is given by 
M=[0.265  0.2033  0.65]

The final Score matrix S is obtained by the formula:
6 6 2 0.265 4.1098

' 3 6 0 0.2033 2.0148
4 6 6 0.65 6.1798

S D M= × = =
    
    
        
    

Score values for different chaotic systems are shown by S 
in which the maximum final score is 6.1798 for CHS3 chaotic 
system. Therefore, the best chaotic system is CHS3.

Example 2: Decision based on attributes with all sub-
attributes

This considers chaotic characteristics E1 and E2 two 
attributes where, E1 have seven sub-attributes and E2 
has fourteen sub-attributes to identify the best system. 
Corresponding to the original choice attributes sets E1 and E2, 
the combined attributes set is given by 12 1 2E E E= Λ . It has 98 
attribute parameters. The 

12EG  is fuzzy soft set, obtained using 
Eqn. (1) given as:

12
1 2 1 2
1 1 1 2 10 1 2 1 2 3{( ,{ / 0.06, / 0.04,..., / 0}),( ,{ / 0, / 0,..., / 0}),...,E e e CHS CHS CHS e e CHS CHS CHSG = Λ Λ

12
1 2 1 2
1 1 1 2 10 1 2 1 2 3{( ,{ / 0.06, / 0.04,..., / 0}),( ,{ / 0, / 0,..., / 0}),...,E e e CHS CHS CHS e e CHS CHS CHSG = Λ Λ .

1 2
7 14 1 2 3( ,{ / 0.06, / 0.05, / 0.09}))e e CHS CHS CHSΛ . 

Using Eqn. (2-3), we have the fuzzy soft matrix [Eij]10×98 as:
0.0000 0.0000 … … 0.0600
0.0400 0.0000 0.0500
0.6300 0.6300 0.0000
0.0000 0.0000 0.0000
0.0900 0.0000 0.0000
0.6300 0.6300 1.0000
0.0008 0.0000 0.0400
0.0000 0.0000 0.0400
0.0008 0.0000 1.0000
0.0000 0.0000 … … 0.0900
0.0000 0.0000 … … 0.0600
0.0400 0.0000  0.0500
0.6300 0.6300   0.0000
0.0000 0.0000   0.0000
0.0900 0.0000   0.0000
0.6300 0.6300   1.0000

0.0008 0.0000   0.0400
0.0000 0.0000   0.0400
0.0008 0.0000  1.0000
0.0000 0.0000 … … 0.0900

The dominancy matrix D is obtained using Eqn. (4) as
98 91 70 87 60 8 78 85 73 86
49 98 47 83 56 8 77 91 77 86
63 78 98 87 66 9 67 74 69 81
46 54 39 98 46 0 51 65 55 68
66 77 59 87 98 0 66 73 67 81
90 90 89 98 98 98 98 98 91 98
48 56 45 75 60 0 98 79 63 71
48 49 45 75 60 7 66 98 67 80
60 63 50 78 66 21 84 79 98 76
54 54 45 79 52 6 67 79 69 98

The S-fuzzy set is obtained using Eqn. (5) as:

12 12
) | }{ / ( i iE EiCHS CHS CHS Um

GG g ∈=g

where,
 

1 98

1
) ,

98
( )(

ji iEA
e i

j
HS CHS UC f CHSm

G
≤ ≤

g = ∈∑

Therefore,  

1

1
) (0.06 0 ... 0.06) 0.3233.

6
(

A
CHSm

GΕg = + + + =

Similarly, all the values are obtained as:
12 51 2 3 4 6{ / 0.3233, / 0.2522, / 0.4050, / 0.1173, / 0.3478, / 0.9995,

E
CHS CHS CHS CHS CHS CHSGg =

7 8 9 10/ 0.2332, / 0.1923, / 0.3042, / 0.1992}.CHS CHS CHS CHS  The matrix 
corresponding to the S-fuzzy set is given by M=[0.3233  
0.2522  0.4050  0.1173  0.3478  0.9995  0.2332  0.1923  0.3042  
0.1992]

The final Score matrix S is obtained by the formula 
'S D M= × =

[195.9273  172.8149  188.8666  126.4520  174.8878 320.2757  
148.8869  153.3178  188.3631  153.9802]’

Score values for different chaotic systems are shown by 
S in which the maximum final score is 320.2757 for CHS6. 
Therefore, the best chaotic system is CHS6. In this example, 
the best solution is obtained based on 98 attribute parameters. 

The above illustrations show that the identified chaotic 
system is the most suitable system for cryptographic 
applications without any error. Such problems of the larger 
size of attributes/sub-attributes can be taken as a real-world 
problem to identify from numerous chaotic systems provided 
by various vendors each with high-security claim. 

6. CONCLUSION
Finding the best suitable chaotic system which is an 

important task before embedding it in the chaotic cipher 
system for high security has been discussed. A multi-criteria 
decision methodology based on the fuzzy soft set criterion 
has been presented to find the best system among different 
chaotic systems utilizing desired attributes. The attribute 
values of chaotic systems that have been obtained for different 
chaotic characteristics appears graphically by computing 

(CHS2)=0.2033
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and quantifying their proportionate coverage regions in the 
plots. These attribute values have been used in selection 
methodology which uses fuzzy set, soft fuzzy set, dominant 
matrix, sigma fuzzy soft set, and score matrix computed from 
attributes values to find the best chaotic system. It has also been 
seen that the presented method works very well to obtain the 
most suitable chaotic system among several such systems for 
different attributes. A system has been considered the best one 
for which the score value is highest and considered worst for 
which the score value is lowest. The chaotic systems having 
lower score values can be improvised by modifying their 
attributes suitably. The methodology can be extended further 
for additional desired cryptographic attributes/sub-attributes 
to find the best system. The same can be done for hardware 
attributes/sub-attributes to find the best chaotic cipher system 
among such systems meeting the requirements of high-
security requirements. It can also be easily and successfully 
used in several comparable applications to choose the best 
product using different options to meet user satisfaction and 
requirements.
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