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ABSTRACT

This study surveys methods for improvements in the processing and visualization of Low Frequency Analysis 
and Recording (LOFAR) in sonar systems. The surveyed method employs a weighted Fast Fourier Transform (FFT) 
technique to compute LOFAR (Low Frequency Analysis and Recording) spectrum, with the weighting function 
inversely proportional to the variance of phase estimates for each frequency bin. The approach leverages the 
observation that stable line spectra display lower variance in phase estimates when compared to broadband signals 
and ambient noise. Simulation results substantiate the effectiveness of the proposed technique. The technique is 
applied to the DeepShip underwater dataset available in the public domain, and the performance of the proposed 
algorithm is recorded.
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1. INTRODUCTION
Low frequency tonal detection plays a crucial role in 

underwater passive sonar for early warning due to the fact that 
low frequency signals travel long distances in the sea. This 
technique is vital for detecting and classifying underwater 
targets early.

Underwater acoustic target detection involves identifying 
the presence of a target and extracting its features through the 
analysis of acoustic signals. Passive sonar is utilized to detect, 
track, localize, and identify targets by their own emissions, 
making it the preferred mode of covert surveillance1-6. The 
acoustic radiation from vessels comprises a continuous 
spectrum and narrowband discrete components, primarily 
caused by mechanical vibration and propulsion machinery. The 
machinery noise and propeller modulation are observed in the 
low-frequency region. These narrowband discrete components, 
known as the tonal line spectrum, exhibit higher power than 
other radiated components5. The tonal component conveys 
information about the type of machinery and propulsion of the 
target, making it crucial for target detection and recognition. 
Additionally, low-frequency tonal signals can propagate over 
longer distances since they are attenuated less compared to 
higher frequency components. In this context, low frequency 
tonal detection embedded in wide-band background noise 
plays a vital role in early detection of underwater targets2.

 However, challenges exist for tonal detection. First, 
advancements in noise reduction techniques have rendered 
targets of interest quieter, thereby weakening the tonal line 
spectrum, especially over long distances. Second, passive 
sonar is susceptible to time-varying noise from the marine 

environment, which can easily overshadow the tonal line 
spectrum. Third, the number of tonal line spectra, as well as their 
emergence and disappearance, remains unknown and varies 
for each target during the observation period. This variability 
arises from potential changes in the target’s operational regime, 
where different machinery may be activated or deactivated. 

A survey of related literature reveals that Zheng7, et al. 
proposed a line spectrum detection algorithm based on the 
phase feature of target radiated noise. Park and Jung8 proposed 
a convolutional neural network to identify tonal frequencies in 
a LOFARGRAM. Empirical mode decomposition and Hilbert 
Huang transform methods9 are used to reveal the time varying 
characteristics in underwater acoustic signals. Analysis looks 
into the problem of robust underwater tone detection, which 
takes care of scalloping loss or the picket fence effect in 
DFT10. Van, Goh & Chee11 analysed statistical properties of 
optimum tonal detectors and derived a maximum likelihood 
detector for tonal detection. Kim12, et al.  look at tonal signal 
detection in passive sonar using atomic norm minimization. 
In14, an algorithm utilising long-time coherent integration is 
introduced to enhance the robustness of tonal signal detection, 
particularly in scenarios affected by Doppler frequency shifts. 
To capture the line spectral characteristics of underwater 
acoustic targets15, introduces a methodology that integrates 
image processing and a deep autoencoder network (DAE). The 
proposed approach aims to amplify the low-frequency faint 
line spectrum of underwater targets within an exceptionally 
low signal-to-noise ratio environment, leveraging measured 
data from sizable underwater vehicles. 

A new signal-processing technique for machine 
performance monitoring16, where the proposed technique 
exploits fluctuations in phase angles of machine rotational 
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frequency signals to determine their dynamic temporal 
coherence. Based on the observation that the radiated noise 
of the passive target contains highly intensive and stable 
line spectrum, the paper17 puts forward the Conventional 
Beamforming Variance-of-Frequency Detector, which weighs 
the bearing spectrum using the variance of the peak frequency 
of each azimuth.

Our study aims to improve the efficacy of low-frequency 
tonal detection algorithms in sonar applications. The proposed 
technique harnesses both the phase and magnitude information 
of the stable line spectrum. This paper is organised as follows: 
Section 2 delve into comprehensive explanations of passive 
sonar and the Low Frequency Analysis and Recording (LOFAR) 
processing in sonar. The system model is meticulously 
outlined in Section 3, while the architectural intricacies of 
the conventional LOFAR processor and enhanced LOFAR 
processor are explained in Sections 4 and 5 respectively. The 
performance analysis of the proposed method is shown in 
Section 6. Section 7 presents the simulation results, including 
an in-depth examination utilizing the DeepShip ocean 
dataset13. To the best of our knowledge, our work is the first 
attempt to utilize LOFAR algorithm validation using DeepShip 
ocean dataset and the proposed method exhibits performance 
improvement in terms of output Spectral Level Ratio (SLR) 
which is better than the results reported7.

 Although subspace decomposition methods like Principal 
Component Analysis (PCA) and Multiple Signal Classification 
techniques (MUSIC) are reported in the literature for line 
frequency estimation, these techniques rely on subspace 
decomposition techniques which are computationally complex. 
Compared to it our proposed technique is computationally 
simpler and can be readily absorbed in the existing LOFAR 
processor without much computational overhead.  Subspace 
methods depend on the relative magnitude of the Eigenvalues 
which are dependent on the energy of the constituent signals. 
This can lead to situations in which a high-energy signal 
may mask the resolvability of a low-level signal using such 
methods. In the proposed technique the variation of phase 
through the first derivative helps even a relatively low SNR 
signal to be given a good weightage even in the presence of 
high SNR components which would have limited the detection 
in a conventional LOFAR processing or subspace-based 
methods.

2. PASSIVE SONAR
In passive sonar, sensor signals received from the array 

are digitized after necessary signal conditioning, and the 
resultant data is processed by the beamformer which forms 
beams steered at different look directions. At the beamformer 
output (Fig. 1), the different beam time series are subjected to 
broad spectrum shape analysis, Low frequency Analysis and 
Recording (LOFAR) and Detection of Envelope Modulation 
on Noise (DEMON) analysis. These detection processes aim 
to differentiate the target signal from background noise by 
utilizing the time-dependent characteristics of the signal. In 
a controlled laboratory setting, the system undergoes testing 
by introducing digital signals from a Signal Noise Simulator 
(SNS). This testing environment ensures a comprehensive 

evaluation of the passive sonar system’s performance in 
detecting, localising, and classifying target signals in varying 
signal to noise ratio (SNR) conditions. The LOFAR technique 
plays a crucial role in detecting stable line spectra in current 
passive sonar systems. The LOFAR detection subsystem 
provides operators with a panoramic narrow-band spectral 
view.

Figure 1. LOFAR processor in SONAR context.

3. SYSTEM MODEL
At the beamformer output (Fig.1), the beam output time 

series are processed to obtain broad spectrum, LOFAR and 
DEMON output. The time series of each beam output can be 
modelled as:
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where, An represents the amplitude of each line spectrum, fn 
is the frequency of line spectrum, jn is the random phase of 
line spectrum, t denotes time, and N is the number of tonal 
frequencies. The bs(t) represents the band-limited broadband 
signal which includes cavitation noise and propeller modulation 
and has a characteristic continuous spectral shape. bs(t) is 
Gaussian-distributed with mean 0 and variance 2

bσ . jn and 
bs(t) are independent and jn follows a uniform distribution in 

[ ],U π π− + . n(t) represents the ambient noise which is Gaussian 
distributed with mean 0 and variance 2

nσ . The spectrum level 
ratio (SLR) between the nth line spectrum and continuous 
spectrum of bs(t) is given by [2],
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where, B is the bandwidth of the broadband signal emanating 
from the target.  The SLR between the broadband signal and 
the background noise is given by:
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The SLR between the line spectrum at fn and background 

noise n(t) is given by:
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From Eqn. (2) and Eqn. (3), we get, 
( ) ( ) ( )

n sb nsfn fn bSLR SLR SLR= ×                                                 (5)
The SLR between the line spectrum at fn  and background 

noise n(t) in dB is given by:
( ) ( ) ( )

n sb nsfn fn bSLR dB SLR dB SLR dB= +                                   (6)
From Eqn. (6), it is evident that the spectrum level of the 

line spectrum of the target is 10-25 dB above the spectrum level 
of the broadband signal emanating from the target as shown 
in Fig. 2. This observation motivates the use of line spectrum 
detection for long-range target detection.

derived from the variance of the derivative of the phase of 
the FFT output. The weighting of the magnitude of the FFT 
output with this weight vector significantly improves the line 
detection performance when compared to the conventional 
approach of power spectral estimation from the FFT output. 
The algorithm is explained below.

Algorithm
1. Take the FFT of the time sequence x(n). The sequence 

x(n) is the discrete data obtained at the output of the 
beamformer. The FFT output Xk for each frequency bin 
is given by:
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where, n denotes the sample number, N denotes the FFT 
length, fk denotes the kth frequency bin, and m denotes the block 
number.
2. Pass the FFT output to an a-b filter such that
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frequency bin fk 
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4. Repeat step 1 and step 2 for each block such that ( ( , )km fj )
is obtained for M blocks and K frequency bins.

5. Calculate the difference in phase for each frequency bin 
across adjacent blocks/time instant. This is equivalent 
to finding the first-order derivative of the phase for 
each frequency bin. Denote the derivative of the phase 

( , )km fj as ' ( , )km fj .
6. Calculate the variance of the phase estimates, denoted as 

' ( )kp fjd . The unbiased estimator of variance is used for 
the variance estimation.

7. Compute a weighting function for each frequency bin fk 
as:

'

1
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8. Obtain the final spectral output Y(fk) after applying the 
weighting function to the FFT magnitude computed for 
each frequency bins fk, as per the Eqn. 11,
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6. PERFORMANCE ANALYSIS
The proposed method relies on the fact that the phase 

estimates of the stable line spectrum have a lesser variance 
compared to the phase spectrum of broadband signals and 
noise, whose phase spectrum fluctuates randomly. Therefore, 
a weighting function inversely proportional to the variance of 
the phase can be used to enhance the line spectrum estimate.

Assume that the variance of the phase estimate ' ( , )km fj  
is dn and ds in the case of noise and signal, respectively.  The 

Figure 2. Broadband signal and line spectrum.

4. LOFAR PROCESSOR
In the LOFAR processor, the beamformer output is 

analysed in the frequency domain to extract the tonal line 
spectrum radiated by the target. The beam output is low-pass 
filtered to limit the frequency in the band of interest. The output 
of the low-pass filter is then subjected to high-resolution FFT 
analysis is shown in Fig. 3. The spectral lines are integrated, 
normalized, and quantized before being transferred to the 
amplitude and waterfall displays.

Figure 3. LOFAR processor.

5. ENHANCED LOFAR PROCESSOR
In the enhanced LOFAR technique, a weight vector is 

Figure 4. Enhanced LOFAR processor.
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phase estimate of signal and noise frequency follows a uniform 
distribution in [ ],π π− +   with M number statistic.

Consider the Weighted FFT output Y(fk) in the case of 
signal and noise scenario.

1

1

( ) ( ,

1 1( , )

k

M

k f k
m

M

k
m n s

Y f W X m f

X m f
d d

=

=

=

 
= + 

 

∑

∑
                                           

(12)

                                                        
The spectral level ratio between the signal component 

Xs(m, fk) and noise component Xn(m, fk) of the Y(fk) is given by
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where, Var is the variance operator.

From Eqn. (13), it is evident that,
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is the SLR of the conventional LOFAR output. Therefore, 
when 2 2
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   in this proposed scheme. In the next section, the 

simulation results of the proposed method will be discussed 
in detail.

7. SIMULATION RESULTS
The radiated noise of an underwater acoustic target 

consists of a mixture of continuous spectrum and superimposed 
line components. Various field measurements have been 
conducted and reported in standard literature2.  According to 
these reports, the line components are typically 10 to 25 dB 
above the broadband component.

In the simulation, a target radiated signal is utilized, 
encompassing a broadband continuous spectrum and two 
stable line spectra. The line spectra have a Spectrum Level 
Ratio (SLR) of 15 dB above the broadband signal. This is taken 
due to the fact that the line spectra resulting from machinery 
vibrations typically have a positive SLR compared to the 
broadband continuous signal emitted by the target. The line 
spectrum is simulated at 312.5 Hz and 1000 Hz respectively.  
The SLR between the broadband continuous spectrum and the 
simulated ambient noise is set at -5 dB. Both the continuous 
spectrum and ambient noise are band-limited within the 0-4 
kHz band. The simulation is carried out with a sampling 
frequency of 32 kHz. The 1024-point FFT is taken with each 
frequency bin having a resolution of 31.25 Hz. 

The reason for choosing 312.5 Hz and 1000 Hz is due to 
the fact that line spectral components are frequently seen in 
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the lower frequency region, typically below 1 kHz, whereas 
the passive sonar band of interest for this study extends up to 
12 kHz band. The sampling frequency of 32 kHz was chosen 
because it is approximately 2.5 times the highest passband 
frequency.

Fig. 5(a) illustrates the phase estimate values of the 
line spectrum and background noise computed according to 
step 3 of Section 5.a. The derivative of instantaneous phase 
calculated as per step 5 of Section 5.a. is depicted in Fig. 5(b). 
The Fig 5(c) showcases the variance of phase estimates ' ( )kp fjd  
for different frequency bins. The weight vector computed as 
per Eqn. (10) is plotted in the Fig. 5(d).

A comparison of outputs obtained from the conventional 
method and the proposed method is presented in the figure 
below. Fig. 6(a) demonstrates that Enhanced LOFAR exhibits 
an SNR difference of 40 dB between the line spectrum and 
back ground noise.

The waterfall display provides a time history of the 
LOFAR output. The waterfall display of the LOFAR output 
from one beam is depicted in Fig. 6(b), with the conventional 
technique plotted on the left and the waterfall of enhanced 
LOFAR shown on the right.

SNR is measured as the ratio of the variance of the broadband 
signal and the line spectrum to the variance of back ground 
noise. The standard deviation of the phase estimate for 
different SNR conditions for signal and noise is plotted in 
Fig. 7. From the figure it is evident that the phase variance of 
signal components reduces with increasing SNR, whereas the 
variance of the noise phase estimate does not vary with respect 
to SNR.
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7.1 Performance Gain Analysis 
In this section, the performance of the algorithm under 

different Signal to Noise Ratio (SNR) conditions is analysed. 
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The output Spectral Line Ratio (SLR) between signal 
spectrum and noise in the two methods for different SNR 
conditions is plotted in the figure below. The Fig. 8 shows 
that from -20 dB onwards the proposed method exhibits 
performance improvement in terms of output SLR. Consider 
SNR of -10 dB, this technique is giving a performance 
improvement in detection by 5 dB which is better than the 
results7. This concludes to longer detection ranges for a fixed 
SNR with this proposed technique.  

Figure 8.  Output SLR between 1000 Hz and background noise 
under different input SNR.

From Fig. 8, it is evident that the output SLR between 
the line spectrum and the background noise of this proposed 
method is larger than that of the conventional FFT method, 
when the input SNR is larger than −20 dB. The reason is that the 
proposed method first computes derivative of phase variance 
for each frequency unit and uses the weighting function to 
obtain the final spectrum. From Eqn. (14), the output SLR 
between the line spectrum and the background noise of this 
proposed method is increased by a factor of 2
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7.2 Performance Analysis on Ocean Data
To conduct research in the area of underwater acoustics, 

an acoustic dataset named DeepShip13 is available in public 
domain which can be used to benchmark the performance of 
newly developed algorithms. This data set contains underwater 
recordings of 256 different ships belonging to four classes. The 
performance of the proposed algorithm is verified using this 
data set.

the Enhanced LOFAR methodology, showcasing its practical 
utility in real-world scenarios.

8. CONCLUSIONS
The focus of this paper is on evaluating the performance 

of the modified LOFAR processor in the context of sonar 
applications. A novel technique for LOFAR processing is 
introduced in the paper, centered around the utilisation of the 
variance of phase estimates to enhance the detection of weak 
line spectra within the LOFAR system. The proposed algorithm 
is subjected to a thorough analysis, combining both analytical 
scrutiny and simulation experiments.

The objective of this paper is to critically analyse the 
proposed algorithm, elucidating the underlying principles 
and implementation details. Additionally, comprehensive 
simulation results are presented to provide a practical and 
empirical understanding of the algorithm’s performance. 
The findings of the analysis, both analytical and empirical, 
underscore the advantages of the proposed technique. 
Specifically, the results highlight notable improvements 
in SLR, when applied to DeepShip data set indicating that 
the introduced method has the potential to enhance the 
discriminatory power and clarity of stable line spectra within 
the LOFAR processor. This advancement holds significant 
implications in passive sonar, where precise detection and 
characterization of signals are paramount.
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