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NOMENCLATURE
r                  : Mass density of the string, kg m-3

l                   : Length of the string, m
A                  : Cross-section area of the string, m2

m, M            : Dimensional (kg) and nondimensional mass of  
                       the moving mass respectively
I, P               : Imensional (kg m2) and nondimensional mass  
                       moment of inertia of the moving mass, 
                       respectively
u, B               : Dimensional (ms-1) and nondimensional  
                        velocity of the moving mass, respectively
xc, Xc             : Dimensional (m) and nondimensional position 
                        of the moving mass, respectively
x                    : Position of a point on the string, m
w(x,t)             : Dimensional (m) and nondimensional  
                        transverse displacement of the string
t, t                 : Dimensional (s) and nondimensional time,  
                         respectively
ttot                   : Time taken by the moving mass to cover the  
                         string length, s
Tc,T                 : Dimensional (kg ms-2) and nondimensional                     
                         constant tension in the string, respectively
M, C, K          : n×n mass, damping and stiffness matrices  
                          of the system, respectively
f                       : n×1 force vector acting on the system
q                      : n×1 generalized coordinate variable  
                           vector
Ws                                   : s

th comparison function in Galerkin 
                          formulation
fs                      : s p, s=1,2,…,n 

1. INTRODUCTION
The dynamic response of strings or cables subjected 

to moving loads has been extensively studied. Some of its 

engineering applications are cable cars, elevator cables, 
helicopters with a hanging load, guide ways in robotic systems, 
deep mine hoisting cables, and mooring cables. There can be 
three different classes of a moving load on a string: a moving 
force1, a moving mass2-3 or a moving oscillator4-5

Fryba6 has comprehensively compiled the work on 
problems concerning structures subjected to moving loads. 
Bajer and Dyniewicz7 have numerically addressed several 
structural problems involving moving inertial forces. To 
answer the problems, they used the space–time finite element 
approach. They also mention Renaudot’s Approach7 and 
Yakushev’s Approach7-8 to tackle the inertia effect of the 
moving mass on a beam. Ouyang9 has recently published a 
tutorial on moving-load dynamic problems.

Al-Qassab and Nair10 formulated the free vibration of a 
catenary cable subjected to an attached mass using Hamilton’s 
principle and Galerkin’s solution. Further, they used Fourier 
and wavelet transformations to obtain the natural frequencies 
and mode shapes. Sofi & Muscolino4 analysed the dynamics of 
a suspended cable carrying moving oscillators, while Ghadiri 
and Kazemi5 analysed the nonlinear dynamics of a suspended 
cable carrying a moving mass-spring-damper system.

Smith2 and Rodeman11, et al. addressed the linear response 
of a taut string subjected to a moving mass with uniform and 
accelerating motion, respectively. Ferretti12, et al. and Luongo13, 
et al. conducted investigations on a taut string with a moving 
mass and a moving train of forces, respectively. Ferretti1,  
et al. studied the response of a taut string to a moving force. 
Here, the authors have included the geometric nonlinearity of 
the deforming string, considering the quasi-static stretch and 
Kirchhoff strain model. The same model has been used by 
Ferretti14, et al. to model a horizontally taut and geometrically 
non-linear string subjected to a force-driven point mass.

Over a century ago, Stokes15 studied the problem of a 
heavy inertial mass particle moving along a bridge. A mass 
less Euler-Bernoulli beam was employed to model the bridge.  
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ABSTRACT

In this paper, the dynamics of a taut horizontal string with a constant velocity moving mass including its rotary 
inertia is modelled. The equation of motion is solved using Galerkin’s approach, employing appropriate comparison 
functions. A discontinuity or jump in the trajectory of the mass has been established when the mass is about to 
leave the string. The consideration of rotary inertia in the model does affect the spatial location of the jump in the 
trajectory of the moving mass.
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Stokes15 demonstrated that the mass particle’s vertical 
displacement at the bridge’s end is usually not zero, implying 
that the trajectory of the mass particle going over the bridge 
is discontinuous. This discontinuity was referred to by many 
authors as a paradox in the trajectory of the moving mass. It 
has been argued that this problem arises because the beam’s 
inertia is ignored. Similarly, in the case of a taut horizontal 
string, Smith2 presented an explicit and exact solution for a 
taut string subjected to a moving mass particle and showed the 
condition for a jump in the trajectory. For an inertial string, 
he used the wave propagation solution and concluded that the 
growth of kinks gives rise to this jump; for a non-inertial string, 
he transformed the dynamics equation for displacement of the 
moving mass and mathematically derived the condition for the 
jump. Dyniewicz and Bajer3 studied and proved the paradoxical 
trajectory of a mass moving on a taut string near the end, using 
the series solution for the trajectory given Fryba6 Gavrilov16,  
et al. revisited this paradox in the trajectory of a mass particle 
moving on a taut string for a more generalised string-moving 
mass system. In their model, the ends of the string were hinged 
to vertical springs. They derived the equation of motion for an 
extended nonlinear model of the string-moving mass system 
and considered wave pressure force for the conservative 
system to get the lateral and longitudinal displacement of the 
moving mass for a small strain in the string.

In all the studies done so far related to the paradox in the 
trajectory of a moving mass on a string, none of them have 
considered the rotary inertia of the mass. In this work, the 
same has been included. Further, its effect on the jump in the 
trajectory of the moving mass is discussed.

This paper is organised as follows: in Sec. 2, we present 
the mathematical model and assumptions used in this study. 
The equation of motion is then derived using Hamilton’s 
principle. The equation of motion is then non-dimensionalized. 
For a particular initial condition, we solved it using the 
Galerkin method, which converts the equation of motion into 
the reduced matrix form and is then solved using the Runge-
Kutta method. In Sec. 3, we go over the results, including the 
paradox in the trajectory of the moving mass. And in Sec. 4, 
we conclude our study.

2. MATHEMATICAL FORMULATION AND 
GOVERNING EQUATION 
Consider the string-moving mass system as shown in  

Fig. 1. The string has a mass density r, length l, and cross-
section area A. The moving mass has a mass m, mass 
moment of inertia I about the y-axis about its centre of mass. 
At any instant of time, the moving mass has a velocity u. 
The acceleration due to gravity is g acting in the downward 
direction. The string aligns along the x-axis, and the origin O 
lies at the left fixed end of the string. From this end, the mass 
starts moving at t=0 with a constant velocity of u and reaches 
the right end or the terminating end of the string at time t=ttot. 
We focus on the dynamics of the string until the mass reaches 
the terminating end. After this, the string vibrates freely. The 
transverse displacement w(x,t) of the material points of the 
string is measured along the z-axis from their mean position. It 
has been assumed that the transverse displacement of the string 

is small compared to its length and that it is inextensible. Also, 
the tension T in the string is high enough that the moving mass 
does not change its value. There is no damping present in the 
system. The contact between the moving mass and the string 
is assumed to be a point contact. The dimension of the moving 
mass is small compared to the length and thickness/diameter of 
the string; however, it possesses some finite radius of gyration 
r such that I=mr2.

The rotary inertia of the moving mass cannot be neglected 
even for small deformation of the string, because the rate of 
change of the slope at the location of the moving mass might 
impart the rotational kinetic energy to the mass, which could 
be comparable to other components of the kinetic energy of the 
system. Figure 2(a) shows the orientation of the moving mass at 
time t and the small angle through which it has been rotated is 
given by , where xc=ut is the current position of the 
moving mass along x-axis from the origin. Figure 2(b) shows 
the orientation when the rotary inertia of the moving mass is 
neglected. 

     (a)             

           
                                      (b)

Figure 2.  Rotary inertia of the moving mass, (a) orientation 
of the moving mass considering rotary inertia (b) 
orientation of the moving mass without rotary inertia.

2.1 Equation of Motion
The equation of motion of the system is derived using 

Hamilton’s principle17. Towards this the system’s total potential 
and kinetic energies are written as follows:

,

.

Figure 1. A moving mass on a taut horizontal string.
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Here, Ustring is the potential energy of the string. Tstring is the 
kinetic energy of the string. Tmass is the total kinetic energy of 
the mass. In Tmass, the first and the second terms correspond to 
the kinetic energy due to translation motion along x-axis and 
z-axis respectively. In Tmass, the third term corresponds to the 
kinetic energy due to rotation of the mass. And the virtual work 
done by gravity on a moving mass, is given by:

. 
After substituting the above energy and the virtual work 

done expressions in the following Eqn.

          (1)
we obtain the following Eqn. of motion for the string:

                               (2)

for the response of the string. In Eqn. (2) d(x-xc) is the Dirac 
delta function and  is its partial derivative with respect 
to x, At this juncture, it is worth mentioning that in deriving 
the Eqn. of motion employing Newton-Euler mechanics for 
the same system with a non-rotating mass moving with a 
constant velocity, Yakushev8 wrote the rate of change of linear 
momentum for the moving mass in the following form:

                                                    (3)
However, in the equation of motion (see Eqn. (2)) derived 

here using Hamilton’s principle, we would obtain only the 
second term of Eqn. (3) for the mass moving with a constant 
velocity. It has been shown by Langer and Klasztorny18 that the 
term  in Eqn. (3) gets cancelled with 
an opposite dipole of the same magnitude acting at the same 
point along the z-axis.

2.2 Non-Dimensional Equation and Solution Procedure
To get the non-dimensional form of the Eqn. of motion, 

we introduce the following non-dimensional quantities:

 Substituting these values in Eqn.(2), we get the non-
dimensional form of the Eqn. of motion as

                              (4)
Overbars from w, x and t are removed henceforth for the 

sake of simplicity.

2.3 Solution Procedure
The Eqn. of motion is solved using the Galerkin method. 

Towards this, we write the transverse deflection w(x,t) as
                                        (5)

where, Ws(x) are the comparison functions defined in 
Ws(x)=sin(spx) and qs(t) are the generalised coordinates, and n 
is the number of comparison functions included in the solution. 
The boundary conditions for the fixed ends are w(0,t)=w(1,t)=0.

Next, taking the inner product of equation of motion (4) 
with Wr(x) and substituting the value of w(x,t) from Eqn. (5), 
we obtain the discredited Eqn. of motion as

                                                          (6)
where, components of mass matrix M, C, K and vector f are 
given, respectively, as follows.

                    (7(a))

                     (7(b))

   (7(c))
and,

.       (7(d))
In Eqs. (7)

,  and drs represents 
the Kronecker delta operator. Further, in Eqn. (6), q is the 
vector of generalised coordinates.

3. RESULTS AND DISCUSSION
The linear and coupled ordinary differential equations 

Eqn. (6) for the motion of the string with a moving mass are 
solved numerically using the Runge-Kutta method employing 
the ode45 function of MATLAB19.Compared to other numerical 
integration methods such as Euler’s method, Simpson’s method, 
and Picard’s method, the Runge-Kutta method typically offers 
higher-order accuracy, which is O(h4), where h is the step size. 
The Taylor series method can offer even higher accuracy, but 
that requires the computation of higher derivatives, which is 
computationally expensive. Hence, we have used the Runge- 
Kutta method, which is comparatively easier to implement 

Figure 3.  The convergence of the trajectory of the moving mass 
for b = 0.01.
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the string as the moving mass just traces the string without any 
appreciable transverse displacement in a short time.

We plotted Fig. 5 for B=4.51 to show the jump in the 
path of the moving mass with and without rotary inertia (P=0) 
and how adding more and more comparison functions leads 
to convergence. As n increases, the jump occurs in fewer time 
steps, and the trajectory becomes steeper near the terminating 
end. The jump lengths (h) have been found to remain constant 
regardless of whether rotatory inertia is taken into account or 
not. The trajectory when rotary inertia is considered is found 
to converge faster compared to when it is ignored. Also, it can 
be noticed that the jump in the trajectory advances by a value 
of AB=6.04×10-4, which cannot be ignored for a jump of order 
h=6×10-3.

4.  CONCLUSION
Using Hamilton’s principle, the equation of motion of a 

taut string with a uniformly moving mass, including its rotary 
inertia, is derived. The obtained equation of motion is solved 
using Galerkin’s approach. The trajectories of the moving 
mass for various values of its speed are plotted. These plots 
reveal a jump when the moving mass reaches the terminating 
end of the string. This jump remains unaffected by the rotary 
inertia of the mass. However, including rotary inertia advances 
the occurrence of the jump compared to when it is neglected.
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