
512

Defence Science Journal, Vol. 75, No. 4, July 2025, pp. 512-519, DOI : 10.14429/dsj.19832 
 2025, DESIDOC

Received : 23 January 2024, Revised : 11 February 2025 
Accepted : 15 March 2025, Online published : 26 June 2025

Numerical Optimization of a Radial Inflow Turbine Based on a Loss Model of a 
Cryogenic Turboexpander Using the Slime Mould Algorithm

Anumay Kumar* and Amrik Singh
Department of Mechanical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal - 148 106, India 

*E-mail: anumay_pme1907@sliet.ac.in

ABSTRACT

The major component of the cryogenic turboexpander is the radial inflow turbine; thus, improvements in its 
design and performance are effective for the system. The inspirations of six design parameters, including velocity 
ratio, inlet and outlet impeller diameters, mass flow rate, and blade height, are examined in the context of the total-
to-static efficiency of the RIT turbine cryogenic turboexpander. A 1-D design of the radial-inflow turbine has been 
implemented through MATLAB 2020. In this paper, A novel artificial intelligence system slime mould algorithm 
(SMA) was employed for the numerical optimization of RIT through MATLAB 2020. An innovative MATLAB 
script was created for this optimization. The parameters of mass flow rate, number of blades, and blade angles 
were varied in a constrained range for optimization. This paper explores five distinct blade scenarios for design and 
numerical optimization processes through MATLAB 2020. The optimization of radial inflow turbines will require 
the development of a greater capacity of the cryogenic liquefaction system. The performance measurement of the 
radial inflow turbine was done based on total-to-static efficiency. In numerical optimization, the selection of blades 
in the range of 11–15 resulted in an improvement in the total-to-static efficiency by around 1.46 %, specifically 
for 13 blades. This enhancement represents a significant 5.0 % improvement over the results presented in the 
ANN model explored in the available literature. The maximum total-to-static efficiency achieved through SMA 
optimization is 89.94 % for 15 blades.
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NOMENCLATURE 
t : Blade thickness 
p : Pressure (pa)
b : Blade height(mm) 
Rh : Hub radius (mm)
U : Blade speed (m/s) 
α : Absolute velocity angle
W  : Relative velocity(m/s) 
vs : Velocity ratio
c : Turbine blade chord 
Z : Number of blades 
ORC : Organic Rankine cycle
Zr : Rotor axial length(m) 
h : Enthalpy (KJ/kg)
Dh : Mean passage hydraulic diameter 
SMA : Slime mould algorithm
1 : Turbine inlet 
Lh : Mean pressure hydraulic length
2 : Turbine outlet 
CFD : Computational fluid dynamics
r3 : Turbine outlet radius(mm) 
M : Mach number
Rs : Shroud radius(mm) 
ANN : Artificial neural network

Rp : Pressure ratio 
ANFIS : Adaptive neuro-fuzzy inference 
   system
β2 : Inlet blade angle 
RIT : Radial inflow turbine
β3 : Outlet blade angle 
r2 : Turbine inlet radius(mm) 
m : Mass flow rate (kg/s) 
 
1. INTRODUCTION

The purpose of this work is to enhance the total-to-static 
efficiency and performance of a cryogenic turboexpander, 
which can be used for liquefaction and refrigeration systems. 
This holds significance for a range of uses, including creating an 
inert welding environment (using shielding gas), leak detection, 
optical fibres, solar telescopes, superconductors, and various 
biomedical and chemical instruments1. Radial inflow turbines 
have been applied in diverse engineering sectors, including 
power generation systems, liquefaction and refrigeration 
plants, superconductors, and nuclear fusion applications2. 
Cryogenic turboexpander-based gas liquefaction processes 
are particularly vital for industrial and research purposes. The 
radial inflow turbine serves as the primary component for this 
type of refrigeration, and the liquefaction cycle has numerous 
other uses, such as in gas turbines, the organic Rankine cycle 
(ORC), and air separation3. The process involved conducting 
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multi-goal optimization for the ORC, the radial inflow turbine 
was analysed using ANSYS CFX and design exploration 
based on a 3D Reynolds-average Naiver-Stokes (RANS) and 
a k-omega SST turbulence model. For the optimization of 
blade geometry, 20 design points were considered, with blade 
angles and thickness distribution being represented using the 
B-splines technique. Isopentane and R245fa have been used as 
organic working fluids. 

The increment of thermal efficiency for both cycles is 
around 13.95 % and 17.38 %4. High-pressure ratio radial inflow 
turbines are predominantly employed in organic Rankine 
cycle power systems. These turbines have been subjected 
to multi-goal optimization using a genetic algorithm for 
various high-pressure ratio applications. The resulting model 
predicts isentropic efficiency within a margin of ±3 %.5 The 
thermodynamic properties and performance of turbo-expanders 
have been enhanced by directly incorporating the Hepak 
database for real gas properties into the computational fluid 
dynamics (CFD) solver6. In the case of small-scale turbines, a 
non-dimensional performance map shows a significant impact 
on the shroud-to-tip radius ratio7. The use of a helium cryogenic 
system is common in superconducting systems as well as in 
the fields of nuclear fusion engineering and space exploration. 
Therefore, there is a critical need to develop a high-efficiency 
helium turbine featuring splitter blades capable of liquefying 
40 litres of helium per hour via the Claude cycle. This can 
be achieved by learning the thermodynamic characteristics 
using an in-house code that can be integrated into the NIST 
REFPROP database8. 

The slime mould algorithm (SMA) primarily draws 
inspiration from the natural swinging behaviour of slime 
mould. The SMA incorporates innovative elements, including a 
distinctive mathematical model that employs adaptive weights. 
This model imitates the way slime mould generates positive 
and negative feedback in its propagation waves, resembling 
a bio-oscillator. The goal is to show the best path that links 
food sources while demonstrating exceptional exploratory 
capabilities and exploitation tendencies9. A computational 
iterative loop compiled by MATLAB has been put into practice 
to assess the performance of the off-design turbo-expander. The 
correlation of losses has been integrated into the quantitative 
picture of flow expansion through the duct. Performance is 
estimated with the help of total-to-static efficiency, in which 
the rotational speed is kept in the range of 52,000 to 60,000 
rpm10. One-dimensional modelling has been used to examine 
the parameters of the nozzle and turbine. Utilizing artificial 
intelligence techniques, essential non-dimensional variables 
like blade speed, pressure ratio, and the ratio between the hub 
and shroud radii to the turbine inlet radius have been calculated 
to enhance the turbine’s performance. 

As a result, turbine efficiency and power output have seen 
notable improvements, with a 4 % increase in efficiency and 
an 18.9 % boost in power output in contrast to the existing 
model. The analysis of fluid flow encompasses various aspects, 
including the recognition of flow separation zones, tip leakage 
flows, and the development of vortices at distinct locations 
along the turbine’s span. Sensitivity analysis using the Sobel 
method has been applied to pinpoint significant parameters. 

In conclusion, the numerical results have been subjected 
to comparison to experimental results for validation11. In 
their study, Ghorbanian and Gholamrezaei12 investigated the 
act of a compressor using various artificial neural network 
(ANN) techniques, including GRNN, RGRNN, RBFN, and 
MLP. They conducted an experimental analysis to assess the 
temperature drop, isentropic efficiency, and power output of 
a turboexpander. Their analysis was based on a range of mass 
flow rates from 0.03 to 0.08 kg/s and inlet temperatures of 
130, 140, and 150 K. Notably, the most significant temperature 
decrease was noted at the inlet temperature of 150 K. The 
present analysis was also based on a range of mass flow rates 
from 0.03 to 0.08 kg/s and inlet temperatures of 130, 140, and 
150 K13. MATLAB code was employed to create a first design 
for a 590-kW radial inflow turbine intended for use in an 
organic Rankine cycle (ORC) with the organic working fluid 
R134a. 

Furthermore, NIST REFPROP was used to determine the 
fluid’s physical properties. The design process involved the use 
of seven design parameters, and the particle swarm optimization 
algorithm was applied to maximize the overall total-to-static 
efficiency14. The supercritical carbon dioxide (SCO

2
) power 

cycle has a critical component radial inflow turbine16. 1-D 
mean line design and aerodynamic design and analysis of a 
radial inflow turbine for supercritical CO2 mixtures. Rotational 
speed limits the design of the radial inflow turbine and total-
to-static efficiency. Clearance-to-blade height ratio, pressure 
ratio, and fluid viscosity defences in the turbine efficiency. 
The aerodynamics of all working fluids behaved similarly. The 
aerodynamic performance was improved by doping CO2. The 
working fluid is the deciding factor for the size of the rotor and 
velocity and mechanical components like the type of bearing18. 
Hydrogen can be stored in a gaseous state at high pressure and 
in a liquid state at cryogenic temperature. 

A liquid hydrogen tank needs insulation to prevent heat 
leakage. Pressure behaviour and internal pressure conditions 

Figure 1. Flow chart of the methodology.
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have been monitored by the thermodynamic model of the 
cryogenic liquid hydrogen tank. Transient analysis has been 
performed for fuel consumption rate. There is a time delay 
between the charging and consumption of fuel by the tank, 
which deliberately affects the fuel tank19.

2.  RADIAL INFLOW MEAN-LINE DESIGN 
METHOD
Figure 1 shows the methodology of the design and the 

optimization of the radial inflow turbine for the cryogenic 
turboexpander.

2.1  Design Method
The first and most crucial step in cryogenic turboexpander 

design is the 1-D design. The given inlet of the radial turbine 
can predict the geometrical design. The description of the 
turbine is contingent upon the working fluid. The intention is 
to decrease the temperature per cryogenic concern. Obtaining 
this condition requires the inlet and outlet radii to be diverse. In 
this paper, a radial turbine has been modelled for the cryogenic 
turboexpander. The inlet situations of the turbine have been 
chosen for training. The inlet temperature is 122 K. The inlet 
pressure is about 6 bar, and the discharge pressure is 1.5 bar. 
The stream rate chosen in consideration of turbine geometry is 
0.03–0.08 kg/s.

2.2 Empirical Loss Model 
The one-dimensional strategy of a radial inflow turbine 

demands significant effort and resources. The radial inflow 
turbine’s dimensions depend on the specific fluid used in the 
cryogenic turboexpander. When designing a radial inflow 
turbine for a cryogenic turboexpander, it is essential to account 
for the challenges associated with cryogenic conditions. 
Several factors, such as incidence loss, tip clearance loss, 
and friction loss, have a noteworthy impact on the efficiency 
calculations11. The study includes the construction of different 
loss components, which are listed below. The nomenclature 
and symbols for the variables are provided in Table 1.

The steps involved in the 1-D design of RIT are as follows: 
The first step involves estimating a first worth for the total-to-
static efficiency, which plays a crucial role in figuring out the 
spouting velocity.
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This value is taken from a prototype turbine of Subrata 
Kumar Ghosh’s thesis.     
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Here, ΔHideal stands for the ideal total-to-static enthalpy 

decrease, H0 signifies the total enthalpy, ηts denotes the total-
to-static efficiency, and cos stands for the spouting velocity. 

The first blade speed at the inlet is found and grounded on the 
velocity ratio, which is then used to estimate the absolute rotor 
velocity.
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2.2.1 Incidence Loss (Δht) 

In line with this loss mechanism, there is a transformation 
of kinetic energy into the internal energy of the fluid. This 
occurrence has been articulated as follows:
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follows:
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2.2.2. Passage loss (Δhpassage) 
The mean kinetic energy factor addresses the loss 

experienced during passage. It has been mathematically 
defined as follows   
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kp = 0.2.Lh, Dh, and c are commonly known as the mean 

hydraulic length of the passage, the passage diameter, and the 
length of the chord for the turbine blade, respectively.

2.2.3.	 Rotor	 Clearance	 Loss	 Δhcl  
The turbine clearance loss is influenced by both the axial 

(Ɛx) and radial (Ɛr) clearances within the turbine, and it has 
been mathematically expressed as follows:
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In this context, kx stands for the discharge coefficient in 
the axial direction, kr stands for the discharge coefficient in 
the radial direction, and kxr is the coefficient that accounts for 
cross-coupling effects. These constants have been assigned 
values of 0.40, 0.75, and -0.3, respectively. 

                                                                                              
2.2.4	 Trailing	 Edge	 Loss	 ΔhTEL 

When modelling trailing edge loss, we assume that the 
relative pressure drop at the turbine’s exit varies in direct 
proportion to the relative kinetic energy.

2
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The process involves converting the pressure loss 
formulation into a loss coefficient.  
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2.2.5	 Blade	 Loading	 Loss	 ΔhBL

Boundary layer separation stands for a secondary loss that 
contributes to blade loading loss. This loss occurs because of 
the curvature in the blade profile, and it has been expressed as 
follows: 
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The total loss was formulated as:
Lt l passage cl TEL BLh h h h h h= ∆ + ∆ + ∆ + ∆ + ∆∑                (13)                                                                                

  

0

0
ts

Lt

h
h h

h =
+ ∑                                              

(14)
                                                                                                                                 

The total-to-static efficiency will be changed by 
incorporating distinct types of losses [6]. The value of h0 is 
28,940 J/kg. 

2.2.6 Blade Inlet Angle 
The calculation of the circumferential velocity component 

at the turbine’s inlet can be performed as follows:

2
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In the case of critical flow conditions, K1 stands for a 

constant and Q denotes the mass flow rate.    
2

2

1120c

n
Q

k
dπ

=
                                                       

(17)
                                                              

With d2 being 24.90 mm, rotational speed equalling 
140,000 rpm, and Qc measuring 0.1 kg/s, the value of k1 has 
been determined to be 22.724. Consequently, we obtain the 
Eqn. Cq2= 1824.337, multiplied by the mass flow rate, based 
on the velocity triangle.
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By adjusting the mass flow rate for various Cm2 values, 
we can calculate the relative velocity at the turbine’s inlet as 
follows:     

2
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2.2.7 Blade Outlet Angle b3

The outlet flow angle is taken to vary in response to 
changes in the mass flow rate, with six distinct values being 
examined for the outlet flow angle. We can calculate the 
meridian velocity at the outlet using the following formula:

3
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r
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Considering A3 as the outlet cross-sectional area, we’ve 
calculated that Qr is 0.00397 m3/s and d3 is 15.60 mm. Balaji 
has recommended a Cm3 value of approximately 20 m/s. 

Consequently, we have determined the relative velocity at the 
turbine’s exit using the velocity triangle as follows:

3
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=
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Figure 2.  Flow chart for the best preliminary design with the 
SMA.

2.3  Approach for Optimizing the Initial Design
The universal principle of the best first strategy of radial 

turbines is portrayed in the flowchart in Fig. 2. The 1-D design 
of a radial inflow turbine involves distinct sets of parameters. 
Total-to-static efficiency depends on nine different parameters: 
ηts = f (β2, β3 r2, r3, b2, b3, mass flow rate, α2, vs). These nine 
parameters have stimulated the total-to-static effectiveness. 
In the present investigation, we computed the total-to-
static efficiency using a loss model as the basis. The loss 
model depends on the range of nine design parameters. The 
range of radial-inflow turbine design parameters is shown in  
Table 115. The design results from distinctive design variables 
are constrained to the range. 
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2.3.1 SMA
Hereafter, the slime mould algorithm is chosen to achieve 

design optimization to increase total-to-static efficiency. The 
slime mould algorithm is primarily inspired by the natural 
oscillation behaviour shown by slime mould. The mathematical 
equation of slime mould follows the rule below to emulate the 
contraction mode:

( ) ( ) ( )( ){ }1t b b A BX X t v W X t t r p+ = + ∗ − Χ ∠
              (22)

In the above equation, vb is a parameter which varies in 
the array of [-a, a], and vc declines since 1 to 0. The iteration is 
represented by ‘t’. The position of the slime mould is denoted 
as ‘X’, and the randomly selected forms within the swarm are 
‘XA’ and ‘XB’, with ‘W’ standing for the weight of the slime 
mould. The highly concentrated location is Xb, and p can be 
represented by 

( )tanhp S i= −DF
                                           (23)                                                                                                                           

The fitness of ‘X’ can be represented as ‘S(i)’, and the 
best fitness across all iterations can be written as ‘DF, i ϵ 1, 2, 
……, n. 

The formula for vb is 
[ ],bv alpha alpha= -                         (24)                                                                                                                                        
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In the above, the state appoints S(i)’ corresponds to the 
first half of the population., r lies between [0,1], ‘bF’ stands 
for the best fitness in the current iteration, and ‘wF’ stands for 
the poorest fitness values in the current iterative loop. ‘Smell 
Index’ stands for a sequence of sorted fitness values.

The mathematical modelling process has been employed 
to update the slime mould’s position, which can be expressed 
as follows:
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The search scale’s lower and upper boundaries are defined 

as LB and UB, respectively, with ‘rand’ and ‘r’ representing 
random values within the range [0,1]. The iteration further 
increases, and the rate of vb oscillates arbitrarily [-alpha, alpha] 
and slants toward 0. The slime mould algorithm equation 
has been obtained from17, and the paper introduces a novel 
approach to stochastic optimization.

3.  RESULTS AND DISCUSSION
The 1-D design of the radial inflow turbine used for a 

cryogenic turboexpander application was performed through 
MATLAB original code, and then the slime mould algorithm 
was performed through MATLAB original code. The total-to-
static efficiency for radial inflow turbine has improved in 1-D 
design and optimization simulation. The design variables for 
radial turbine constrained in a cryogenic application are shown 
in Table 2. Total-to-static efficiency increased from 83.86 
% to 86.21 % for the velocity ratio of 0.62, as the α2 varied 
from 72 to 82 degrees. There was an increase in total-to-static 
efficiency of 2.35 % by the variation in the absolute flow angle 
by 72 to 82 degrees. For the number of blades (Z=13), when 
the mass flow rate increased from 0.03 to 0.08, the total-to-
static efficiency increased from 87.11 % to 87.31 %.  

3.1  1-D Design Result
MATLAB code was developed for the 1-D design of a 

radial inflow turbine per cryogenic constraints.

Table 1. Constrained tange cryogenic application

Design variables Range
Inlet stagnation pressure (bar) 8–10
Inlet stagnation temperature (K) 90–180
Mass flow rate (kg/s) 0.01–0.09
Blade speed ratio 0.62–0.82
Blade inlet angle (degrees) 72–82
Number of blades (Z) 10–15
Pressure ratio 2–5
Rotational speed (RPM) 80,000–150,000

Figure 3.  Velocity ratios vs efficiency for different numbers of 
blades.

Figure 4.  Velocity ratio varies with efficiency for different mass 
flow rates.
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The 1-D design results obtained through MATLAB 
original code are represented in Fig. 3. Velocity ratios vary 
with the total-to-static efficiency for different numbers of 
blades. As velocity ratios increase, total-to-static efficiency 
decreases. The maximum efficiency was reached at a velocity 
ratio of 0.62. 

Figure 4 demonstrates the result for Z = 13. The mass 
flow rate changed from 0.03 to 0.08 kg/s. As the mass flow rate 
increased from 0.03 to 0.04, the efficiency rose from 87.11 to 
87.15 %. The total-to-static efficiency increased from 0.04 % 
as the mass flow rate grew. 

For verification purposes, the obtained radial turbine model 
was compared with the existing model of M. Kumar et al. (see 
Table 3). The ANN-optimized result was also compared with 
an existing SMA-optimized model. A 5 % increase in total-to-
static efficiency has been identified.

The enhancement in total-to-static efficiency is 1.65 % for 
11 blades, 1.55 % for 12 blades, 1.46 % for 13 blades, 1.38 % 
for 14 blades, and 1.31 % for 15 blades. 

3.3  Impact Analysis of Design Parameters
The parameters used in the strategy of the radial inflow 

turbine influenced the total-to-static efficiency. Total-to-static 
efficiency varied with these design variables as revealed in  
Fig. 5 and Fig. 6.

Table 2.  1-D design and optimized design for varying blade 
quantities

Number 
of 
blades

1-D design 
total-to-static 
efficiency

Numerical 
optimized 
total-to-static 
efficiency

Improvement 
in total-to-static 
efficiency

11 85.11 86.76 1.65
12 86.18 87.73 1.55
13 87.11 88.57 1.46
14 87.92 89.30 1.38
15 88.63 89.94 1.31

Table 3. SMA optimized result vs ANN result

Design output 
parameter

Optimized 
model

Kumar, 
et al. 
(ANN 
result)

Difference

Blade height Turbine inlet 
b2 (mm) 2.0 2.14 0.14

Blade height Turbine 
outlet b3 (mm) 1.00 1.01 0.01

Turbine outlet diameter 
d3 (mm) 15.8 15.71 0.09

Turbine inlet diameter d2 
(mm) 25.2 25.64 0.44

Outlet blade angle (β3) 
(degrees) -79.5 -84.76 -5.26

Inlet blade
angle (β2) (degrees) -51.5 -55.12 -3.62

Blade speed (U2
) (m/s) 159.309 144.62 14.689

Total-to-static efficiency 88.57 83.57 5

3.2  Numerical Optimization Results
SMA optimization was conducted under distinctive design 

variables in a constrained range of cryogenic applications. The 
optimization process was designed to maximize the total-to-
static efficiency. The number of population NP = 100, and the 
number of dimensions was kept at D = 9. The slime mould 
algorithm was initialized by creating a population of 100 
slime moulds with a nine-dimensional structure. The SMA 
constraints were Vb and Vc. The number of iterations runs for 
this algorithm was 100, and the fitness function was the total-
to-static efficiency. Finally, parameters were obtained for the 
radial-inflow turbine geometries for maximum total-to-static 
efficiency. Table 2 displays the outcomes of both the mean-
line design and the optimization design using the SMA for the 
radial inflow turbine employed in the cryogenic turboexpander. 

Figure 5. Efficiency in relation to the velocity ratio.

Figure 6. Total-to-static efficiency vs mass flow rate.

Figure 5 displays a graph of velocity ratios vs total-to-
static efficiency in which efficiency is perfected as the velocity 
ratios vary. However, as revealed in the figure, the velocity 
ratio converges to 0.62. The highest total-to-static efficiency 
was reached at a velocity ratio of 0.62. There is a decreasing 
trend as the velocity ratio rises, resulting in a reduction in total-
to-static efficiency.

Figure 6 shows the variation of mass flow rate with 
total-to-static efficiency. According to the results from the 
optimization simulation, the highest efficiency is reached 
when the mass flow rate is 0.03 kg/s. In the 1-D design of the 
radial turbine, maximum efficiency was achieved at 0.08 kg/s. 
Thus, the mass flow rate decreases until it reaches 0.055 kg/s 
and then begins to rise once more. The optimized design for a 
radial turbine intended for cryogenic applications achieved its 
highest total-to-static efficiency at a blade inlet angle of 72°. 
As the blade inlet angle increased, the total-to-static efficiency 
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was reduced, particularly at 82°, which resulted in the lowest 
total-to-static efficiency.

4.  CONCLUSION
In the present research, a mean-line design and multi-

variable optimization process were created for a radial inflow 
turbine used in a cryogenic turboexpander. This development 
can be verified by a comparison with earlier literature. The slime 
mould algorithm was used to conduct a comprehensive design 
and global optimization process. This algorithm achieved 
the highest total-to-static efficiency. The distinctive design 
parameters were perfected, and their impact on the total-to-
static efficiency of the radial-inflow turbine was analysed. The 
working fluid was liquid nitrogen, and the main conclusion 
is as follows. The application of the slime mould algorithm 
led to a 1.46 % enhancement in total-to-static efficiency. 
The ANN results presented by M. Kumar, et al. showed an 
efficiency of 83.6 %. The increase in total-to-static efficiency 
was approximately 5.0 %.

Five different cases were studied according to the 
number of blades in the cryogenic application-constrained 
range. Improvements in the efficiency of these five cases were 
significant, at 1.65 % for 11 blades, 1.55 % for 12 blades, 1.38 
% for 14 blades, and 1.31 % for 15 blades. Blade speed varied 
with velocity ratios such that rotational speed is considered but 
as per Cryogenic constrained conditions. The number of blades 
can be optimized by computational fluid dynamics (CFD), but 
such an analysis was not considered in this manuscript. 

The velocity ratio of 0.62 resulted in the maximum total-
to-static efficiency. Mass flow rates and blade inlet angles are 
about 0.03 kg/s and 72°.

5.  FUTURE SCOPE
An optimized radial inflow turbine of a cryogenic 

turboexpander can be used for the liquefaction of hydrogen. 
The optimized design of a radial inflow turbine can be used for 
supercritical CO2 mixtures.
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