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ABSTRACT

Lightweight block ciphers provide security to resource-limited devices. However, many of these ciphers lack 
security analysis against basic attacks. This paper provides a detailed security analysis of two lightweight block 
ciphers, IVLBC and Eslice-64, against differential attack. The designers of IVLBC and Eslice-64 claimed that their 
ciphers were secure against differential attack. In this paper, to substantiate existing cryptanalysis’s claims, we perform 
differential attack on these two ciphers using the Mixed-Integer Linear Programming (MILP) method. We incorporate 
the Difference Distribution Table (DDT) probabilities into MILP models. We discover differential distinguishers up 
to seven and 15 rounds for IVLBC and Eslice-64, respectively. We improve the known distinguishers for Eslice-64 
by one round. Further, we mount the key recovery attack on an eight-round IVLBC and a 16-round Eslice-64 with 
data/memory/time complexities of 249/ 250.59/249  and 263/212.58/263 respectively.

Keywords: Differential cryptanalysis; Eslice-64; IVLBC; Lightweight Block Cipher; MILP

NOMENCLATURE
K	 : Key
RKi	 : ith round key
X	 : 64-bit input block
U	 : Output of add round key
V	 : Output of sub cells (S-box)
Z	 : Output of permute nibbles (P-box)
L	 : Output of mix columns
ΔX	 : Input difference
ΔY	 : Output difference
Ns / Nr,S 	: Number of S-boxes in the entire trail or rth  round
SPN	 : Substitution-permutation network
NAS	 : Number of active S-boxes in a trail

1.	 INTRODUCTION
Huang1, et al. designed IVLBC, a lightweight block 

cipher with two variants, IVLBC-80 and IVLBC-128, which 
depend on the key size, in 2022. Meanwhile, Li-fang2,  
et al. introduced Eslice, a lightweight block cipher with three 
variants, Eslice-64-64, Eslice-64-128, and Eslice-128-128, 
depending on the block and key sizes, in 2023. We consider 
block ciphers secure if they resist attacks over the years. The 
security analysis of block ciphers is currently crucial against 
linear/differential attacks3. In differential attack, the attacker 
seeks high-probability differential trails. Nowadays, we use the 
MILP method in differential cryptanalysis. Many lightweight 
block ciphers, like ANU-II4, Midori645, and PIPO-64/1286 etc. 
have been analyzed against differential attack using MILP. This 
method represents the operations of block ciphers in terms of 

linear inequalities and then uses the resulting inequalities as 
constraints on an objective function.

Zhang and Zhang7 analyzed the lightweight block cipher 
Skinny for differential attack using the MILP program. 
The authors provided an 11-round differential trail with the 
minimum active S-boxes. Then, Zhu8, et al. provided the 
differential cryptanalysis on round-reduced GIFT using MILP. 
Zhou9, et al. improved the MILP algorithm using the divide-
and-conquer technique to assess the security of differential and 
linear attacks. Using this algorithm, the authors analyzed the 
block ciphers TWINE, RECTANGLE, PRESENT, LBLOCK, 
and GIFT-64. After that, Kumar and Yadav10 analysed the 
differential attack on WARP using the MILP model. İlter and 
Selçuk11 provided a more efficient method to write multiple 
XOR in terms of linear inequalities in the MILP method. Using 
this method, the authors provided the minimum number of 
active S-boxes (#AS) and high-probability differential trails 
of KLEIN and PRINCE. Next, İlter and Selçuk12 analysed 
the cryptanalysis of FUTURE using the MILP method. The 
authors discovered an efficient approach for representing 
n-XOR using only one constraint. Then, Shiraya13, et al. 
examined the security of Tiaoxin-346, Rocca, and  AEGIS 
against differential attack using the MILP method. For IVLBC, 
İlter and Selçuk14 identified the seven-round differential and 
linear characteristics with a probability of 2-46 and a bias of 
2-24, respectively. This paper contributes to the differential 
cryptanalysis of two lightweight block ciphers, IVLBC and 
Eslice-64.

1.1 	Contributions
The designers of IVLBC and Eslice-64 claimed that 

their ciphers were resistant to differential attack, providing 
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nine-round and 16-round differential trails for IVLBC and 
Eslice-64 with probabilities of 2-66 and 2-70, respectively. After 
that, İlter and Selçuk14 determined a seven-round differential 
characteristic with a probability of 2-46 for IVLBC. On both 
ciphers, there has been no key recovery differential attack so 
far. This paper studies the MILP-based security analysis to 
validate these claims and find optimal differential trails for 
both ciphers, incorporating the Difference Distribution Table 
(DDT) probabilities and additional constraints on the number 
of active S-boxes. This paper also presents the key recovery 
differential attack on IVLBC and Eslice-64. Our contributions 
are as follows:
•	 For IVLBC, we provide the minimum active S-boxes 

and probabilities of optimal differential trails up to nine 
rounds. There are differential distinguishers for IVLBC 
up to seven rounds. Specifically, we present a seven-
round differential trail for IVLBC with 23 minimum 
active S-boxes and a probability of 2-46 

•	 For Eslice-64, we provide the minimum active S-boxes 
and probabilities of optimal differential trails up to 
16 rounds. Eslice-64’s designers found differential 
distinguishers up to 14 rounds. However, we discover 
differential distinguishers up to 15 rounds in our paper. In 
addition, we give a 15-round differential trail for Eslice-64 

with 30 minimum active S-boxes and a probability of 2-60.
•	 Moreover, we introduce a key recovery attack on an 

eight-round IVLBC and a 16-round Eslice-64 with data/
memory/time complexities of 249/250.59/249 and 263/212.58/263  
respectively.

1.2 	Organization
The following is the outline of the remaining paper: 

Section 2 discusses the IVLBC and Eslice-64 lightweight 
ciphers. We create MILP models for differential attack in 
Section 3. Section 4 provides differential trails and key 
recovery attacks on IVLBC and Eslice-64. Finally, Section 5 
provides the conclusion of the paper.

2.	 IVLBC AND ESLICE-64
This section discusses the two lightweight block ciphers, 

IVLBC and Eslice-64, depending on SPN and Feistel 
structures, respectively.

2.1	 IVLBC 
IVLBC operates on a 64-bit block with an 80/128-bit 

key. This section describes the round function and the key 
generation procedure of IVLBC.

Table 1. S-box (IVLBC)

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(t) 0 15 14 5 13 3 6 12 11 9 10 8 7 4 2 1

Figure 1. IVLBC round function.

Table 2. P-box (IVLBC)

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(t) 0 7 10 13 4 11 14 1 8 15 2 5 12 3 6 9

2.1.1	 Round Function
IVLBC has 29 rounds. Each round function of 

IVLBC comprises AddRoundKey (ARK), SubCells (SC), 
PermuteNibbles (PN), and MixColumns (MC), consecutively, 
as shown in Fig. 1. In the last round, there is only an 
AddRoundKey operation. Here, we describe the operations of 
the round function.

2.1.1.1 Add Round Key
This operation performs XOR between a 64-bit block (X)  

and the 64-bit high of RKi, such as:

iU X RK= ⊕ 				              (1)

2.1.1.2 Sub Cells
First, divide a 64-bit block (U) into 16 subblocks 

( , 0 15)jU j≤ ≤ , and each subblock has a length of 4 bits. Then, 
use the same S-box (Table 1) on each subblock as follows:

( ), 0 15j jV S U j= ≤ ≤ 			            (2)

2.1.1.3 Permute Nibbles
In this operation, write a 64-bit block (V) into 16 subblocks 

( , 0 15)jV j≤ ≤  of length 4 bits. Then, applying the permutation 
as given in Table 2, we get:
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( ), 0 15j jZ P V j= ≤ ≤
				             (3)

2.1.1.4 Mix Columns
First, represent a 64-bit input block (Z) of MixColumns 

into a 4×4 matrix. Then, L=M×Z is the output of MixColumns, 
where:

0 1 1 1
1 0 1 1

.
1 1 0 1
1 1 1 0

M

 
 
 =
 
 
 

2.1.2	 Key Generation
Consider the key is K= K0K1K2K3 where, the length of 

(0 3)iK i≤ ≤  is 20/32-bit for an 80/128-bit key, respectively. 
For IVLBC-80, first, apply an 11-bit left circular shift to K0K1, 
Then, substitute four bits (k76-k79) using an S-box (as shown 
in Table 1). Subsequently, perform XOR between five bits 
(k40-k44) and RCi, where, {1,2,3,...,29}.iRC ∈  Finally, update 
the key K by K2K3K0K1  (Algorithm 1). Similarly, there is 
a key generation procedure for IVLBC-128, as shown in  
Algorithm 2.

2.2	 Eslice-64
Eslice-64 has 35 (or 38) rounds of Eslice-64-64 (or 

Eslice-64-128), respectively. Eslice-64 operates on a 64-
bit block with a 64/128-bit key. Here, we describe the round 
function and the key generation procedure as follows:
2.2.1	 Round Function

This function consists of AddRoundKey, S-box, and 
P-box, as shown in Fig. 2. We discuss the operations of the 
round function as follows:

2.2.2 Add Round Key
First, divide a 64-bit block (X) into two subblocks of 

length 32 bits (X=Xj-1Xj). Then, perform XOR between a 32-bit 
left subblock (Xj-1) and a 32-bit round key (RKi) as follows:

1j iU X RK−= ⊕ 				             (4)

2.2.3 S-box
First, write a 32-bit block (U) into eight nibbles 

( , 0 7).jU j≤ ≤  Then, use an S-box (Table 3) on each nibble, as 
given below:

( ), 0 7j jV S U j= ≤ ≤            	              (5)

2.2.4 P-box
First, divide a 32-bit block into eight nibbles, that is, 

V=V0V1…V7. We then apply the P-box as shown in Table 4. 
Finally, we have:

( ), 0 7j jZ P V j= ≤ ≤ 				             (6)

Table 3. S-box (Eslice)

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(t) 6 0 8 15 12 3 7 13 11 14 1 4 5 9 10 2

Figure 2. Eslice-64 round function.

Table 4. P-box (Eslice)

t 0 1 2 3 4 5 6 7
P(t) 3 4 5 6 0 1 2 7

Algorithm 1: Key Generation Algorithm of IVLBC-80    
Data: K
    Result: RK
    for 1 29i to=  do
         0 1 2 3 ;K K K K K←

         0 1 0 1( ) 11;K K K K← <<<

         76 79 76 79[ : ] ([ : ]);k k S k k←

         40 44 40 44[ : ] [ : ] ;ik k k k RC← ⊕

        2 3 0 1;iRK K K K K←

        ;iK RK←

    end
    return RK  

Algorithm 2: Key Generation Algorithm of IVLBC-128   
 Data: K
    Result: RK
    for 1 29i to= do
         0 1 2 3 ;K K K K K←

         0 1 0 1( ) 7;K K K K← <<<

         120 123 120 123[ : ] ([ : ]);k k S k k←

         124 127 124 127[ : ] ([ : ]);k k S k k←

         64 68 64 68[ : ] [ : ] ;ik k k k RC← ⊕

        2 3 0 1;iRK K K K K←

        ;iK RK←
    end
    return RK  
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2.2.2	 Key Generation
Consider K=k0k1k2…k63 for Eslice-64-64. First, perform a 

49-bit left circular shift on K. Then, apply the S-box (see Table 
3) to the leftmost four bits (k0–k3). Subsequently, perform XOR 
between five bits (k28–k32) and the round constant Ri. Here, we 
obtain the round constant Ri using a five-bit LFSR2, where the 
initial state R1 is 0x1. Finally, the first 32 bits of the updated 
key K form a round key, as shown in Algorithm 3. Similarly, 
we have the key generation algorithm of Eslice-64-1282.

Algorithm 3: Key Generation Algorithm of Eslice-64-64
    Data: K
    Result: RK
    for 1 35i to= do
         49;K K← <<<

         0 3 0 3[ : ] ([ : ]);k k S k k←

         28 32 28 32[ : ] [ : ] ;ik k k k R← ⊕

        0 1 2 31... ;iRK K K K k←

    end
    return RK  

3.	 MILP MODEL
This section discusses the linear inequalities corresponding 

to operations, such as XOR, Permutation, MixColumns, and 
S-boxes to create MILP models (.lp format).

3.1	 XOR
Suppose z x y= ⊕ , where, (x,y) and z are the input 

and output bit differences of XOR, respectively. The linear 
inequalities of XOR are given by

2

2

x y z d
x d
y d
z d

x y z

+ + ≥
 ≤ ≤
 ≤

+ + ≤ 	               
(7)

where, {0,1}.d ∈

3.2	 Permutation
Consider the input and output differences of P are 

(x1,x2,x3,…,x64) and (y1,y2,y3,…,y64), respectively. Therefore,  

( ),1 64j jy P x j= ≤ ≤  are linear equations of the permutation 
operation.

3.3	 MixColumns
The matrix (M) of MixColumns for IVLBC is given by:

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 
 
 
 
 
 
First, we convert the matrix M into a bit matrix of order 

16 as follows:
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider (y1,y2,y3,…,y64) and (z1,z2,z3,…,z64) as input and 
output differences of MixColumns operation, respectively. 
There are 32 intermediate variables and 384 linear inequalities 
that describe the MixColumns operation. For example, 

1 5 9 13.z y y y= ⊕ ⊕  Define 1 5 9d y y= ⊕ , then 1 1 13.z d y= ⊕  
Therefore, the linear inequalities for z1 are defined as follows:

1 5 9

1 5 9

1 5 9

1 5 9

1 1 13

1 1 13

1 1 13

1 1 13

2
0
0
0
2
0
0
0

d y y
d y y
d y y
d y y
z d y
z d y
z d y
z d y

+ + ≤
 + − ≥
 − + ≥
− + + ≥
 + + ≤
 + − ≥


− + ≥
− + + ≥ 				             (8)

3.4	 S-box
3.4.1	 S-box Linear Inequalities

Consider the input and output differences are (x1,x2,x3,x4) 
and (y1,y2,y3,y4), respectively of a  4×4 S-box. Consider a binary 

Table 5. Differentially active S-boxes and probabilities of optimal trails (IVLBC)

Round NAS Probability
#Variables #Constraints

This paper İlter and Selçuk14 This paper İlter and Selçuk14

1 1 2-2 320 432 579 561

2 4 2-8 560 800 1076 1121

3 7 2-14 800 1168 1573 1681

4 16 2-32 1040 1536 2070 2241

5 17 2-34 1280 1904 2567 2801

6 20 2-40 1520 2272 3064 3361

7 23 2-46 1760 2640 3561 3921

8 32 2-64 2000 - 4058 -

9 33 2-66 2240 - 4635 -
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Figure 3.  The Seven-round Differential Trail of IVLBC.
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variable Ai to represent the ith S-box, that is, Ai=1 if and only 
if all xj are not zero. We then incorporate the following linear 
inequalities into MILP models:

                   4

1
0

0,1 4

j i
j

i j

x A

A x j
=

 − ≥

 − ≥ ≤ ≤

∑

	              (9)

Consider an input-output differential of the S-box as a 
point 8

1 2 3 4 1 2 3 4 2( , , , , , , , ) .x x x x y y y y ∈  There are 97 and 159 
possible and impossible points in the DDT of IVLBC and 
Eslice-64, respectively. Then, generate the linear inequalities 
corresponding to all possible input-output differential points 
of the S-box using the double description method1. There are 
198 and 237 linear inequalities of S-boxes for IVLBC and 
Eslice-64, respectively. Then, there are only 21 and 22 linear 
inequalities of S-boxes for IVLBC and Eslice-64 (see on 
GitHub) using MILP method15 and Gurobi solver, respectively.

3.4.2	 S-box Linear Inequalities Including Probabilities
There are only three nonzero values: 16, 4, and 2 in DDT 

of S-boxes for IVLBC and Eslice-64. Therefore, we require 
two binary variables (p1,p2) to define new differentials with 
probabilities 10

1 2 3 4 1 2 3 4 1 2 2( , , , , , , , , , )x x x x y y y y p p ∈  as 
shown in Eqn (10). The double description method provides 
363 and 477 linear inequalities of S-boxes for IVLBC and 
Eslice-64, respectively. Similar to Section 3.4.1, there are 20 
linear inequalities for S-boxes of both ciphers (see on GitHub). 

1 2

(0,1) [ , ] 2
( , ) (1,0) [ , ] 4

(0,0) [ , ] 16

i o

i o

i o

if DDT
p p if DDT

if DDT

∆ ∆ =
= ∆ ∆ =
 ∆ ∆ =                               (10)

3.5 	Objective Function
The objective functions are defined as 

1
min

SN

i
i

A
=
∑  and 

1 2
1

min (2 3 ).
ASN

i
p p

=

+∑  

3.6	 Additional Constraints
There are more variables and constraints in the model 

when we introduce further rounds. Consequently, the solution 
time increases exponentially. For the analysis of FUTURE, 
İlter and Selçuk12 employed additional restrictions on their 
model that bound differentially active S-boxes in each round. 
To achieve differential trails for IVLBC and Eslice-64, we 
impose additional restrictions such as 

1
min

SN

i
i

A
=

≥∑  and ,

1
max

r SN

i
i

A
=

≤∑   to 
bound the #AS in the entire trail and each round, respectively.

4.	 DIFFERENTIAL CRYPTANALYSIS
This section provides differential trails for IVLBC and 

Eslice-64 using MILP models. The Python codes are available 
on GitHub2. Moreover, we mount the key recovery attack on 
both ciphers16.

4.1	 IVLBC
The minimum differentially active S-boxes and 

probabilities of optimal trails up to nine rounds are provided in 
Table 5. From Table 5, we conclude that there are differential 
distinguishers up to seven rounds—since 642 2p− −> . Moreover, 
Table 5 shows that our MILP models have less number of 
variables and constraints (except round one) as compared to 
İlter and Selçuk’s models. Further, there is a detailed seven-
round trail with 23 minimum active S-boxes and a probability 
of 2-46 in Table 6 and Fig. 3. There is a nine-round trail with 
a probability of 2-66(˂2-64). As a result, full-round IVLBC is 
resistant to differential attack. 

Table 7. 	 Key recovery attack on an eight-round IVLBC (input 
difference = 0001  0010  0000  1000)

Round Output difference
1 0000  0000  0000  0003
2 0000  0000  3033  0000
3 5505  5055  0555  0000
4 0003  0030  0000  3000
5 0000  0000  0000  0003
6 0000  0000  1011  0000
7 3303  3033  0333  0000
8 ????   ????   0000  ????

Table 6. 	 Seven-round differential trail of IVLBC (input 
difference = 0001  0010  0000  1000)

Round Output difference Probability

1 0000  0000  0000  0003 2-6

2 0000  0000  3033  0000 2-8

3 5505  5055  0555  0000 2-14

4 0003  0030  0000  3000 2-32

5 0000  0000  0000  0003 2-38

6 0000  0000  1011  0000 2-40

7 3303  3033  0333  0000 2-46

Table 8. Differentially active S-boxes and probabilities of optimal trails (Eslice-64)

Round 1 2 3 4 5 6 7 8

This Paper
NAS 0 1 2 3 4 6 7 9
Probability 2-0 2-2 2-4 2-6 2-8 2-12 2-14 2-18

Li-fang et al.2
NAS 0 1 2 3 4 6 8 10
Probability 2-0 2-2 2-4 2-6 2-8 2-12 2^{-16} 2-18

Round 9 10 11 12 13 14 15 16

This Paper
NAS 12 15 18 22 25 27 30 33
Probability 2-24 2-30 2-36 2-44 2-50 2-54 2-60 2-66

Li-fang et al.2
NAS 12 14 17 20 23 27 31 34
Probability 2-24 2-30 2-38 2-45 2-53 2-59 2-64 2^{-70}
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Table 9. 	 15-round differential trail of eslice-64 (input difference 
= 50000000 05055505)

Round Output difference Probability
1 50500055 50000000 2-2

2 00005055 50500055 2-10

3 00500505 00005055 2-16

4 05000050 00500505 2-22

5 50550000 05000050 2-26

6 55000050 50550000 2-32

7 00005050 55000050 2-38

8 00005000 00005050 2-42

9 00000005 00005000 2-44

10 00000000 00000005 2-46

11 00500000 00000000 2-46

12 00000050 00500000 2-48

13 00050500 00000050 2-50

14 55500000 00050500 2-54

15 50005500 55500000 2-60

4.1.1	 Key Recovery Attack on Eight-Round IVLBC
We exploit the seven-round trail (see Table 6) for a key 

recovery attack on an eight-round IVLBC, where ∆X=0001 
001000001000 and ∆Y=3303 3033 0333 0000. We add another 

round to this trail and consider the output difference as ΔC. 
There are 48 unknown and 16 fixed bits in ΔC (Table 7). The 
following is the attack procedure:
•	 Encrypt 248 pairs of plaintexts to obtain at least 248-46=22 

right pairs that satisfy the trail.
•	 In ΔC, there are 16 fixed bits to filter out incorrect pairs. 

After filtering, there are 248-16=232  pairs.
•	 Set 248 counters and estimate 48 bits of round key 

corresponding to unknown bits in ΔC.
•	 Increase the key counter corresponding to the particular 

round key if a one-round partial decryption with that key 
yields ∆Y. For increment in the correct round key counter, 
there are at least four correct pairs.
We are required to encrypt 249 chosen plaintexts (D=249), 

therefore, T=249 is the time complexity. We need the memory, 
which is  48

50.59248 2
8

M = × =  bytes to store  248 48-bit round keys. 
The probability of successfully retrieving the right one-round 
key with four correct pairs is 

48 4621 0.982.e
−−− =

4.2	 Eslice-64
The minimum differentially active S-boxes and 

probabilities of optimal trails up to 16 rounds are shown in 
Table 8. From Table 8, there are differential distinguishers up 
to 15 rounds, whereas designers distinguishers are up to 14 
rounds. In addition, there is a detailed 15-round trail with 30 
minimum active S-boxes and a probability of 2-60 in Table 9 



KAUR & DEY: MILP-BASED DIFFERENTIAL CRYPTANALYSIS ON IVLBC AND ESLICE-64

659



DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

660

Figure 4. 15 rounds differential trail of Eslice-64.

and Fig. 4. The probability of a 16-round trail is 2-66(˂2-64). 
Consequently, full-round Eslice-64 is sufficiently secure 
against differential attack.  

4.2.1	 Key Recovery Attack on 16-round Eslice-64
We take an optimal 15-round trail (see Table 9) for 

the key recovery attack on a 16-round Eslice-64, where 
ΔX=5000000005055505 and ΔY=5000550055500000. We 
append a further round to this trail and assume that the output 
difference is ΔC. Similar to Section 4.1.1., we encrypt 262 pairs 
of plaintexts to obtain at least 262-60=22 correct pairs. There are 
12 active and 52 fixed bits in ΔC (see Table 10). After filtration 
with 52 fixed bits, there are only 262-52=210 pairs. We consider 
212 counters to guess the 12 bits of the round key. Therefore, 
the time, data, and memory complexities are T=263, D=263, 
and M=212.58 bytes, respectively. The attack has a probability 

62 6021 0.982e
−−− =  of obtaining a one-round key with four right 

pairs.

5.	 CONCLUSION
In our paper, we have created MILP models to find the 

single-key differential trails for two lightweight block ciphers, 
IVLBC and Eslice-64. We have included DDT probabilities 
to create MILP models. Through MILP models, we have 
discovered differential distinguishers up to seven rounds for 

Table 10. 	Key recovery attack on a 16-round Eslice-64 (Input 
difference = 50000000 05055505)

Round Output difference

1 50500055 50000000

2 00005055 50500055

3 00500505 00005055

4 05000050 00500505

5 50550000 05000050

6 55000050 50550000

7 00005050 55000050

8 00005000 00005050

9 00000005 00005000

10 00000000 00000005

11 00500000 00000000

12 00000050 00500000

13 00050500 00000050

14 55500000 00050500

15 50005500 55500000

16 0??5?500 50005500
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IVLBC. Similarly, we have identified differential distinguishers 
for Eslice-64 up to 15 rounds. For Eslice-64, our distinguishers 
cover one more round than previously known distinguishers. 
Moreover, we have mounted the key recovery attack on an 
eight-round IVLBC and a 16-round Eslice-64 with data/
memory/time complexities of 249/250.59/249 and 2^{63}/212.58/263 
respectively.
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