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ABSTRACT

In recent years, there has been a rise in demand for autonomous robots that can perform hazardous tasks, such 
as nuclear radiation detection. These robots can reduce the danger of human exposure to radiation and improve the 
efficiency of radiation detection operations. For the development of such robots, it is essential to have simulation 
environments that accurately mimic real-world conditions. This research paper provides a comprehensive description of 
the simulation of an autonomous robot for radiation detection in an unknown virtual environment using simultaneous 
localization and mapping and the A-star algorithm. This paper seeks to validate and evaluate the effectiveness and 
robustness of the simulation of an autonomous radiation detection robot using the two most prominent and robust 
robot simulators, Gazebo and WEBOTS.

Keywords:	Simultaneous localization and mapping; Robotic operating system; Unified robot description format; 
Adaptive monte carlo localization

NOMENCLATURE
AMCL	 : Adaptive monte carlo localization
EKF	 : Extended kalman filter
GBAD	 : Ground-based air defence
PSO	 : Particle swarm optimization
RDE	 : Rotating disc electrode
ROS	 : Robotic operating system
SLAM 	 : Simultaneous Localization and Mapping
URDF	 : Unified robot description format

1.	 INTRODUCTION
The detection and monitoring of radiation in hazardous 

environments is a critical issue, especially in settings such as 
nuclear facilities and disaster zones, where human intervention 
is limited due to the danger posed by radiation exposure1. 
To address this challenge, specialized robots capable of 
autonomous navigation and radiation source detection are 
required. In recent years, simulation tools have become an 
integral part of the development and testing process for such 
robots2. These tools allow researchers to evaluate and refine 
the robot’s behavior in a virtual environment before physical 
deployment, ensuring that potential issues can be identified 
and addressed early3. Modern robot simulators, such as 
Gazebo and WEBOTS, are equipped with powerful physics 
simulation engines, high-quality graphics, and user-friendly 
interfaces4. These features make it possible to replace physical 
systems with simulation models, offering a cost-effective and 

safe alternative to validate and evaluate the performance of 
conceptual robot designs. This approach helps in testing and 
refining the robots’ functions under controlled, simulated 
radiation environments5. The need for robots capable of 
safely operating in hazardous environments has become more 
pronounced with the increasing demand for autonomous 
systems in critical sectors like nuclear energy and disaster 
response6. These robots must be equipped to navigate complex 
environments, detect radiation sources, and avoid obstacles 
autonomously7. However, the traditional approach of physical 
testing is often costly and risky, especially in environments 
where radiation is present. Simulation tools offer an effective 
solution by providing a controlled environment in which robot 
performance can be tested and optimized without the risks 
associated with real-world trials8-10. This work is motivated 
by the necessity of an accurate simulation technique that can 
represent the behavior of radiation detection robots in such 
environments. By leveraging simulation, we can ensure that 
the robots are not only capable of detecting radiation but also 
adept at navigating and avoiding obstacles effectively.

The robot will be tested in various scenario-based 
simulations designed to evaluate its mapping, localization, and 
radiation detection capabilities. These tests will help assess 
the system’s robustness and efficiency before the robot is 
deployed in real-world hazardous environments. Our objective 
is to develop a reliable and efficient system for autonomous 
radiation detection that integrates                             

SLAM, A-star, and radiation sensors, with validation 
carried out through comprehensive simulation11-14. The steps 
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for installing ROS on our Ubuntu system are outlined in 
(ROS)15. References to (SLAM)16 and (Turtlebot3)17 describe 
how SLAM is implemented in Gazebo and ROS using the 
Turtlebot3. Discussions on testing a SLAM-enabled mobile 
robot’s mapping and traversal capabilities in enclosed spaces 
have been explored1. The evaluation involves creating a 
robotic model using Robot Operating System (ROS) as the 
foundation, with Gazebo for robot modeling and Rviz for 
simulation. The mobile robot, built in the Gazebo environment 
using ROS, incorporates novel navigation systems for mapping 
and localization2-3. The experimental platform utilizes new 
hardware and sensors for chassis navigation, integrating inertial 
and odometer data through the Extended Kalman Filter. The 
mapping process determines the environmental map, while 
Dynamic Window Method and A* method are employed for 
local and global path scheduling, respectively. The developed 
robot navigation system is tested on an auxiliary operation 
robot chassis, demonstrating feasibility and effectiveness in 
a power distribution cabinet switch scenario4. The primary 
objectives of this work are as follows:
•	 Implement the SLAM Algorithm: To enable the robot to 

autonomously navigate and create an accurate map of an 
unknown environment.

•	 Integrate the A-Star Algorithm: To enable the robot to 
plan and follow an optimal path while avoiding obstacles.

•	 Simulate Radiation Sources: To create a virtual 
environment where radiation sources can be detected, 
allowing the robot to identify hazardous areas.

•	 Conduct Simulation Experiments: To validate the 
robot’s navigation and radiation detection performance 
through various scenario-based assessments.
These objectives aim to contribute to the advancement 

of autonomous robots designed for radiation detection in 
hazardous environments. Through simulation, we hope to 
refine the design and functionality of these robots, ensuring 
that they are capable of performing their tasks efficiently and 
safely in real-world applications.

2.	 LITERATURE REVIEW
The development of autonomous robots for radiation 

detection and navigation 18–23 in hazardous environments has 
become a significant area of research, especially with the 
growing need for robots that can operate safely in settings 
like nuclear facilities and disaster zones. Several studies have 
explored the use of Simultaneous Localization and Mapping 
(SLAM) algorithms, pathfinding methods, and robot simulators 
to address the complexities of autonomous navigation in such 
environments. The core challenge of autonomous navigation 
in unknown environments is real-time localization and 
map generation. SLAM enables robots to create maps of an 
environment while simultaneously localizing themselves 
within it. Numerous studies have implemented SLAM using 
various sensors, including LIDAR and RGB-D cameras, to aid 
in environmental mapping. For instance, Kannan Megalingam1, 
et al. demonstrate a ROS-based SLAM implementation for 
indoor navigation using Turtlebot3, where the Gmapping 
algorithm is utilized for real-time mapping. Similarly, Ren, et 
al. 2 explored the application of SLAM for an indoor wheeled 

robot navigation system in a substation, highlighting the 
efficiency of SLAM in structured indoor environments.

The Gmapping algorithm, based on FastSLAM, has been 
widely used in mobile robotics due to its ability to handle 
real-time map generation and localization4. It is particularly 
effective in static environments, making it a popular choice for 
autonomous indoor navigation tasks. In our work, we adopt 
Gmapping to build the robot’s map and overcome issues related 
to wheel slippage and drift by using an odometer reference, as 
proposed by Chikurtev3.

Once a robot is localized, path planning becomes critical 
for navigation. The A (A-star)* algorithm is one of the most 
well-known methods for determining the shortest path between 
two points while considering obstacles. The work of Liu18,, 
et al. integrates a kinematically constrained A-star algorithm 
with the Dynamic Window Approach (DWA) to optimize 
robot navigation, making it more efficient in environments 
with dynamic obstacles. In the context of radiation detection, 
pathfinding algorithms like A* enable robots to navigate 
toward hazardous sources while avoiding obstacles. Our 
work builds on this foundation by combining A* with AMCL 
(Adaptive Monte Carlo Localization) for real-time localization 
correction. This combination is particularly suited for dynamic 
and cluttered environments, where drift from odometer 
readings can affect accuracy. The ability of AMCL to adapt 
to dynamic obstacles and provide robust localization has been 
validated in multiple studies, including Afanasyev,, et al. 7, 
who explored its application in image-based 3D environments 
using ROS. 

Testing autonomous robots in real-world environments, 
especially those that are hazardous, is challenging. Therefore, 
simulation tools such as Gazebo and WEBOTS are extensively 
used to create controlled environments where robots can be 
tested. Gazebo, with its high-fidelity physics engine, provides 
a realistic simulation of robot-environment interaction, 
which is essential for testing SLAM and path planning 
algorithms. Several studies, such as Pramod Thale6, et al., 
have used Gazebo for SLAM-based robot navigation in indoor 
environments. In our study, Gazebo is utilized to simulate 
a dynamic environment where the robot builds a map and 
navigates using SLAM. In addition to Gazebo, WEBOTS is 
used for its simplicity and ease of integrating sensor-based 
models. The E-Puck robot in WEBOTS has been widely used 
for simulating mobile robots equipped with various sensors, 
including proximity sensors and encoders8. WEBOTS’s 
ability to simulate robots in a 3D environment, alongside its 
integration with ROS, makes it ideal for testing tasks like 
radiation detection. Ali5, et al. used WEBOTS for simulating a 
Turtlebot2 in a 2D indoor environment using the Cartographer 
SLAM algorithm, demonstrating the importance of simulator-
based testing for real-world navigation applications.

In environments where radiation sources need to be 
detected, robots must be able to localize the sources and 
navigate accordingly. Several approaches have been proposed 
for using robots to detect radiation, including using swarm 
robots for radiation search and localization. Bashyal and 
Venayagamoorthy9 investigated the use of a swarm of robots 
for locating radiation sources in unknown environments, 
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leveraging Particle Swarm Optimization (PSO) for optimal 
path planning. The hybridization of algorithms like A* and 
PSO has shown promise in improving the efficiency of radiation 
source localization. The integration of multiple algorithms has 
been a key research direction. Zhang10, et al. propose a Hybrid 
IACO-A-PSO optimization algorithm* for multi-objective 
path planning in radioactive environments, demonstrating 
the effectiveness of combining evolutionary algorithms with 
pathfinding techniques. 

In our work, we adapt this approach by integrating A* and 
AMCL for navigation and localization, optimizing the robot’s 
ability to navigate toward radiation sources while avoiding 
obstacles in dynamic environments.  Simulating radiation 
sources in virtual environments is essential for testing radiation 
detection capabilities. In WEBOTS, Point Light sources are 
modified to represent radiation, allowing for the simulation of 
radiation behaviour and its interaction with the environment12. 
Crespo11 reviewed electrodeposition methods for preparing 
radiation sources, which can be used to model the radiation 
levels in simulation environments for robots tasked with 
detection. The main research gaps exist in the literature are: 
Lack of Active SLAM integration, Poor integration of radiation 
mapping with path planning and Insufficient handling of sensor 
noise and localization errors under radiation simulation.

3.	 METHODOLOGY
3.1	 Simultaneous Localization and Mapping (SLAM) 

Algorithm
Simultaneous Localization and Mapping (SLAM) is a 

fundamental task in robotics, enabling a robot to traverse an 
unknown environment while simultaneously building a real-
time map of that space. In our work, we use Gmapping, an 
open-source implementation based on FastSLAM. Gmapping 
is widely used for mobile robot localization and mapping, 
particularly effective in static environments. It operates in 
real-time and integrates sensor data such as LiDAR or RGB-D 
cameras, which are simulated in Gazebo for our experiments. 
The choice of Gmapping is justified by its proven ability to create 
accurate maps while requiring relatively low computational 
resources, which is ideal for testing in simulated hazardous 
environments. The method was implemented in Gazebo, an 
open-source robot simulator that integrates seamlessly with 
the Robot Operating System (ROS), providing an effective 
framework for SLAM. Gazebo is particularly well-suited for 
testing SLAM algorithms because of its high-fidelity physics 
engine and realistic 3D modeling capabilities, which allow for 
the simulation of complex environments where robots must 
map and localize in real-time. The SLAM method in Gazebo 
and ROS is used to build the map in Fig. 1.

Simulation Parameters:
•	 Resolution: The map generated by SLAM is set with a 

resolution of 0.05 meters to ensure a balance between 
computational efficiency and the level of detail necessary 
for accurate navigation.

•	 Sensor Input: LIDAR and RGB-D cameras are simulated 
in Gazebo to generate 3D point clouds and depth maps for 
the robot to process in real-time.

3.1.1	 A-STAR Algorithm
The A (A-star)* algorithm is a well-established pathfinding 

and graph traversal algorithm that is used to determine the 
shortest path between two points in a graph.  We chose A* 
for its ability to compute optimal paths while considering 
obstacles and varying terrain, making it an excellent choice 
for autonomous navigation in complex environments. A’s* 
efficiency is enhanced by using Euclidean or Manhattan distance 
as the heuristic function, depending on the environment’s 
topology, to guide the search process24. The choice of A-star 
is validated by its widespread use in mobile robotics, where it 
has been proven to be both efficient and effective in a range of 
pathfinding scenarios25low planning efficiency, and insufficient 
verification of theoretical algorithms. Therefore, a motion 
control system for an intelligent indoor robot was designed. 
By optimizing the radar map detecting and positioning, path 
planning, and chassis motion control, the performance of the 
system has been improved. First, a map of the warehouse 
environment is established, and the number of resampling 
particles interval is set for the Gmapping building process 
to improve the efficiency of map construction. Second, an 
improved A* algorithm is proposed, which converts the path 
solution with obstacles between two points into the path 
solution without obstacles between multiple points based on 
the Rapidly expanding Random Trees and Jump Point Search 
algorithms and further improves the pathfinding speed and 
efficiency of the A* algorithm by screening the necessary 
expansion nodes. The Dynamic Window Approach (DWA. 
From the Fig. 2,  we could see the A-Star algorithm finding the 
most optimistic path to destination. 

Figure 1. SLAM generated map of the sample environment.

Figure 2. 	 A comprehensive simulation of A-star algorithm using 
python.
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Cost (node, neighbor) is the expenditure to migrate from 
node to neighbor. f(n) = g(n) + h(n) is the formula for the f-score. 
Between the node and the objective, the heuristic function h(n) 
is typically the Euclidean distance or the Manhattan distance. 
The formula for Euclidean distance is as follows:

ℎ(𝑛𝑛)  =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ((𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −  𝑥𝑥𝑛𝑛) 2  +  (𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −  𝑦𝑦𝑛𝑛) 2)  1 

ℎ(𝑛𝑛)  =  𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −  𝑥𝑥 𝑛𝑛)  +  𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑦𝑦 𝑛𝑛)  2 

 

	          (1)

where, xgoal and ygoal are the goal’s coordinates and xn and yn 
are the node’s coordinates. The distance to Manhattan is 
determined by the formula:ℎ(𝑛𝑛)  =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ((𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −  𝑥𝑥𝑛𝑛) 2  +  (𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −  𝑦𝑦𝑛𝑛) 2)  1 

ℎ(𝑛𝑛)  =  𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −  𝑥𝑥 𝑛𝑛)  +  𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑦𝑦 𝑛𝑛)  2 

 

	             (2)              
	

where, abs is the function for absolute value. The use of 
two simulators enables us to cross-validate results, ensuring 
that our simulations are reliable and reproducible. Gazebo 
is primarily used for large-scale, high-fidelity simulations 
of complex environments, while Webots is utilized for more 
straightforward, sensor-based testing in controlled scenarios.

3.2 	Adaptive Monte Carlo Localization (AMCL)
It is a popular open-source robot localization algorithm in 

ROS. AMCL is a form of particle filter algorithm that employs 
a probabilistic method for estimating the robot’s pose26. 
Based on the Monte Carlo Localization (MCL) algorithm, it 
incorporates adaptive resampling to enhance performance. 
AMCL necessitates a map of the surrounding environment and 
sensor data from sources such as LiDAR or RGB-D cameras27. 
AMCL facilitates real-time, global localization for robots in 
dynamic environments. It ensures precision using adaptive 
resampling techniques and operates efficiently on mobile 
platforms. Widely integrated into ROS-based navigation 
systems, AMCL plays a crucial role in robotics research and 
enables precise localization even in unfamiliar surroundings.

4. 	 RESULTS AND DISCUSSION
The Fig.3 shows the experimental and environmental 

setup created to simulate the robot in Gazebo. 

4.1	 SLAM Implementation and Mapping Accuracy
The simulation successfully implemented SLAM in 

Gazebo using Gmapping, which generated accurate 2D maps 
via LIDAR even amid dynamic obstacles. Although minor 
map distortions occurred due to wheel slippage, these were 
mitigated by referencing odometry corrections. We visualized 
SLAM node interactions with RQT Graph, confirming 
proper data flow. This detailed scrutiny revealed optimization 
opportunities, particularly for handling non-static environments 
and uneven terrain. These results demonstrate that a robust 
SLAM implementation—combining LIDAR mapping, drift 
correction, and system monitoring—can autonomously map 
unknown spaces and support operations like identifying safe 
routes or contamination zones in nuclear or disaster-affected 
areas.

Figure 3. Experimental setup.

 Figure 4. A step-by-step implementation of A-star path-planning in Gazebo.

4.2 	Pathfinding with A Algorithm
We integrated A* pathfinding with AMCL localization 

to enable real-time navigation in dynamic, obstacle-rich 
environments. A* efficiently plans shortest paths, while AMCL 
continuously corrects pose drift from odometry slip, allowing 
adaptive navigation through tight spaces and moving obstacles. 
This hybrid system proved robust in simulation and applicable 
to hazardous environments. Figure 4 shows the step-by-step 
implementation of A-Star in Gazebo and ROS.
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4.3 	Radiation Detection and Robot Behavior
We integrated a custom radiation sensor onto a WEBOTS-

simulated EPuck, using Recursive Wavefront path planning to 
autonomously seek radiation sources. As radiation readings 
increased, the robot adapted its trajectory in real time, 
validating its ability to detect and respond to hazards. This 
demonstrates strong potential for deployment in unpredictable, 
radiation-prone environments.

WEBOTS’ “Scene Tree window” is used to create the 
simulation’s Environment. It is a straightforward rectangular 
arena. To make the simulation’s geography more complicated, 
walls are included. The Environment is mapped using the 
SLAM technique in Fig. 7. This algorithm was run using 
cameras and lidar. Following that, the map is kept in the robot’s 
memory. In the environment, a radiation source is installed. 
The radiation detector will activate the robot, and the direction 
will be determined based on the data. Using the recorded map 
and the Recursive Wavefront technique, a path to the source is 
found. The robot will then go down the path until it arrives at 
its objective.

Figure 5. E-puck robot.

   Figure 6. Radiation source.

Figure 5 gives an overview of the E-Puck robot. The 
“Scene Tree Window” in WEBOTS is used to build the 
radiation source. The modified version of Point Light in the 
WEBOTS library is the source of the radiation. By studying 
various radiation sources and their ability to penetrate barriers, 
adjustments are created. The E-puck robot is equipped with a 
custom-made sensor plugin that serves as a radiation detector 
during the simulation. Figure 6 shows the modified pointlight 
source that acts as a radiation source.

  Figure 7. SLAM implementation in WEBOTS.

   Figure 8. Testing and validation in two scenarios.

Figure 9. Radiation sensor data from two scenarios.
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4.4	 Testing and Validation
We evaluated the robot in two simulated scenarios 

(Fig. 8), tracking radiation sensor readings (Fig. 9) as it 
navigated toward and away from the source. Readings 
increased when approaching and decreased when retreating, 
and the robot adjusted its path to avoid obstacles, consistently 
maintaining adaptability and reliable hazard response in 
dynamic environments.

5.5	 Implications and Future Directions 
We successfully simulated an autonomous radiation-

detection robot in Gazebo and Webots, enabling navigation 
through dynamic, cluttered environments using a hybrid 
SLAM + A* + AMCL approach and a custom radiation 
sensor for real-time hazard response. The robot demonstrated 
effective obstacle avoidance, adaptive path adjustments 
toward radiation sources, and accurate detection capabilities, 
showcasing the potential of these simulation platforms for 
complex robotic tasks These results underscore the promise 
of deploying autonomous robots in safety-critical scenarios—
such as nuclear facilities and disaster zones—with future work 
aimed at sensor accuracy improvements and transitioning to 
real-world testing.                            

5. 	 CONCLUSION AND FUTURE WORK
This study leveraged Gazebo and WEBOTS simulations 

to create and test an autonomous radiationdetection robot 
integrating SLAM, A*, and AMCL. The system used LIDAR 
for mapping, while a custom radiation sensor triggered 
realtime path adjustments. Gmapping SLAM enabled 
accurate map generation in complex environments, despite 
minor odometry drift corrected via odometer referencing and 
AMCL localization. Communication nodal flow was tracked 
using RQT Graph, supporting data integrity and pinpointing 
optimization needs. This hybrid framework demonstrated 
robust navigation and precise localization in cluttered settings, 
successfully guiding the robot toward radiation sources. 
Our results validate that combining SLAM, A*, and AMCL 
with a responsive radiation sensor is effective for hazardous 
environment navigation. These findings align with recent 
advancements in multisensor SLAM and hybrid navigation 
methodologies The approach holds promise for real-world 
applications in nuclear facilities and disaster zones. Future 
work will refine algorithmic performance in dynamic settings 
and move toward real-world validation.
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