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ABSTRACT

A Cache-Aware Beamformer (CABF) algorithm for the DAS beamformer in a homogeneous multicore processor 
environment is presented. The context of the proposed algorithm is established by discussing the case for a refined 
multicore implementation of the beamformer algorithm for a sonar application. The algorithm is designed, implemented, 
and compared to a regular pthread multicore implementation and a standard OpenMP-based implementation, using 
arithmetic intensity as the metric. FMA implementations of the algorithms are carried out, and the CABF algorithm 
is shown to achieve a better arithmetic intensity. A 6000-element array is designed with a simultaneous forming of 
200 beams to test the efficacy of cabf in a multicore platform. The results show a 73 % increase in GFLOPS for 
FMA operations. The performance of the beamformer algorithm for different data sizes is studied, and on average, 
a 36 % improvement in computational performance is achieved compared to the OpenMP-based implementation.

Keywords: Underwater acoustics; Delay sum beamformer; Multicore processing; OpenMP; Sonar signal processing

NOMENCLATURE
CABF  : Cache aware beamformer
DAS  : Delay and sum
GFLOPS : Giga floating point operations
FMA  : Fused multiply add
OS  : Operating system
FPGA  : Field programmable gate array
DSP  : Digital signal processor
CPU  : Central processing unit
GPU  : Graphics processing unit
OpenMP  : Open multi-processing
MPI  : Message passing interface
POSIX  : Portable operating system interface
DRAM  : Dynamic random access memory
CPN  : Computational process networks

1. INTRODUCTION
Advances in computing technology have enabled the 

design of complex beamforming arrays with a large number of 
elements, which is essential for detecting underwater targets in 
an increasingly deceptive environment. Underwater targets have 
become less noisy1, making passive detection more difficult. 
Ambient noise conditions have increased due to navigation, 
oil exploration, and naval activities2-3, which adversely affect 
sonar performance. As a result, sonar designers resort to bigger 
arrays as one of the design parameters. Design considerations 
are discussed in detail in literature4-6. Arrays with thousands of 
sensors are now common, making it extremely computationally 
intensive to process and extract target information.

With the easy availability of multicore processors, 
computationally intensive processing for big arrays has 
become a reality. To achieve optimal performance, users must 
closely examine the hardware architecture of processors. 
With Embedded Linux as the OS, a careful analysis of the 
memory architecture can significantly improve application 
performance7-9.

In an array with a multitude of sensors, tuning for 
performance becomes important. The beamformer is the first 
stage in array signal processing and is the most computationally 
and memory-intensive operation10. Different types of 
beamformers are discussed in the literature10-11 and are tuned 
for different applications12. High-throughput, compact, and 
low-power systems typically use FPGA13-14, while moderately 
intense systems useDSP15. With the advent of versatile 
processors yielding multiple cores, processor-based (CPU) and 
heterogeneous (CPU/GPU) approaches are used. 

Our work focuses on the time domain DAS beam former 
for Sonars in a homogeneous CPU environment. There is a 
potential for compact, low-power, and cost-effective solutions 
for very large arrays on multicore processors. This will enable 
the realization of applications like sonar, radar, and medical 
imaging on readily available multicore machines. Previous 
investigations analysed the effects of the hardware architecture 
of the CPU16,5, proposing methods to improve the usage of 
computational resources.

To further improve performance in a multicore environment, 
we propose the CABF algorithm. Computationally intensive 
parts are identified, and the proposed algorithm focuses on the 
reuse of data fetched from main memory (DDR).

Finally, we compare the proposed beamformer algorithm 
with a regular multicore implementation, as well as a standard 
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Open MP-based implementation on an Intel Xeon platform. 
The results show an overall improvement of 26 % in GFLOPS 
for the proposed algorithm over the pthreaded version and  
36 % in GFLOPS over the Open MP-based implementation. 

1.1  Contributions
The contributions of the work include:

• Analysis of the beamformer algorithm to identify the 
places of performance improvement, considering the 
processing resources available in multicore processors.

• Efficient reusing of data fetched from the main memory.
• Parallel beamformer implementation on the 6000-element 

cylindrical sensor array.
• 36 per cent improvement over a standard OpenMP 

implementation, and 26 % over the pthreaded 
implementation.

Section 2 will present the theory behind the DAS 
beamformer, focusing on identifying the steps to make the 
proposed algorithm. Section 3 will present the implementation 
steps on a multicore processor leading to the proposed CABF 
algorithm. Section 4 will discuss the results of implementation, 
and Section 5 concludes the findings of the work.

2. DELAY SUM BEAMFORMER
2.1  Introduction to Beamformer

The time DAS beamformer calculates and compensates 
for the delay incurred by a plane wave front that impinges on 
the elements and adds the individual sensor signals, producing 
a beam in a specified direction. In Fig.1 the beam is formed in 
the direction of vector u0. The position vector of the ith sensor is 
pi.  (φ,θ) represent the bearing and elevation angles. Assuming 
a plane wave propagating in the direction of u, the sinusoidal 
signal of frequency f is given by:

2 /( ) (1)sj fn fs n e π= − − − − − − − − − − − − −            (1) 
The time-delayed signal in the ith sensor is given by,
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where, Nb is the number of sensors, k=2 f/c –wave number, 
fs-Sampling frequency, and

c-Velocity of signal propagation. 
Summing the signals across Nb sensors yields the 

beamformed output.
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To get the beam steered in an arbitrary direction u0, (3) 
becomes,
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In (3) and (4), the term ej2πfn/fs represents the plane wave 
signal (1) from the target, and the second term represents the 
beam pattern. pi.(u−u0) gives the delay required for the ith 

sensor for the beam to form in the direction of u0. The time 
delay computation must be precise so that the signals are 
compensated exactly. Equation (5) gives the expression to 
compute the time delay for a signal arriving from (φ,θ).

1
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i i i
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          (5)

2.2   Beam Steering, Time Delay, and Weighting
The beam is steered in a specific direction by delaying 

the sensor signals and adding multiple sensors. For precise 
positioning of beams, the time delays are not integer multiples 
of samples. Hence, after obtaining the integer sample delays 
(by selecting samples), it is necessary to interpolate the residual 
fractional time delays. This makes fractional interpolation a 
crucial first step in realizing the DAS beamformer. Together 
with windowing wi, for side lobe reduction, (3) will be modified 
as follows:

1
( ) ( . ( )) (6)

bN
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where, ∆I is the fractional delay for the ith channel. More details 
on interpolation can be found in literature17-20.

Figure 1.  Cylindrical array with beam steering in an arbitrary 
direction with steering angle (φ0,θ0) in bearing and 
elevation.

Figure 2. Block diagram of DAS Beamformer(6).
 

2.3   Analysis of Computational Requirements
Figure 2 depicts the implementation of Eqn. (6). The 

time samples are interpolated to achieve the precise fractional 
delay to form a beam in the direction (φ,θ). Array weighting is 
applied to the individual sensor signals before summing with 
integer delays, to obtain the beam time series.

Table 1 summarizes the computational requirements 
of the DAS beamformer/sample. Since Nb is typically of the 
order of 2000 (example design in Section 3.5), and 200 beams 
are formed simultaneously at a sampling rate of 32kHz, the 
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computational requirements are high and require an optimised 
implementation.

3. REALISATION OF MULTICORE BEAMFORMER
3.1   Literature Survey

The most common approach to the realisation of 
beamformer is to use OpenMP/MPI libraries or a hybrid 
approach that combines POSIX threads21 with OpenMP22-23. 
OpenMP-based multicore implementation is discussed in 
ref24 for an image processing system. Implementing the 
sonar processing on workstations connected over a network 
using POSIX threads is discussed in a paper by Allen.GE and 
Evans. BL25. In reference26 a comparison of frequency domain 
beamformers with Open MP and CPN, which is a custom model 
for signal processing applications, is carried out. In one of the 
papers27 details of a multi-beam sonar implementation using 
FPGA and TI-DSP is given.  The realization of a distributed 
beamformer for sonar signal processing is given in reference28, 
which utilizes workstations distributed over a network. 
However, studies on the optimization of beamformers focused 
on a multicore processing environment are not available in 
the literature. In our work, a General Purpose Processor-based 
POSIX thread implementation is carried out, with suggested 
improvements, and compared against Open MP standard-
based implementation. 

3.2  Performance Measure: Arithmetic Intensity
Arithmetic Intensity (AI) is used as the metric to measure 

the efficiency of data utilization. AI is the ratio of work (W), 
which is the FLOPS (Floating Point Operations Per Second), 
carried out by the CPU to memory traffic (Q), in bytes/s.

(7)
W

AI
Q

= − − − − − − − − − − − − − − −
              

(7)

This is a measure of computations performed per byte of 
data fetched from memory. This quantity is measured from all 
levels of memory (L1, L2, L3 Cache, and DDR) to observe the 
improvement in data reuse at each level. 

3.3 Details of OpenMP Implementation
The pseudo-code for the single-core implementation 

of the beamformer is given in Algorithm 1. The inner loop 
runs for the total number of time samples(N). The first step 
in the computations is interpolation for fractional delays 
xi(∆i), followed by array weighting wi.xi(∆i) and then adding 
𝑦(𝑛)=Σ(𝑤𝑖.𝑥𝑖(𝑛+𝛥𝑖)) corresponding samples across sensors 
(Eqn. (6)). 

Table 1.  Computational requirements for a single beam per 
time sample.

Multiplications Additions

Interpolation 6 * Nb 5 * Nb

Array weighting Nb -

Sum output - Nb - 1

Total (DAS) 7 * Nb 6 * Nb - 1

The sensor loop runs for Nb sensors to obtain a beam in 
one direction. The beam loop runs for a B number of beams 
to be formed. OpenMP constructs are used to instruct the 
compiler to parallelize for loops. This is used to evaluate the 
performance of CABF.

3.4  Details of Multicore Implementation
The beamformer is implemented to use multiple cores 

by dividing the beams among them, using a multi-threaded 
approach with pthread (POSIX Thread). A straightforward 

Algorithm 1: Single core implementation
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Figure 3.  Data cube showing the memory arrangement of sensors 
time samples xi(n) in bearing and elevation. The blue 
portion shows the data that is shared between threads 
processing adjacent blocks of bearing.

Table 4.  Memory bandwidth for sensor data addition with 
integer delay operation in A2 and A3.

Data
size

Memory bandwidth (G bytes/s)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 656 397 3.7 243 0.087 0.06 0.003 0.02
2 754 382 188 242 0.033 0.06 0.007 0.05
4 516 376 413 298 0.001 1.46 0.001 0.07
6 427 331 381 306 0.001 103 0.001 0.07
8 436 268 443 266 0.001 126 0.001 0.05
10 467 256 447 257 0.001 139 0.001 0.11

Table 2.  Memory Bandwidth for fractional interpolation in 
A2 and A3.

Data 
size 
(k Data)

Memory bandwidth (G bytes/s)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 148 417 78 5.3 79 0.015 34 0.001
2 94 409 66 219 49 0.011 35 0.001
4 96 334 120 452 48 0.002 44 0.001
6 97 324 145 428 49 0.001 45 0.001
8 104 305 151 429 53 0.002 49 0.001
10 100 306 152 450 51 0.002 48 0.001

Table 3.  Arithmetic intensity for fractional interpolation in 
A2 and A3

Data
size

Arithmetic intensity (Interpolation)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 0.88 0.88 1.65 62.8 1.65 2.5e4 3.78 8.0e5
2 0.88 0.88 1.24 1.63 1.69 3.4e4 2.32 9.1e5
4 0.88 0.88 0.69 0.65 1.72 1.5e5 1.91 9.4e5
6 0.88 0.88 0.58 0.66 1.73 1.9e6 1.87 1.2e6
8 0.88 0.88 0.61 0.62 1.74 1.6e5 1.83 1.3e6
10 0.88 0.88 0.59 0.59 1.74 1.1e5 1.83 1.1e6

extension is not an optimized solution [6], as it requires taking 
the cache architecture of the processor into account.

In the pseudo-code of Algorithm 2, the inner loop (lines 
11-16) performs interpolation for the fractional time delays 
xi(∆i), weighting, and adding of the data samples considering 
the integer delay requirements of each sensor, with an 
encapsulating sensor loop (9-19). The beam loop (6-20) differs 
in each core. The thread ID (line 2) identifies the beams to 
be processed by the threads (BT-beams/thread). NS is the total 
number of sensors in the array and the sensors participating in 
the beam are dynamically computed in the loop (variable i).

3.5  Cache-Aware Beamformer  for Multicore Processors
In this section, we analyze the algorithm 2 implementation 

and identify areas to improve its performance. The CABF 
focuses on reducing memory transactions and reusing data 
from cache. 

Figure 3 illustrates the arrangement of data in the memory 
of the processor. Sensor time samples are arranged in memory, 
with consecutive memory locations holding a sensor’s time 
series. The consecutive sensors in bearing and elevation 
(green/yellow) are used for a set of beams. Each thread 
requires some overlap in the data (prologue and epilogue) 
which will be accessed by consecutive threads (blue in Fig. 3). 
For consecutive beams the sensor indices will be incremented 
in bearing by one. When the beam loop increments, a new set 
of sensor data is fetched from memory. However, only one 
subset of sensors in the elevation direction is different in the 
adjacent beam. This provides an opportunity for data reuse. 
The example design presented in [5] is used to illustrate this 
point.

Consider a cylindrical array with 30 elements in the 
vertical and200 in the bearing direction (6000 elements array). 
Let us assume that only 1/3rd of the sensors in the bearing 
participate in the beamformer. We take 64x30=1920(NφXNϑ) 
elements for the beamformer, where Nφ and Nθ are the sensors 
in the bearing and elevation for the beam. The time samples 
xi(n) (N=2048) arranged as shown in Fig. 3 are given to 
the beamformer thread. In Algorithm 2, as the beam loop 
increments, a set of 1920 sensor time series (1920x2048) will 
be fetched for computing the new beam. However, only 30 
new sensors are there, not used in the previous beam. As the 
beam progresses, we can see a sensor is used in 64 beams and 
re-fetched each time. This can be avoided by repositioning 
the sensor and beam loop and carefully managing the loop 
variables and memory. Once sensor data is fetched it needs to 
be reused for all the Nφ=64 beams before it is discarded. Note 
that, the beam output data will be fetched multiple times to 
accumulate the sensor data. As multiple threads are spawned 
(here4), each thread will get 50 out of 200 beams. The smaller 
the number of beams, the more it is cacheable (depending on 
L3 capacity). This will enable faster access to the beamformer 
intermediate data and its reuse. 

As the beam loop and sensor loops are interchanged, we 
need to split the computations into 3 separate sections to get 
the maximum advantage of reuse; prologue, steady state, and 
epilogue. In the epilogue, the first set of sensors (Nθ=30) will 
be used only in one beam, whereas the next 30 will be used in 
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beams 1 and 2. This progressively increases, and 64 beams are 
in a steady state. This portion of ramping up the data usage is 
called the prologue, and at the end, the reverse of this happens 
in the epilogue.

The pseudo-code of the above-explained modification 
is given in Algorithm 3. The sensor loop and beam loop 
are interchanged. Depending on thread ID, the beams to 
be processed are found in threads, and a temporary buffer 
for the beam output is allocated (lines 8 & 9), small enough 
to get cached as per processor architecture (N is selected 
accordingly). Corresponding sensors are found out (start 
Sensor, line 6). With beam count value the prologue (lines 
14-24), steady-state (lines 25-35), and epilogue (lines 36-49) 
portions of the beamformer are identified. The beam loop 
does all computational functions required for the beamformer 
(interpolation, weighting, and adding sensors). Beam output is 
copied to DRAM in line 52.

3.6  Hardware Used for Evaluation
To evaluate the performance, an Intel Xeon W series 

multicore machine with a maximum clock speed of 3.7 GHz, 
and Linux kernel 5.15 OS is installed is used. It has 32 kB L1 
& L2, and 20 MB L3 cache. 

4. RESULTS AND ANALYSIS
The algorithms presented in Section III are implemented 

using vector-optimized IPP libraries from Intel. Fractional 
delay xi(∆i) is implemented using the FIR filter function. Index 
generation for vector addition takes care of integer delay, 
giving the final beamformer output.

The results are collected with four threads spawned on 
as many cores. The performance is studied for different data 
sizes, and is presented with ’kilo floating point data’, marked 
as ’k Data’ in figures and tables. Table 2 shows the bandwidth 
in GBPS for each level of memory of the processor. For 
Algorithm 3, the bandwidth of L1 is higher, but it decreases as 
the data size increases (Table 2). The bandwidth of L2, which 
is initially small, increases gradually. However, the bandwidth 
of L3 and DRAM remains very low, as seen in Table 2. This 
implies, once the data is copied to a temporary buffer, the 
buffer is cached. In contrast, Algorithm 2 has higher data 
rates from DRAM for all cases, as the data is progressively 
fetched to L1 (Table 2). The corresponding AI for all levels of 
memory is given in Table 3. For Algorithm 3, the AI is high for 
DRAM and L3. The AI in L1 is the same in both cases, which 
is expected since the fractional interpolation is carried out in 
the same way for Algorithms 2&3.

The second part of the beamformer operation is the 
weighting and addition of the sensor data realized using an 
optimized add function. Table 4 presents a comparison of this 
final step in the beamformer for Algorithm 2&3, for different 
data sizes. In Algorithm 2, the additions for a beam direction 
take place in the inner loop, and hence it is cached, making it 
faster. Hence, for Algorithm 2, the memory bandwidth is very 
low for DRAM and L3, and small data size for L2 as well 
(Table 4). For Algorithm 3, the beam loop is inside the sensor 
loop and beam data needs to be fetched each time (lines 21, 32, 
45). To enable the reuse of data, a temporary buffer is allocated 

Algorithm 3: Cache aware beamformer implementation
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Figure 4. GFLOPS achieved for interpolation, (a) Beamformer (b) Beamformer (c) Percentage improvement of Algo 3 over 2 and 
OpenMP for interpolation (d) for all data sizes.

(c) Beamformer (d) Improvement beamformer

(a) Interpolation filter (b) Improvement interpolator

Table 6.   Performance improvement of GFLOPS for interpolation 
and beamformer operation [A3 over A2 & OMP]

Data
size
(kData)

Percentage improvement of GFLOPS
Interpolation Beamformer

A3/A2 A3/OMP A3/A2 A3/OMP
1 64.3 79.5 11.2 38.1
2 76.9 78.8 32.6 38.9
4 71.3 72.1 34.7 40.0
6 70.1 71.9 29.2 42.6
8 69.8 69.3 26.4 30.2
10 67.1 68.9 23.1 28.7

 Table 5. Arithmetic intensity for sensor data addition with integer delay operation in A2 & A3

Data 
size

Arithmetic Intensity (Sensor Addition)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 0.17 0.17 29.6 0.27 1.3e3 1.1e3 5.7e4 3.1e3
2 0.17 0.17 0.67 0.26 3.8e3 1.0e3 2.4e5 1.3e3
4 0.17 0.17 0.21 0.21 4.8e5 43.09 3.0e5 917
6 0.17 0.17 0.19 0.18 4.9e5 0.532 3.3e5 776
8 0.17 0.17 0.16 0.17 6.1e5 0.355 3.1e5 945
10 0.17 0.17 0.17 0.17 6.7e5 0.308 3.3e5 386

for the beam output of each core (line 8). A final output copy 
to DRAM is done (line 52). In Table 4 the bandwidth for L1 
and L2 is high for smaller data sizes (Table 4), indicating that 
the buffer is cached in L2. As the data size increases, the buffer 
gets cached in L3. The DRAM bandwidth is negligible as seen 
in Table 4.The AI of the weighting and addition operation in 
the beamformer is given in Table 5. AI values for Algorithm 
3 are high for L3 and DRAM, indicating better reuse memory. 
But these values are smaller than those of Algorithm 2. 

The overall impact of Algorithm 3 over 2 is that the 
memory transfers from DRAM, as well as L3, are reduced for 
operations of the beamformer, thereby increasing AI. This is 
reflected in Tables 2-5.

4.1  Comparison with OpenMP Standard Implementation
Table 6 provides a comprehensive summary of the 

impact of Algorithm 3 over 2, as well as Open MP standard-
based implementation. This is tabulated for interpolation 

filter operation and the overall beamformer. Fig.4i shows the 
performance of the interpolation filter, in which Algorithm 3 
outperforms Algorithm 2 and OpenMP by about 2.5-3 times 
in all cases (200-250 GFLOPS better). Fig. 4(b) displays the 
percentage improvement factor on an average of 69 % and 
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73 %. The overall performance of the beamformer using 
Algorithms 2, 3, and OpenMP is shown in Fig.4(c). Algorithm 
3 yields higher values in all cases comparatively. Fig. 4(d)   
As seen from Fig. 4(d) and Table 6, the overall improvement 
of Algorithm 3 (CABF) is 26 % and 36 % respectively over 
Algorithm 2 and OpenMP. This demonstrates the overall 
effectiveness of Algorithm 3. These findings highlight the 
significance of optimizing computational performance in the 
context of multi-core processors.

5. CONCLUSION
The article presents the design of a modified CABF 

algorithm for a DAS beamformer within the context of 
multi-core processors enabling a cost-effective realization 
of complex large arrays in Sonars, Radars, medical imaging, 
and the like. A brief analysis of the beamformer is performed 
to break down the algorithm, enabling it to use the multicore 
resources. Modifications are carried out to facilitate the 
reuse of sensor data from the cache. To characterize, a case 
study with a 6000 sensor array forming 200 beams is made. 
To benchmark the performance an Open MP standard-based 
implementation is made and studied for different data sizes. 
Results demonstrate that the CABF algorithm reduces memory 
transactions, as evidenced by the bandwidth numbers. The 
CABF algorithm has improved FMA calculations by 73% over 
OpenMP and 69 % over pthreaded implementation. Finally, 
it is demonstrated that the CABF algorithm yields an overall 
performance improvement of 36% over Open MP and 26 % 
over the pthreaded implementation.
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