
755

Defence Science Journal, Vol. 74, No. 5, September 2024, pp. 755-762, DOI : 10.14429/dsj.74.19505
 2024, DESIDOC

Received : 16 October 2023, Revised : 16 January 2024
Accepted : 02 February 2024, Online published : 19 September 2024

A High-Performance Parallel Approach to Delay Sum Beamformer in a Homogeneous
Multicore Environment

M. Prakash Narayanan*, G. Vijay Gopal and R. Rajesh
DRDO-Naval Physical and Oceanographic Laboratory, Kochi - 682 021, India

*E-mail: prakashnm.npol@gov.in

ABSTRACT

A Cache-Aware Beamformer (CABF) algorithm for the DAS beamformer in a homogeneous multicore processor
environment is presented. The context of the proposed algorithm is established by discussing the case for a refined
multicore implementation of the beamformer algorithm for a sonar application. The algorithm is designed, implemented,
and compared to a regular pthread multicore implementation and a standard OpenMP-based implementation, using
arithmetic intensity as the metric. FMA implementations of the algorithms are carried out, and the CABF algorithm
is shown to achieve a better arithmetic intensity. A 6000-element array is designed with a simultaneous forming of
200 beams to test the efficacy of cabf in a multicore platform. The results show a 73 % increase in GFLOPS for
FMA operations. The performance of the beamformer algorithm for different data sizes is studied, and on average,
a 36 % improvement in computational performance is achieved compared to the OpenMP-based implementation.

Keywords: Underwater acoustics; Delay sum beamformer; Multicore processing; OpenMP; Sonar signal processing

NOMENCLATURE
CABF : Cache aware beamformer
DAS : Delay and sum
GFLOPS : Giga floating point operations
FMA : Fused multiply add
OS : Operating system
FPGA : Field programmable gate array
DSP : Digital signal processor
CPU : Central processing unit
GPU : Graphics processing unit
OpenMP : Open multi-processing
MPI : Message passing interface
POSIX : Portable operating system interface
DRAM : Dynamic random access memory
CPN : Computational process networks

1. INTRODUCTION
Advances in computing technology have enabled the

design of complex beamforming arrays with a large number of
elements, which is essential for detecting underwater targets in
an increasingly deceptive environment. Underwater targets have
become less noisy1, making passive detection more difficult.
Ambient noise conditions have increased due to navigation,
oil exploration, and naval activities2-3, which adversely affect
sonar performance. As a result, sonar designers resort to bigger
arrays as one of the design parameters. Design considerations
are discussed in detail in literature4-6. Arrays with thousands of
sensors are now common, making it extremely computationally
intensive to process and extract target information.

With the easy availability of multicore processors,
computationally intensive processing for big arrays has
become a reality. To achieve optimal performance, users must
closely examine the hardware architecture of processors.
With Embedded Linux as the OS, a careful analysis of the
memory architecture can significantly improve application
performance7-9.

In an array with a multitude of sensors, tuning for
performance becomes important. The beamformer is the first
stage in array signal processing and is the most computationally
and memory-intensive operation10. Different types of
beamformers are discussed in the literature10-11 and are tuned
for different applications12. High-throughput, compact, and
low-power systems typically use FPGA13-14, while moderately
intense systems useDSP15. With the advent of versatile
processors yielding multiple cores, processor-based (CPU) and
heterogeneous (CPU/GPU) approaches are used.

Our work focuses on the time domain DAS beam former
for Sonars in a homogeneous CPU environment. There is a
potential for compact, low-power, and cost-effective solutions
for very large arrays on multicore processors. This will enable
the realization of applications like sonar, radar, and medical
imaging on readily available multicore machines. Previous
investigations analysed the effects of the hardware architecture
of the CPU16,5, proposing methods to improve the usage of
computational resources.

To further improve performance in a multicore environment,
we propose the CABF algorithm. Computationally intensive
parts are identified, and the proposed algorithm focuses on the
reuse of data fetched from main memory (DDR).

Finally, we compare the proposed beamformer algorithm
with a regular multicore implementation, as well as a standard

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

756

Open MP-based implementation on an Intel Xeon platform.
The results show an overall improvement of 26 % in GFLOPS
for the proposed algorithm over the pthreaded version and
36 % in GFLOPS over the Open MP-based implementation.

1.1 Contributions
The contributions of the work include:

• Analysis of the beamformer algorithm to identify the
places of performance improvement, considering the
processing resources available in multicore processors.

• Efficient reusing of data fetched from the main memory.
• Parallel beamformer implementation on the 6000-element

cylindrical sensor array.
• 36 per cent improvement over a standard OpenMP

implementation, and 26 % over the pthreaded
implementation.

Section 2 will present the theory behind the DAS
beamformer, focusing on identifying the steps to make the
proposed algorithm. Section 3 will present the implementation
steps on a multicore processor leading to the proposed CABF
algorithm. Section 4 will discuss the results of implementation,
and Section 5 concludes the findings of the work.

2. DELAY SUM BEAMFORMER
2.1 Introduction to Beamformer

The time DAS beamformer calculates and compensates
for the delay incurred by a plane wave front that impinges on
the elements and adds the individual sensor signals, producing
a beam in a specified direction. In Fig.1 the beam is formed in
the direction of vector u0. The position vector of the ith sensor is
pi. (φ,θ) represent the bearing and elevation angles. Assuming
a plane wave propagating in the direction of u, the sinusoidal
signal of frequency f is given by:

2 /() (1)sj fn fs n e π= − − − − − − − − − − − − − (1)
The time-delayed signal in the ith sensor is given by,

2

() , 1, 2,... (2)s

fnj k
f

bx n e i N
π

+
 = = − − − − − − −

ip .u

 (2)
where, Nb is the number of sensors, k=2 f/c –wave number,
fs-Sampling frequency, and

c-Velocity of signal propagation.
Summing the signals across Nb sensors yields the

beamformed output.
2 /

1 1
() () (3)

b b
s

N N
j fn f jk

i
i i

y n x n e eπ

= =

= = − − − − − −∑ ∑ ip .u

(3)

To get the beam steered in an arbitrary direction u0, (3)
becomes,

2 /

1
() (4)

b
s

N
j fn f jk

i
y n e eπ

=

= − − − − − − − − − − − −∑ i 0p .(u-u)

(4)

In (3) and (4), the term ej2πfn/fs represents the plane wave
signal (1) from the target, and the second term represents the
beam pattern. pi.(u−u0) gives the delay required for the ith

sensor for the beam to form in the direction of u0. The time
delay computation must be precise so that the signals are
compensated exactly. Equation (5) gives the expression to
compute the time delay for a signal arriving from (φ,θ).

1
[cos cos . cos sin . sin .] (5)

i i i
i x y z

p p p
c

τ θ ϕ θ ϕ θ= − + + − − −
 (5)

2.2 Beam Steering, Time Delay, and Weighting
The beam is steered in a specific direction by delaying

the sensor signals and adding multiple sensors. For precise
positioning of beams, the time delays are not integer multiples
of samples. Hence, after obtaining the integer sample delays
(by selecting samples), it is necessary to interpolate the residual
fractional time delays. This makes fractional interpolation a
crucial first step in realizing the DAS beamformer. Together
with windowing wi, for side lobe reduction, (3) will be modified
as follows:

1
() (. ()) (6)

bN

i i i
i

y n w x n
=

= + ∆ − − − − − − − −∑

(6)

where, ∆I is the fractional delay for the ith channel. More details
on interpolation can be found in literature17-20.

Figure 1. Cylindrical array with beam steering in an arbitrary
direction with steering angle (φ0,θ0) in bearing and
elevation.

Figure 2. Block diagram of DAS Beamformer(6).

2.3 Analysis of Computational Requirements
Figure 2 depicts the implementation of Eqn. (6). The

time samples are interpolated to achieve the precise fractional
delay to form a beam in the direction (φ,θ). Array weighting is
applied to the individual sensor signals before summing with
integer delays, to obtain the beam time series.

Table 1 summarizes the computational requirements
of the DAS beamformer/sample. Since Nb is typically of the
order of 2000 (example design in Section 3.5), and 200 beams
are formed simultaneously at a sampling rate of 32kHz, the

NARAYANAN, et al.: A HIGH-PERFORMANCE PARALLEL APPROACH TO DELAY SUM BEAMFORMER

757

computational requirements are high and require an optimised
implementation.

3. REALISATION OF MULTICORE BEAMFORMER
3.1 Literature Survey

The most common approach to the realisation of
beamformer is to use OpenMP/MPI libraries or a hybrid
approach that combines POSIX threads21 with OpenMP22-23.
OpenMP-based multicore implementation is discussed in
ref24 for an image processing system. Implementing the
sonar processing on workstations connected over a network
using POSIX threads is discussed in a paper by Allen.GE and
Evans. BL25. In reference26 a comparison of frequency domain
beamformers with Open MP and CPN, which is a custom model
for signal processing applications, is carried out. In one of the
papers27 details of a multi-beam sonar implementation using
FPGA and TI-DSP is given. The realization of a distributed
beamformer for sonar signal processing is given in reference28,
which utilizes workstations distributed over a network.
However, studies on the optimization of beamformers focused
on a multicore processing environment are not available in
the literature. In our work, a General Purpose Processor-based
POSIX thread implementation is carried out, with suggested
improvements, and compared against Open MP standard-
based implementation.

3.2 Performance Measure: Arithmetic Intensity
Arithmetic Intensity (AI) is used as the metric to measure

the efficiency of data utilization. AI is the ratio of work (W),
which is the FLOPS (Floating Point Operations Per Second),
carried out by the CPU to memory traffic (Q), in bytes/s.

(7)
W

AI
Q

= − − − − − − − − − − − − − − −

(7)

This is a measure of computations performed per byte of
data fetched from memory. This quantity is measured from all
levels of memory (L1, L2, L3 Cache, and DDR) to observe the
improvement in data reuse at each level.

3.3 Details of OpenMP Implementation
The pseudo-code for the single-core implementation

of the beamformer is given in Algorithm 1. The inner loop
runs for the total number of time samples(N). The first step
in the computations is interpolation for fractional delays
xi(∆i), followed by array weighting wi.xi(∆i) and then adding
𝑦(𝑛)=Σ(𝑤𝑖.𝑥𝑖(𝑛+𝛥𝑖)) corresponding samples across sensors
(Eqn. (6)).

Table 1. Computational requirements for a single beam per
time sample.

Multiplications Additions

Interpolation 6 * Nb 5 * Nb

Array weighting Nb -

Sum output - Nb - 1

Total (DAS) 7 * Nb 6 * Nb - 1

The sensor loop runs for Nb sensors to obtain a beam in
one direction. The beam loop runs for a B number of beams
to be formed. OpenMP constructs are used to instruct the
compiler to parallelize for loops. This is used to evaluate the
performance of CABF.

3.4 Details of Multicore Implementation
The beamformer is implemented to use multiple cores

by dividing the beams among them, using a multi-threaded
approach with pthread (POSIX Thread). A straightforward

Algorithm 1: Single core implementation

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

758

Figure 3. Data cube showing the memory arrangement of sensors
time samples xi(n) in bearing and elevation. The blue
portion shows the data that is shared between threads
processing adjacent blocks of bearing.

Table 4. Memory bandwidth for sensor data addition with
integer delay operation in A2 and A3.

Data
size

Memory bandwidth (G bytes/s)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 656 397 3.7 243 0.087 0.06 0.003 0.02
2 754 382 188 242 0.033 0.06 0.007 0.05
4 516 376 413 298 0.001 1.46 0.001 0.07
6 427 331 381 306 0.001 103 0.001 0.07
8 436 268 443 266 0.001 126 0.001 0.05
10 467 256 447 257 0.001 139 0.001 0.11

Table 2. Memory Bandwidth for fractional interpolation in
A2 and A3.

Data
size
(k Data)

Memory bandwidth (G bytes/s)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 148 417 78 5.3 79 0.015 34 0.001
2 94 409 66 219 49 0.011 35 0.001
4 96 334 120 452 48 0.002 44 0.001
6 97 324 145 428 49 0.001 45 0.001
8 104 305 151 429 53 0.002 49 0.001
10 100 306 152 450 51 0.002 48 0.001

Table 3. Arithmetic intensity for fractional interpolation in
A2 and A3

Data
size

Arithmetic intensity (Interpolation)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 0.88 0.88 1.65 62.8 1.65 2.5e4 3.78 8.0e5
2 0.88 0.88 1.24 1.63 1.69 3.4e4 2.32 9.1e5
4 0.88 0.88 0.69 0.65 1.72 1.5e5 1.91 9.4e5
6 0.88 0.88 0.58 0.66 1.73 1.9e6 1.87 1.2e6
8 0.88 0.88 0.61 0.62 1.74 1.6e5 1.83 1.3e6
10 0.88 0.88 0.59 0.59 1.74 1.1e5 1.83 1.1e6

extension is not an optimized solution [6], as it requires taking
the cache architecture of the processor into account.

In the pseudo-code of Algorithm 2, the inner loop (lines
11-16) performs interpolation for the fractional time delays
xi(∆i), weighting, and adding of the data samples considering
the integer delay requirements of each sensor, with an
encapsulating sensor loop (9-19). The beam loop (6-20) differs
in each core. The thread ID (line 2) identifies the beams to
be processed by the threads (BT-beams/thread). NS is the total
number of sensors in the array and the sensors participating in
the beam are dynamically computed in the loop (variable i).

3.5 Cache-Aware Beamformer for Multicore Processors
In this section, we analyze the algorithm 2 implementation

and identify areas to improve its performance. The CABF
focuses on reducing memory transactions and reusing data
from cache.

Figure 3 illustrates the arrangement of data in the memory
of the processor. Sensor time samples are arranged in memory,
with consecutive memory locations holding a sensor’s time
series. The consecutive sensors in bearing and elevation
(green/yellow) are used for a set of beams. Each thread
requires some overlap in the data (prologue and epilogue)
which will be accessed by consecutive threads (blue in Fig. 3).
For consecutive beams the sensor indices will be incremented
in bearing by one. When the beam loop increments, a new set
of sensor data is fetched from memory. However, only one
subset of sensors in the elevation direction is different in the
adjacent beam. This provides an opportunity for data reuse.
The example design presented in [5] is used to illustrate this
point.

Consider a cylindrical array with 30 elements in the
vertical and200 in the bearing direction (6000 elements array).
Let us assume that only 1/3rd of the sensors in the bearing
participate in the beamformer. We take 64x30=1920(NφXNϑ)
elements for the beamformer, where Nφ and Nθ are the sensors
in the bearing and elevation for the beam. The time samples
xi(n) (N=2048) arranged as shown in Fig. 3 are given to
the beamformer thread. In Algorithm 2, as the beam loop
increments, a set of 1920 sensor time series (1920x2048) will
be fetched for computing the new beam. However, only 30
new sensors are there, not used in the previous beam. As the
beam progresses, we can see a sensor is used in 64 beams and
re-fetched each time. This can be avoided by repositioning
the sensor and beam loop and carefully managing the loop
variables and memory. Once sensor data is fetched it needs to
be reused for all the Nφ=64 beams before it is discarded. Note
that, the beam output data will be fetched multiple times to
accumulate the sensor data. As multiple threads are spawned
(here4), each thread will get 50 out of 200 beams. The smaller
the number of beams, the more it is cacheable (depending on
L3 capacity). This will enable faster access to the beamformer
intermediate data and its reuse.

As the beam loop and sensor loops are interchanged, we
need to split the computations into 3 separate sections to get
the maximum advantage of reuse; prologue, steady state, and
epilogue. In the epilogue, the first set of sensors (Nθ=30) will
be used only in one beam, whereas the next 30 will be used in

NARAYANAN, et al.: A HIGH-PERFORMANCE PARALLEL APPROACH TO DELAY SUM BEAMFORMER

759

beams 1 and 2. This progressively increases, and 64 beams are
in a steady state. This portion of ramping up the data usage is
called the prologue, and at the end, the reverse of this happens
in the epilogue.

The pseudo-code of the above-explained modification
is given in Algorithm 3. The sensor loop and beam loop
are interchanged. Depending on thread ID, the beams to
be processed are found in threads, and a temporary buffer
for the beam output is allocated (lines 8 & 9), small enough
to get cached as per processor architecture (N is selected
accordingly). Corresponding sensors are found out (start
Sensor, line 6). With beam count value the prologue (lines
14-24), steady-state (lines 25-35), and epilogue (lines 36-49)
portions of the beamformer are identified. The beam loop
does all computational functions required for the beamformer
(interpolation, weighting, and adding sensors). Beam output is
copied to DRAM in line 52.

3.6 Hardware Used for Evaluation
To evaluate the performance, an Intel Xeon W series

multicore machine with a maximum clock speed of 3.7 GHz,
and Linux kernel 5.15 OS is installed is used. It has 32 kB L1
& L2, and 20 MB L3 cache.

4. RESULTS AND ANALYSIS
The algorithms presented in Section III are implemented

using vector-optimized IPP libraries from Intel. Fractional
delay xi(∆i) is implemented using the FIR filter function. Index
generation for vector addition takes care of integer delay,
giving the final beamformer output.

The results are collected with four threads spawned on
as many cores. The performance is studied for different data
sizes, and is presented with ’kilo floating point data’, marked
as ’k Data’ in figures and tables. Table 2 shows the bandwidth
in GBPS for each level of memory of the processor. For
Algorithm 3, the bandwidth of L1 is higher, but it decreases as
the data size increases (Table 2). The bandwidth of L2, which
is initially small, increases gradually. However, the bandwidth
of L3 and DRAM remains very low, as seen in Table 2. This
implies, once the data is copied to a temporary buffer, the
buffer is cached. In contrast, Algorithm 2 has higher data
rates from DRAM for all cases, as the data is progressively
fetched to L1 (Table 2). The corresponding AI for all levels of
memory is given in Table 3. For Algorithm 3, the AI is high for
DRAM and L3. The AI in L1 is the same in both cases, which
is expected since the fractional interpolation is carried out in
the same way for Algorithms 2&3.

The second part of the beamformer operation is the
weighting and addition of the sensor data realized using an
optimized add function. Table 4 presents a comparison of this
final step in the beamformer for Algorithm 2&3, for different
data sizes. In Algorithm 2, the additions for a beam direction
take place in the inner loop, and hence it is cached, making it
faster. Hence, for Algorithm 2, the memory bandwidth is very
low for DRAM and L3, and small data size for L2 as well
(Table 4). For Algorithm 3, the beam loop is inside the sensor
loop and beam data needs to be fetched each time (lines 21, 32,
45). To enable the reuse of data, a temporary buffer is allocated

Algorithm 3: Cache aware beamformer implementation

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

760

Figure 4. GFLOPS achieved for interpolation, (a) Beamformer (b) Beamformer (c) Percentage improvement of Algo 3 over 2 and
OpenMP for interpolation (d) for all data sizes.

(c) Beamformer (d) Improvement beamformer

(a) Interpolation filter (b) Improvement interpolator

Table 6. Performance improvement of GFLOPS for interpolation
and beamformer operation [A3 over A2 & OMP]

Data
size
(kData)

Percentage improvement of GFLOPS
Interpolation Beamformer

A3/A2 A3/OMP A3/A2 A3/OMP
1 64.3 79.5 11.2 38.1
2 76.9 78.8 32.6 38.9
4 71.3 72.1 34.7 40.0
6 70.1 71.9 29.2 42.6
8 69.8 69.3 26.4 30.2
10 67.1 68.9 23.1 28.7

 Table 5. Arithmetic intensity for sensor data addition with integer delay operation in A2 & A3

Data
size

Arithmetic Intensity (Sensor Addition)
L1 L2 L3 DRAM

A2 A3 A2 A3 A2 A3 A2 A3
1 0.17 0.17 29.6 0.27 1.3e3 1.1e3 5.7e4 3.1e3
2 0.17 0.17 0.67 0.26 3.8e3 1.0e3 2.4e5 1.3e3
4 0.17 0.17 0.21 0.21 4.8e5 43.09 3.0e5 917
6 0.17 0.17 0.19 0.18 4.9e5 0.532 3.3e5 776
8 0.17 0.17 0.16 0.17 6.1e5 0.355 3.1e5 945
10 0.17 0.17 0.17 0.17 6.7e5 0.308 3.3e5 386

for the beam output of each core (line 8). A final output copy
to DRAM is done (line 52). In Table 4 the bandwidth for L1
and L2 is high for smaller data sizes (Table 4), indicating that
the buffer is cached in L2. As the data size increases, the buffer
gets cached in L3. The DRAM bandwidth is negligible as seen
in Table 4.The AI of the weighting and addition operation in
the beamformer is given in Table 5. AI values for Algorithm
3 are high for L3 and DRAM, indicating better reuse memory.
But these values are smaller than those of Algorithm 2.

The overall impact of Algorithm 3 over 2 is that the
memory transfers from DRAM, as well as L3, are reduced for
operations of the beamformer, thereby increasing AI. This is
reflected in Tables 2-5.

4.1 Comparison with OpenMP Standard Implementation
Table 6 provides a comprehensive summary of the

impact of Algorithm 3 over 2, as well as Open MP standard-
based implementation. This is tabulated for interpolation

filter operation and the overall beamformer. Fig.4i shows the
performance of the interpolation filter, in which Algorithm 3
outperforms Algorithm 2 and OpenMP by about 2.5-3 times
in all cases (200-250 GFLOPS better). Fig. 4(b) displays the
percentage improvement factor on an average of 69 % and

NARAYANAN, et al.: A HIGH-PERFORMANCE PARALLEL APPROACH TO DELAY SUM BEAMFORMER

761

73 %. The overall performance of the beamformer using
Algorithms 2, 3, and OpenMP is shown in Fig.4(c). Algorithm
3 yields higher values in all cases comparatively. Fig. 4(d)
As seen from Fig. 4(d) and Table 6, the overall improvement
of Algorithm 3 (CABF) is 26 % and 36 % respectively over
Algorithm 2 and OpenMP. This demonstrates the overall
effectiveness of Algorithm 3. These findings highlight the
significance of optimizing computational performance in the
context of multi-core processors.

5. CONCLUSION
The article presents the design of a modified CABF

algorithm for a DAS beamformer within the context of
multi-core processors enabling a cost-effective realization
of complex large arrays in Sonars, Radars, medical imaging,
and the like. A brief analysis of the beamformer is performed
to break down the algorithm, enabling it to use the multicore
resources. Modifications are carried out to facilitate the
reuse of sensor data from the cache. To characterize, a case
study with a 6000 sensor array forming 200 beams is made.
To benchmark the performance an Open MP standard-based
implementation is made and studied for different data sizes.
Results demonstrate that the CABF algorithm reduces memory
transactions, as evidenced by the bandwidth numbers. The
CABF algorithm has improved FMA calculations by 73% over
OpenMP and 69 % over pthreaded implementation. Finally,
it is demonstrated that the CABF algorithm yields an overall
performance improvement of 36% over Open MP and 26 %
over the pthreaded implementation.

REFERENCES
1. Zimmerman, R.; D’Spain, G. & Chadwell, C. Decreasing

the radiated acoustic and vibration noise of a mid-size
AUV. IEEE J. Oceanic Eng., 2005, 179-187.

 doi: 10.1109/JOE.2004.836996.
2. Chapman, N. & Price, A. Low-frequency deep ocean

ambient noise trend in the northeast pacific ocean. JASA
Exp. Let., 2011.

 doi: 10.1121/1.3567084
3. Miasnikov, E. Can Russian strategic submarines survive

at sea? The fundamental limits of passive acoustics,
science and global security, pp. 213-251

 doi: 10.1080/08929889408426401
4. Dawe, R. Detection threshold modelling explained in

DSTO Aeronautical and Maritime Research Laboratory,
1997.

5. Prakash, Narayanan; Gopal, M.G. Vijay & Rajesh, R.
Design and implementation considerations for a 3D
beamformer on state-of-the-art multicore processors in
OCEANS, Chennai, 2022.

 doi: 10.1109/OCEANSChennai45887.2022.9775501.
6. Urick, R. Principles of underwater sound for engineers.

McGraw Hill, 1967.
7. Vlassopoulos, N. & Reisis, D. Conflict-free parallel

memory accessing techniques for FFT architectures.
IEEE Tran. on Cir. and Sys., 2008, 55(11).

 doi : 10.1109/TCSI.2008.924889.
8. Tsai, P.Y. & Lin, C.Y. A generalized conflict-free

memory addressing scheme for continuous-flow parallel-
processing FFT processors with rescheduling. IEEE Tran.
VLSI Sys., 2011, 19 (12).

 doi : 10.1109/TVLSI.2010.2077314
9. Cheng, C. & Yu, F. An optimum architecture for

continuous-flow parallel bit reversal. IEEE Signal Proc.
Let., 2015, 22(12).

 doi :10.1109/LSP.2015.2470519
10. Mucci, R. A comparison of efficient beamforming

algorithms. IEEE Tran. on Acou, Speech and Signal
Proc., 1984 32(3), 548–558.

 doi :10.1109/TASSP.1984.1164359
11. Li, B.; RongY.; Sun, J. & Teo, K.L. A distributionally

robust minimum variance beamformer design. IEEE
Signal Proc. Let., 2018, 21(1), 105–109.

 doi :10.1109/LSP.2017.2773601
12. Synnevag, J.F; Austeng. A; & Holm, S. Adaptive

beamforming applied to medical ultrasound imaging.
IEEE Tran. on Ulatrasonics, Ferro, and Freq Con, 2007
54(8), 1606–1613.

 doi :10.1109/TUFFC.2007.431
13. Amaro. J; Yiu. B.Y.S.; Falcao, G.; Gomes, M. & Yu,

A. Software-based high-level synthesis design of FPGA
beamformers for synthetic aperture imaging. IEEE Tran.
on Ulatrasonics, Ferro, and Freq Con., 2015, 62(5), 862–
870.

 doi :10.1109/TUFFC.2014.006938
14. Kidav, J.U. & Sreejeesh, S.G. An FPGA-accelerated

parallel digital beamforming core for medical ultrasound
sector imaging. IEEE Tran. on Ulatrasonics, Ferro, and
Freq. Con., 2022, 69(2), 553-564.

 doi:10.1109/TUFFC.2021.3126578
15. Yeh, C.Y.; Chu, T.C.; Chen, C. & Yang, C. A hardware-

scalable dsp architecture for beam selection in mm-wave
MU-MIMO Systems. IEEE Tran. on Cir. and Sys., 2018,
65(11), 3918–3928.

 doi: 10.1109/TCSI.2018.2856124.
16. Narayanan, M.P.; Gopal, G.V. & Rajesh, R. Accelerating

performance of a real-time 2D delay-sum beamformer on
general purpose processors. International Symposium on
Ocean Technology (SYMPOL), 2021

 doi: 10.1109/SYMPOL53555.2021.9689448.
17. Nielsen, R.O. & Boston. Sonar signal processing. Artech

House, 1991.
18. Li, Q. Digital sonar design in underwater acoustics -

principles and applications. Springer, 2011.
19. Dudgeon, D.E. & Mersereau, R.M. Multidimensional

digital signal processing. Prentice Hall, 1984.
20. Pridham, R.G. & Mucci, R.A. A novel approach to digital

beamforming. JASA, 1978, 63, 425–434.
 doi:10.1121/1.381733
21. Butenhof, R.D. Programming with POSIX threads.

Harlow, UK: Pearson education, 1997.
22. Mattson, T.G.; He, Y. & Koniges, A.E. The OpenMP

Common Core., Cambridge: MIT Press, 2019.
23. Open MP, http://www.openmp.org.
 (Accessed on 07 December 2023).
24. Greg, S.; Richard, B. & Xiaoyun, Y. Multicore image

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

762

processing with OpenMP. IEEE Signal Pro. Mag., 2010,
134–138,

 doi: 10.1109/MSP.2009.935452.
25. Allen, G.E. & Evans, B.L. Real-time sonar beamforming

on workstations using process networks and POSIX
threads. IEEE Tran on Signal Proc., 2000, 48(3), 921–
926.

 doi: 10.1109/78.824694.
26. Bridgman, J.F.; Allen, G.E. & Evans, B.L., Scalable multi-

core sonar beamforming with computational process
networks. In IEEE Conference on Signals, Systems, and
Computers, 2010

 doi: 10.1109/ACSSC.2010.5757732.
27. Guo, T.H.P.S. Design and implementation of a real-

time multi-beam sonar system based on FPGA and DSP,
MDPI. Sensors, 2021.

 doi:10.3390/s20141425
28. George, A.D.; Markwell, J. & Fogarty, R. Real-time sonar

beamforming on high performance distributed computers,
Parallel Comput., 2000, 26, 1231–1252

 doi:10.1016/S0167-8191(00)00037-5

CONTRIBUTORS

Mr M. Prakash Narayanan obtained his MTech in Electronics
Design and Technology from IISc, Bangalore, India and currently
working in NPOL, Kochi, India. His research interests include:
Design and development of signal processors for sensor processing,
deep learning, and the exploitation of multicore processors for
signal processing applications.
His current contribution is: Coding algorithm 3 and simulation
of algorithms 3,2,1. Evolution of idea behind the paper.
Compilation of results and authoring of the paper.

Mr G. Vijay Gopal obtained his MTech in Communication
Systems from IIT, Madras and currently working in NPOL,
Kochi. His areas of interest include: Signal processing for
underwater applications, system design for real-time signal
processing, accelerated and embedded computing.
His current contribution is: Coding and simulation of algorithm
1, 2 and its simulation. Expert consultation in tools used, its
setup, and the environment of the study. Editing of the paper.

Dr R. Rajesh obtained his PhD in Physics from Jamia Millia
Islamia, New Delhi and currently working in NPOL, Kochi.
His areas of research include: High-power chemical lasers for
directed energy applications and development of fiber optic
underwater acoustic sensors.
His current contribution is: Supervisorial contributions. Editing
of paper and its structural modifications discussions and ideas
to evolve the work as a paper.

