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ABSTRACT

Deep learning techniques have shown remarkable success in radar identification. However, deep neural network 
training can be time and resource intensive. Batch normalisation is a popular approach for quickening deep feed-
forward neural network training. The training of deep neural networks is accelerated by minimising the internal 
covariate shift and stabilizing the training process by normalising the intermediate activations within each mini-batch. 
In this research, the convergence behavior of networks with and without batch normalisation is compared. Batch 
normalisation standardizes the input to a layer for each mini-batch applied to either the activations of a prior layer 
or inputs directly. Our experiments indicate that batch normalisation is effective in improving a variety of neural 
network properties. However, the primary objective of the study is to accelerate convergence during training and 
also improve the accuracy of the model in identifying radar. Batch normalisation contributes to better generalization, 
reduces overfitting, and provides consistent learning which can improve the accuracy of the model on unseen data. 
The results show that batch-normalized models have higher test and validation accuracies across all datasets, which 
we attribute to their regularizing impact and more steady gradient propagation. This research also examines the 
impact of several parameters, such as batch size, momentum, and beta and gamma parameters, on the effectiveness 
of DNNs with batch normalisation. The radar dataset used for training is the fused emitter set obtained after feature 
level fusion of the tracks intercepted by ESM (Electronic Support) and ELINT (Electronic Intelligence) systems.
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1. INTRODUCTION
Radar emitter identification plays a crucial role in 

Electronic Warfare Systems and its identification is one of 
the key purposes of Electronic Intelligence (ELINT) and 
Electronic Support Measure (ESM) equipment in modern 
warfare. ELINT-ESM sensors are installed on platforms for the 
recognition of emitters in the area of responsibility. The tracks 
sent from ELINT-ESM sensors contain the features of the 
intercepted emitter signal, the azimuth, and the identification 
information among other things. It helps the war fighters in 
making decisions by providing timely information about the 
emitters.

Deep Neural Networks (DNNs) have become a key 
artificial intelligence technology for specific radar emitter 
identification. It is challenging to train densely layered deep 
neural networks because these networks might be sensitive to 
the learning algorithm’s configuration parameters and initial 
random weights. The techniques employed to initialize the 
weights before training can have an impact on deep neural 
networks. Batch Normalisation (BN)1 increases the stability of 
deep network training by reducing the sensitivity to the weight 
initialization approach. The paper focuses on accelerating the 
training of deep networks for radar identification using batch 

normalisation. The present study is done by fusing the track 
measurements received from the ESM and ELINT system 
at the feature level and training the network with the fused 
track. Applied to a Multi-Layer Perceptron model, Batch 
Normalisation achieves the same accuracy with less number 
of epochs and increases the classification accuracy by 13 %. 

1.2  Batch Normalisation and Related Work
Batch normalisation2 expedites the training of deep neural 

networks by incorporating data standardization into the design 
of the network. The inputs to a layer are normalized by batch 
normalisation. Most network types including convolution 
neural networks, multilayer perceptrons, and recurrent neural 
networks can benefit by using BN. It may be employed on the 
inputs to the layer before or after the activation function in the 
preceding layer.   For s-shaped functions like the logistic and 
hyperbolic tangent, it provides good results after the activation 
function. The activation functions that lead to non-Gaussian 
distribution such as rectified linear activation function, it 
is preferred to place it before the activation function. This 
might need to use learning rates that are significantly higher 
than usual, which would speed up learning even further. 
Batch normalisation reduces generalisation error and may 
even eliminate the need for dropout regularization in some 
situations.
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As a result of the adjustment of network parameters 
during training, a phenomenon known as the internal covariate 
shift occurs which alters the network activations distribution 
across layers because of the variation in the parameters during 
network training. In the machine learning community, the 
covariate shift is a well-known issue that commonly appears 
in real-world problems3. The ideal transformation of each 
layer into a space would maintain the functional relationship 
while maintaining the same distribution.  Every input feature 
is normalized across each layer and minibatch such that it has a 
zero mean and standard deviation of one to prevent expensive 
computation of covariance matrices to remove correlation and 
whiten the data.

Taking into account a fully connected deep neural 
network, the mth hidden layer of the network is defined by:

( ) ( ) ( 1) ( )( )
m m m mh g W h b−= + ,                                 (1)
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where, sH and mH are the standard deviation and mean 
vectors of { }( 1)m

ih − and g, b are there-scaling and re-centering 
parameter vectors respectively which are trainable. The BN 
transformation operator Bb,g (·) first normalizes the activation 
h(m-1) and then re-scales with γ parameter and re-centers with 
β parameter. In practice, the denominator in (2) is the square 
root of the variance vector plus a small e>0 to avoid division 
by zero4. sH and mH depends upon mini-batch input and BN 
network (2) varies with different mini-batches during training.

There have been plenty of works that examine various 
aspects of Batch Normalisation. Essentially, batch normalisation 
is the same as normalisation preprocessing, with the exception 
that it takes place after data has already been fed into the 
network. It enhances the convergence and generalization 
of neural network training; the phenomena are understood 
theoretically5. The Decorrelated Batch Normalisation (DBN) 
process has been proposed6 which centers, scales, and also 
whitens activations. The experiments were conducted on 
multilayer perceptrons & convolution neural networks and 
have shown improved performance.

Normalisation layers are crucial in deep networks with 
leaky, parametric, and ReLU-like piecewise linear activation 
functions, according to Liao et al7. They discovered through 
their research on the CIFAR10, CIFAR100, MNIST, and 
SVHN datasets that introducing BN is crucial for networks 
with saturating nonlinearities and piecewise linear activation 
functions. They also demonstrated that for the network training 
to proceed quickly and accurately, batch normalisation must be 
added before the nonlinear activation functions.

After applying batch normalisation, the zero mean and 
unit variance properties of all intermediate layers will have 
been restored. Since the activations of the other layers are 
continuously renormalized, their weights essentially do not 
influence the majority of the cases, and learning this model has 
become much easier8. The authors have performed an empirical 
investigation9 to examine the impact of batch normalisation and 
dropout on deep learning model training on the CNN model 
and shown that dropout and batch normalisation can be utilized 
when short on time to experiment. Experimental evidence 
provided by Laurent10, et al. demonstrates the difficulty of 
extending the BN method for deep feed forward networks 
to Recurrent Neural Networks (RNN). It was discovered 
that batch normalisation does not speed up convergence for 
hidden-to-hidden transitions in recurrent networks. Although 
batch normalisation can speed up the training criterion’s 
convergence when used for input-to-hidden transitions, it does 
not show to enhance generalization performance on either 
language modeling or audio recognition tasks. Adaptive batch 
normalisation11 to improve deep neural network generalisation 
capabilities is suggested through the efficient method of 
domain adaptation using batch-normalized neural networks.

The effectiveness of batch normalisation decreases 
drastically when applied to small mini-batch sizes. Cross-
iteration batch normalisation technique12 to enhance estimation 
quality which compensates for the changes in network weight 
over multiple iterations is suggested. The issues of mini-batches 
in batch normalisation are also resolved by restructuring the 
batch normalisation layer by splitting it into two sub-layers 
on the CNN model13. The image classification by the CNN 
network can be improved by adding a batch normalisation layer 
with hyperparametertunings14. Experiment15 has been done on 
various CNN and GAN networks and demonstrated that L1BN 
is equivalent in performance to L2BN with high computational 
efficiency. To improve the instance-specific representation, a 
feature calibration scheme along with the advantage of batch 
normalisation is suggested16.

2. BACKGROUND
ELINT-ESM sensors are deployed as part of an 

electronic recognition system on various platforms in the 
area of responsibility. ELINT-ESM sensors comprise passive 
receivers and direction finders for intercepting emitter signals 
from various directions. The signals intercepted by the sensors 
are processed to extract information about the emitter which 
includes feature parameters, azimuth direction, and identity 
information. Both sensors work asynchronously for emitter 
identification. The emitter information collected by ELINT 
systems is used for strategic purposes and those collected by 
ESM systems are for tactical purposes. In conclusion, ELINT 
sensors identify the opponent’s capabilities, while ESM 
sensors identify which enemy radar is active at any given time 
and where it is located. For the study, the tracks from ESM and 
ELINT systems are fused at the feature level in this paper. 

3. METHODOLOGY
In the present study, the sensor tracks intercepted from 

ESM and ELINT systems are fused in the Multi-Sensor Data 
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Fusion (MSDF) block using feature-level fusion. In feature-
level fusion as depicted in Figure 1 below, the representative 
features from the ESM and ELINT sensor data are extracted 
and combined to form a concatenated feature vector of the 
target entity. This feature vector is given as input to the deep 
network for training for identity declaration. Data alignment 
and data association need to be performed before concatenating 
the features of both sensors. 

He initialization. By initializing weights with values that take 
the non-linearity of the activation functions like ReLU into 
account, the gradients propagate effectively. He initialization 
is particularly suitable with the ReLU activation function. The 
output layer has 175 nodes, each of which corresponds to one 
class. The activation function chosen at the output layer is the 
softmax activation function as it is a multi-class classification 
problem. The model is trained using an Adam optimization 
technique, and the optimization is directed by a sparse 
categorical cross-entropy loss function. In this study, we aim to 
illustrate the properties of batch normalisation using different 
parameters. First, we will divide the samples into an 80:20 
train and test dataset. This will give the model a sample set 
large enough to learn from and allow for a balanced evaluation 
of how well it performs. After some trial and error, it was 
found that the model is suitable with 1500 epochs. The datasets 
used for the experiments are radar datasets. The radar dataset 
contains the parametric detail of emitters including the emitter 
name and their mode parameters. The unclassified radar data 
sets are used in the experiment. There is limited availability of 
labeled radar emitter datasets due to data privacy and security. 
In this experiment, although it was challenging, diverse and 
representative emitter data sets covering a range of emitters 
were obtained from various sources.

Figure 1. Feature level fusion.

The fused track file forms part of an integrated radar 
database as shown in Fig. 2. The verified fused track datasets 
train the deep neural network to predict the identity of unknown 
intercepts. The study emphasizes accelerating the training of 
deep neural networks using batch normalisation methodology. 
To choose an acceptable approach for our studies, it is essential 
to keep in mind the purported impact of batch normalisation, 
which may be broadly classified as improvements in 
convergence rate and generalisation performance. Here we 
compared the model with batch normalisation to the identical 
model without batch normalisation to show how the batch 
normalisation technique alone changes the training behavior. 
The studies described in the next sections are compared for 
training speed, convergence curve, performance, generalization 
analysis, and parameter sensitivity to show the effect of batch 
normalisation. 

Figure 2. Operational flow diagram.

4. EXPERIMENTAL SETUP
As our problem is to classify radar into one of the classes, 

it is a multiclass classification problem. A multilayer perceptron 
model is developed with 14 input features in the visible layer. 
The model contains a single hidden layer with 150 nodes, which 
are randomly selected. The batch normalisation layer is added to 
normalize the inputs of the layer. The model uses the Rectified 
Linear Activation (ReLU) function and He initialisation is used 
as a random weight initialization technique. ReLU function 
introduces non-linearity in the model, allowing one to learn 
complex patterns in the data and it is computationally efficient 
and converges faster than other activation functions. The issue 
of vanishing or exploding gradients can be mitigated by using 

Table 1. Characteristics of radar dataset

Dataset Classes Trng set Test set Input 
features

Radar 
dataset 175 10764 2692 14

5. RESULTS
Batch normalisation can be added to the model presented 

in the preceding section. The use of batch normalisation is 
projected to speed up training and give the model classification 
accuracy that is comparable to or better in fewer training 
epochs. According to reports, batch normalisation also offers a 
moderate kind of regularization, which may potentially result 
in a slight decrease in generalization error, as shown by a slight 
improvement in accuracy in classifying the validation set. 
Individual layers may be subject to batch normalisation, or all 
of them may. The model may incorporate an additional batch 
normalisation layer before the output layer and after the hidden 
layer.

5.1  Training Speed Comparison
 The time required to reach convergence with the training 

dataset is compared between the DNN models with and 
without batch normalisation. The results show the reduction in 
training time achieved by incorporating batch normalisation, 
highlighting its ability to accelerate the training process.

The results in Table 2 display the convergence time with 
and without batch normalisation after the activation function.   

Table 2. Convergence time

Convergence time Training time (s) Epoch (No)
Without BN 15191.1 516
With BN 351.3 404
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5.2  Convergence Analysis
For analysis of the DNN models’ convergence behavior, the 

training and validation losses can be shown over iterations. It is 
possible to demonstrate how batch normalisation enhances the 
stability and consistency of the training process by comparing 
the convergence curves, which results in convergence that is 
both quicker and more dependable.

5.3  Performance Comparison
The accuracy of the performance measures is evaluated for 

the DNN models trained with and without batch-normalisation. 
The findings show that batch normalisation affects the 
models’ overall ability to identify objects. By adding a batch 
normalisation layer before and after the prior layer’s activation 
function, the model’s accuracy is assessed.

The results in Table 3 display the classification accuracy 
with & without BN after the activation function. 

batch normalisation is applied to the network, as opposed to 
when it is not, the classification accuracy increases by 13 %.

5.4  Effect of Batch Normalisation After and Before 
the Activation Function
By using batch normalisation either before or after the 

activation function of the preceding layers, the inputs to the 
layers can be standardized. The properties of the dataset, the 
model architecture, and the specific task at hand determine 
whether to apply batch normalisation before or after the 
activation function. By adding a batch normalisation layer 
before and after the prior layer’s activation function, the 
model’s accuracy is assessed in the present study. It shows that 
it is best when applied after the activation function.

The model was modified so that batch normalisation is 
applied before, rather than after, the hidden layer’s activation 
function. The result of applying batch normalisation before the 
activation function is shown in Table 4. The graph showing 
the plots of classification accuracy and cross-entropy loss is 
depicted in Fig. 4. It appears that BN is effective after the 
rectified linear activation function, at least for this model setup 
on this particular dataset when compared with results in Table 
3, where BN is applied after the activation function.

The results in Table 4 display the classification accuracy 
with BN before the activation function.

       Table 3. Classification accuracy

Classification accuracy Training (%) Test (%)
Without BN 77.5 75.7
With BN 90.8 89.2

Figure 3.  (a) Cross-entropy loss & classification accuracy without 
BN after activation function, and (b) Cross-entropy 
loss &  classification accuracy with BN after activation 
function.

(b)

(a)

The results of the classification accuracy of the MLP 
radar model without batch normalisation and with batch 
normalisation after activation function are shown in Table 3 
and the graph showing line plots of the classification accuracy 
and cross-entropy loss on the train (dashed) and test (solid) 
datasets is shown in Fig. 3. As per experimental results, when 

Table 4. Classification accuracy with BN

Classification
Accuracy

With BN before the activation function
Training Test Time
85 % 83.1 % 546.95

Figure 4. Classification accuracy with BN before activation 
function.

5.5  Effect of Batch Normalisation at the Input Layer
The results of implementing batch normalisation at the 

input layer are depicted in Table 5, but the model’s performance 
on the training dataset is worse, with an accuracy range of 71 % 
to 75 %. It is not suitable for this problem.The graph showing 
the plots of classification accuracy and cross-entropy loss is 
depicted in Fig. 5.

The results in Table 5 display the classification accuracy 
with BN at the input layer.
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5.6  Generalisation Analysis
It is important to assess the generalization capability 

of the DNN models. This is done by evaluating the model’s 
performance on a separate validation set. The comparison 
of the performance of the models with and without batch 
normalisation on unseen data is done to determine whether 
batch normalisation boosts the generalisation ability of the 
models. Table 6 depicts the results of the experiment done 
with batch normalisation on the training and validation data 
set which shows improvement in the generalization error when 
compared to the result without batch normalisation.

5.7  Hyper Parameter Sensitivity
The sensitivity of the DNN models to hyperparameter 

choices is investigated. The study assesses the impact of 
combining batch normalisation with different batch sizes, 
momentum, beta, and gamma parameters.

5.8  Batch Size
The performance of the model is examined in an experiment 

using various batch sizes to determine the most suitable choice 
for this specific problem. All other hyperparameters are 
left unchanged, except the batch size utilised for training is 
modified.  The batch sizes selected are 32,64,128,256.

The results in Table 6 display the classification accuracy 
with BN at the input layer.

The results in Table 6 show the classification accuracy 
and training time with different batch sizes.The graph showing 
the plots of classification accuracy and cross-entropy loss for 
different batch sizes is depicted in Fig. 6.

From the results, it can be demonstrated that for smaller 
batches (32,64) the overall training time is longer due to the 
increased number of iterations required to cover the entire 
dataset. For larger batch sizes (128,256) the overall training 
time is shorter since fewer iterations are needed to process the 
entire dataset. Mini-batch statistics estimates are more accurate 
when the batch sizes are larger, resulting in better normalisation. 
This can contribute to improved accuracy, especially when the 
dataset is large and diverse. However, using larger batch sizes 
might also reduce the randomization effect and potentially lead 
to overfitting, especially if the model is complex or the dataset is 
relatively small. In the present study, the model’s performance 
is good with batch size 128. The validation accuracy is 87.9 % 
with a training time of 361.6 sec.

5.9  Momentum
The effect of using momentum is that it smoothens out 

the estimates of mean and variance over time, making them 
more stable and reliable. It improves the convergence speed 
and improves the generalisation performance of the model. 
Since the batch size determines the regularization strength of 
BN, a small batch size could cause an under-fitting problem, 
which would make the model less useful. The noise level in 
the training process can be automatically controlled using 
momentum parameters. As a result, the model performs better 
with small batch sizes. Table 7 displays the effect of applying 
the momentum in the batch normalisation layer while training 
a small batch size of 16, the training time is reduced when 
compared without momentum. The graph showing the plots of 
classification accuracy and cross-entropy loss is depicted with 
and without momentum with batch size 16 is shown in Fig. 7.

The results in Table 7 display the classification accuracy 
using batch normalisation after activation without momentum 
and with batch size 16.

Table 5. classification accuracy

Classification
accuracy

With BN at the input layer
Training Test Time
74.5 % 71.9 % 472.1

Figure 5. Classification accuracy with BN at the input layer.

Table 6. Classification accuracy with BN at input layer

Batch
size

Training 
accuracy Test accuracy Training 

time(s)
32 92.1 % 87.4 % 1009.5
64 90 % 87.3 % 486.9
128 91.8 % 87.9 % 361.6
256 85.6 82.2 107.8

Figure 6. Classification accuracy with different batch 
sizes-32,64,128,256.

Table 7. Classification accuracy using batch normalisation

Classification accuracy 
with batch Size =16

Trng
(%)

Test
(%)

Epoch
(No)

Trng
Time(s)

Without momentum 87.8 85.8 743 1376.2
With momentum 89 86.5 519 835.87
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6. BETA AND GAMMA PARAMETERS
Beta and Gamma parameters aim to restore the 

representation power of the networks. Since transforming input 
data to a 0-mean unit-variance distribution on its own, may 
affect what the layer represents, Table 8 shows that the beta and 
gamma parameters which are learnable parameters in batch 
normalisation provide the model with additional flexibility to 
adjust the mean and variance of the output features. They allow 
the model to learn biases and scaling factors that optimize the 
normalisation process and improve the model’s performance. 
They provide automatic scaling and shifting of the standardized 
layer inputs.The graph showing the plots of classification 
accuracy and cross-entropy loss is depicted in Figure 8.

The results in Table 8 displays the classification accuracy 
using batch normalisation after activation with beta and gamma 
parameters

6. CONCLUSION
 This research paper explored the use of batch normalisation 

as a technique to quicken the training of deep neural networks 
for radar emitter identification. The experimental results 
demonstrated that batch normalisation significantly reduces 
the training time while maintaining or even improving the 
accuracy of radar emitter identification. The findings highlight 
the benefits of batch normalisation for training efficiency, 
convergence, and overall performance. The use of BN in radar 
emitter identification tasks has practical implications for real-
world applications. The accelerated training process allows for 
faster model development, enabling quicker response times 
and improved system efficiency. The improved convergence 
and stability of the models contribute to better overall 
performance and robustness. There were some challenges 
faced during the training process as the batch normalisation 
process can be sensitive to the choice of learning rates. Using 
too high or too low learning rates might affect the convergence 
and stability of the training. However, some limitations with 
batch normalisation are there as batch normalisation introduces 
additional computations during both training and inference, 
which can increase the overall computational cost. While batch 
normalisation is generally beneficial, there are cases where it 
might not lead to improvements depending on the architecture 
and characteristics of the task or dataset.
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