
878

Defence Science Journal, Vol. 74, No. 6, November 2024, pp. 878-884, DOI : 10.14429/dsj.74.19475
 2024, DESIDOC

Received : 11 September 2023, Revised : 13 January 2024
Accepted : 15 January 2024, Online published : 25 November 2024

Accelerating Deep Network Training for Radar Identification Using Batch
Normalisation

Preeti Gupta#,*, Pooja Jain$ and O.G. Kakde$

#Indian Institute of Information Technology, Nagpur - 441 108, India
$DRDO-Defence Electronics Research Laboratory, Hyderabad - 500 005, India

*E-mail: preetigupta.dlrl@gov.in

ABSTRACT

Deep learning techniques have shown remarkable success in radar identification. However, deep neural network
training can be time and resource intensive. Batch normalisation is a popular approach for quickening deep feed-
forward neural network training. The training of deep neural networks is accelerated by minimising the internal
covariate shift and stabilizing the training process by normalising the intermediate activations within each mini-batch.
In this research, the convergence behavior of networks with and without batch normalisation is compared. Batch
normalisation standardizes the input to a layer for each mini-batch applied to either the activations of a prior layer
or inputs directly. Our experiments indicate that batch normalisation is effective in improving a variety of neural
network properties. However, the primary objective of the study is to accelerate convergence during training and
also improve the accuracy of the model in identifying radar. Batch normalisation contributes to better generalization,
reduces overfitting, and provides consistent learning which can improve the accuracy of the model on unseen data.
The results show that batch-normalized models have higher test and validation accuracies across all datasets, which
we attribute to their regularizing impact and more steady gradient propagation. This research also examines the
impact of several parameters, such as batch size, momentum, and beta and gamma parameters, on the effectiveness
of DNNs with batch normalisation. The radar dataset used for training is the fused emitter set obtained after feature
level fusion of the tracks intercepted by ESM (Electronic Support) and ELINT (Electronic Intelligence) systems.

Keywords: Batch normalisation; Momentum; Beta and gamma parameters; Batch size

1. INTRODUCTION
Radar emitter identification plays a crucial role in

Electronic Warfare Systems and its identification is one of
the key purposes of Electronic Intelligence (ELINT) and
Electronic Support Measure (ESM) equipment in modern
warfare. ELINT-ESM sensors are installed on platforms for the
recognition of emitters in the area of responsibility. The tracks
sent from ELINT-ESM sensors contain the features of the
intercepted emitter signal, the azimuth, and the identification
information among other things. It helps the war fighters in
making decisions by providing timely information about the
emitters.

Deep Neural Networks (DNNs) have become a key
artificial intelligence technology for specific radar emitter
identification. It is challenging to train densely layered deep
neural networks because these networks might be sensitive to
the learning algorithm’s configuration parameters and initial
random weights. The techniques employed to initialize the
weights before training can have an impact on deep neural
networks. Batch Normalisation (BN)1 increases the stability of
deep network training by reducing the sensitivity to the weight
initialization approach. The paper focuses on accelerating the
training of deep networks for radar identification using batch

normalisation. The present study is done by fusing the track
measurements received from the ESM and ELINT system
at the feature level and training the network with the fused
track. Applied to a Multi-Layer Perceptron model, Batch
Normalisation achieves the same accuracy with less number
of epochs and increases the classification accuracy by 13 %.

1.2 Batch Normalisation and Related Work
Batch normalisation2 expedites the training of deep neural

networks by incorporating data standardization into the design
of the network. The inputs to a layer are normalized by batch
normalisation. Most network types including convolution
neural networks, multilayer perceptrons, and recurrent neural
networks can benefit by using BN. It may be employed on the
inputs to the layer before or after the activation function in the
preceding layer. For s-shaped functions like the logistic and
hyperbolic tangent, it provides good results after the activation
function. The activation functions that lead to non-Gaussian
distribution such as rectified linear activation function, it
is preferred to place it before the activation function. This
might need to use learning rates that are significantly higher
than usual, which would speed up learning even further.
Batch normalisation reduces generalisation error and may
even eliminate the need for dropout regularization in some
situations.

GUPTA, et al.: ACCELERATING DEEP NETWORK TRAINING FOR RADAR IDENTIFICATION USING BATCH NORMALIZATION

879

As a result of the adjustment of network parameters
during training, a phenomenon known as the internal covariate
shift occurs which alters the network activations distribution
across layers because of the variation in the parameters during
network training. In the machine learning community, the
covariate shift is a well-known issue that commonly appears
in real-world problems3. The ideal transformation of each
layer into a space would maintain the functional relationship
while maintaining the same distribution. Every input feature
is normalized across each layer and minibatch such that it has a
zero mean and standard deviation of one to prevent expensive
computation of covariance matrices to remove correlation and
whiten the data.

Taking into account a fully connected deep neural
network, the mth hidden layer of the network is defined by:

() () (1) ()()
m m m mh g W h b−= + , (1)

where, h(0) represents the network input x, g represents an
element-wise nonlinear function, and () mnmh ∈ represents the
mth hidden variable. W(m) and b(m) are the associated weight and
bias. During training, consider {x1,x1,…, xp}ed a mini-batch
comprising of P examples and (1) (1) (1)

1 2, ,....
Tm m m

PH h h h− − − =   is
the matrix of hidden variables related to the layer m-1. Batch
normalisation replaces the mth hidden layer by

() () (1) ()
,

(1)
(1)

,

(());

()

m m m m

m
m H

H

h g W h b

hh

b g

b g
mg b

s

−

−
−

= Β +

−
Β = +

(2)

where, sH and mH are the standard deviation and mean
vectors of { }(1)m

ih − and g, b are there-scaling and re-centering
parameter vectors respectively which are trainable. The BN
transformation operator Bb,g (·) first normalizes the activation
h(m-1) and then re-scales with γ parameter and re-centers with
β parameter. In practice, the denominator in (2) is the square
root of the variance vector plus a small e>0 to avoid division
by zero4. sH and mH depends upon mini-batch input and BN
network (2) varies with different mini-batches during training.

There have been plenty of works that examine various
aspects of Batch Normalisation. Essentially, batch normalisation
is the same as normalisation preprocessing, with the exception
that it takes place after data has already been fed into the
network. It enhances the convergence and generalization
of neural network training; the phenomena are understood
theoretically5. The Decorrelated Batch Normalisation (DBN)
process has been proposed6 which centers, scales, and also
whitens activations. The experiments were conducted on
multilayer perceptrons & convolution neural networks and
have shown improved performance.

Normalisation layers are crucial in deep networks with
leaky, parametric, and ReLU-like piecewise linear activation
functions, according to Liao et al7. They discovered through
their research on the CIFAR10, CIFAR100, MNIST, and
SVHN datasets that introducing BN is crucial for networks
with saturating nonlinearities and piecewise linear activation
functions. They also demonstrated that for the network training
to proceed quickly and accurately, batch normalisation must be
added before the nonlinear activation functions.

After applying batch normalisation, the zero mean and
unit variance properties of all intermediate layers will have
been restored. Since the activations of the other layers are
continuously renormalized, their weights essentially do not
influence the majority of the cases, and learning this model has
become much easier8. The authors have performed an empirical
investigation9 to examine the impact of batch normalisation and
dropout on deep learning model training on the CNN model
and shown that dropout and batch normalisation can be utilized
when short on time to experiment. Experimental evidence
provided by Laurent10, et al. demonstrates the difficulty of
extending the BN method for deep feed forward networks
to Recurrent Neural Networks (RNN). It was discovered
that batch normalisation does not speed up convergence for
hidden-to-hidden transitions in recurrent networks. Although
batch normalisation can speed up the training criterion’s
convergence when used for input-to-hidden transitions, it does
not show to enhance generalization performance on either
language modeling or audio recognition tasks. Adaptive batch
normalisation11 to improve deep neural network generalisation
capabilities is suggested through the efficient method of
domain adaptation using batch-normalized neural networks.

The effectiveness of batch normalisation decreases
drastically when applied to small mini-batch sizes. Cross-
iteration batch normalisation technique12 to enhance estimation
quality which compensates for the changes in network weight
over multiple iterations is suggested. The issues of mini-batches
in batch normalisation are also resolved by restructuring the
batch normalisation layer by splitting it into two sub-layers
on the CNN model13. The image classification by the CNN
network can be improved by adding a batch normalisation layer
with hyperparametertunings14. Experiment15 has been done on
various CNN and GAN networks and demonstrated that L1BN
is equivalent in performance to L2BN with high computational
efficiency. To improve the instance-specific representation, a
feature calibration scheme along with the advantage of batch
normalisation is suggested16.

2. BACKGROUND
ELINT-ESM sensors are deployed as part of an

electronic recognition system on various platforms in the
area of responsibility. ELINT-ESM sensors comprise passive
receivers and direction finders for intercepting emitter signals
from various directions. The signals intercepted by the sensors
are processed to extract information about the emitter which
includes feature parameters, azimuth direction, and identity
information. Both sensors work asynchronously for emitter
identification. The emitter information collected by ELINT
systems is used for strategic purposes and those collected by
ESM systems are for tactical purposes. In conclusion, ELINT
sensors identify the opponent’s capabilities, while ESM
sensors identify which enemy radar is active at any given time
and where it is located. For the study, the tracks from ESM and
ELINT systems are fused at the feature level in this paper.

3. METHODOLOGY
In the present study, the sensor tracks intercepted from

ESM and ELINT systems are fused in the Multi-Sensor Data

DEF. SCI. J., VOL. 74, NO. 6, NOVEMBER 2024

880

Fusion (MSDF) block using feature-level fusion. In feature-
level fusion as depicted in Figure 1 below, the representative
features from the ESM and ELINT sensor data are extracted
and combined to form a concatenated feature vector of the
target entity. This feature vector is given as input to the deep
network for training for identity declaration. Data alignment
and data association need to be performed before concatenating
the features of both sensors.

He initialization. By initializing weights with values that take
the non-linearity of the activation functions like ReLU into
account, the gradients propagate effectively. He initialization
is particularly suitable with the ReLU activation function. The
output layer has 175 nodes, each of which corresponds to one
class. The activation function chosen at the output layer is the
softmax activation function as it is a multi-class classification
problem. The model is trained using an Adam optimization
technique, and the optimization is directed by a sparse
categorical cross-entropy loss function. In this study, we aim to
illustrate the properties of batch normalisation using different
parameters. First, we will divide the samples into an 80:20
train and test dataset. This will give the model a sample set
large enough to learn from and allow for a balanced evaluation
of how well it performs. After some trial and error, it was
found that the model is suitable with 1500 epochs. The datasets
used for the experiments are radar datasets. The radar dataset
contains the parametric detail of emitters including the emitter
name and their mode parameters. The unclassified radar data
sets are used in the experiment. There is limited availability of
labeled radar emitter datasets due to data privacy and security.
In this experiment, although it was challenging, diverse and
representative emitter data sets covering a range of emitters
were obtained from various sources.

Figure 1. Feature level fusion.

The fused track file forms part of an integrated radar
database as shown in Fig. 2. The verified fused track datasets
train the deep neural network to predict the identity of unknown
intercepts. The study emphasizes accelerating the training of
deep neural networks using batch normalisation methodology.
To choose an acceptable approach for our studies, it is essential
to keep in mind the purported impact of batch normalisation,
which may be broadly classified as improvements in
convergence rate and generalisation performance. Here we
compared the model with batch normalisation to the identical
model without batch normalisation to show how the batch
normalisation technique alone changes the training behavior.
The studies described in the next sections are compared for
training speed, convergence curve, performance, generalization
analysis, and parameter sensitivity to show the effect of batch
normalisation.

Figure 2. Operational flow diagram.

4. EXPERIMENTAL SETUP
As our problem is to classify radar into one of the classes,

it is a multiclass classification problem. A multilayer perceptron
model is developed with 14 input features in the visible layer.
The model contains a single hidden layer with 150 nodes, which
are randomly selected. The batch normalisation layer is added to
normalize the inputs of the layer. The model uses the Rectified
Linear Activation (ReLU) function and He initialisation is used
as a random weight initialization technique. ReLU function
introduces non-linearity in the model, allowing one to learn
complex patterns in the data and it is computationally efficient
and converges faster than other activation functions. The issue
of vanishing or exploding gradients can be mitigated by using

Table 1. Characteristics of radar dataset

Dataset Classes Trng set Test set Input
features

Radar
dataset 175 10764 2692 14

5. RESULTS
Batch normalisation can be added to the model presented

in the preceding section. The use of batch normalisation is
projected to speed up training and give the model classification
accuracy that is comparable to or better in fewer training
epochs. According to reports, batch normalisation also offers a
moderate kind of regularization, which may potentially result
in a slight decrease in generalization error, as shown by a slight
improvement in accuracy in classifying the validation set.
Individual layers may be subject to batch normalisation, or all
of them may. The model may incorporate an additional batch
normalisation layer before the output layer and after the hidden
layer.

5.1 Training Speed Comparison
 The time required to reach convergence with the training

dataset is compared between the DNN models with and
without batch normalisation. The results show the reduction in
training time achieved by incorporating batch normalisation,
highlighting its ability to accelerate the training process.

The results in Table 2 display the convergence time with
and without batch normalisation after the activation function.

Table 2. Convergence time

Convergence time Training time (s) Epoch (No)
Without BN 15191.1 516
With BN 351.3 404

GUPTA, et al.: ACCELERATING DEEP NETWORK TRAINING FOR RADAR IDENTIFICATION USING BATCH NORMALIZATION

881

5.2 Convergence Analysis
For analysis of the DNN models’ convergence behavior, the

training and validation losses can be shown over iterations. It is
possible to demonstrate how batch normalisation enhances the
stability and consistency of the training process by comparing
the convergence curves, which results in convergence that is
both quicker and more dependable.

5.3 Performance Comparison
The accuracy of the performance measures is evaluated for

the DNN models trained with and without batch-normalisation.
The findings show that batch normalisation affects the
models’ overall ability to identify objects. By adding a batch
normalisation layer before and after the prior layer’s activation
function, the model’s accuracy is assessed.

The results in Table 3 display the classification accuracy
with & without BN after the activation function.

batch normalisation is applied to the network, as opposed to
when it is not, the classification accuracy increases by 13 %.

5.4 Effect of Batch Normalisation After and Before
the Activation Function
By using batch normalisation either before or after the

activation function of the preceding layers, the inputs to the
layers can be standardized. The properties of the dataset, the
model architecture, and the specific task at hand determine
whether to apply batch normalisation before or after the
activation function. By adding a batch normalisation layer
before and after the prior layer’s activation function, the
model’s accuracy is assessed in the present study. It shows that
it is best when applied after the activation function.

The model was modified so that batch normalisation is
applied before, rather than after, the hidden layer’s activation
function. The result of applying batch normalisation before the
activation function is shown in Table 4. The graph showing
the plots of classification accuracy and cross-entropy loss is
depicted in Fig. 4. It appears that BN is effective after the
rectified linear activation function, at least for this model setup
on this particular dataset when compared with results in Table
3, where BN is applied after the activation function.

The results in Table 4 display the classification accuracy
with BN before the activation function.

 Table 3. Classification accuracy

Classification accuracy Training (%) Test (%)
Without BN 77.5 75.7
With BN 90.8 89.2

Figure 3. (a) Cross-entropy loss & classification accuracy without
BN after activation function, and (b) Cross-entropy
loss & classification accuracy with BN after activation
function.

(b)

(a)

The results of the classification accuracy of the MLP
radar model without batch normalisation and with batch
normalisation after activation function are shown in Table 3
and the graph showing line plots of the classification accuracy
and cross-entropy loss on the train (dashed) and test (solid)
datasets is shown in Fig. 3. As per experimental results, when

Table 4. Classification accuracy with BN

Classification
Accuracy

With BN before the activation function
Training Test Time
85 % 83.1 % 546.95

Figure 4. Classification accuracy with BN before activation
function.

5.5 Effect of Batch Normalisation at the Input Layer
The results of implementing batch normalisation at the

input layer are depicted in Table 5, but the model’s performance
on the training dataset is worse, with an accuracy range of 71 %
to 75 %. It is not suitable for this problem.The graph showing
the plots of classification accuracy and cross-entropy loss is
depicted in Fig. 5.

The results in Table 5 display the classification accuracy
with BN at the input layer.

DEF. SCI. J., VOL. 74, NO. 6, NOVEMBER 2024

882

5.6 Generalisation Analysis
It is important to assess the generalization capability

of the DNN models. This is done by evaluating the model’s
performance on a separate validation set. The comparison
of the performance of the models with and without batch
normalisation on unseen data is done to determine whether
batch normalisation boosts the generalisation ability of the
models. Table 6 depicts the results of the experiment done
with batch normalisation on the training and validation data
set which shows improvement in the generalization error when
compared to the result without batch normalisation.

5.7 Hyper Parameter Sensitivity
The sensitivity of the DNN models to hyperparameter

choices is investigated. The study assesses the impact of
combining batch normalisation with different batch sizes,
momentum, beta, and gamma parameters.

5.8 Batch Size
The performance of the model is examined in an experiment

using various batch sizes to determine the most suitable choice
for this specific problem. All other hyperparameters are
left unchanged, except the batch size utilised for training is
modified. The batch sizes selected are 32,64,128,256.

The results in Table 6 display the classification accuracy
with BN at the input layer.

The results in Table 6 show the classification accuracy
and training time with different batch sizes.The graph showing
the plots of classification accuracy and cross-entropy loss for
different batch sizes is depicted in Fig. 6.

From the results, it can be demonstrated that for smaller
batches (32,64) the overall training time is longer due to the
increased number of iterations required to cover the entire
dataset. For larger batch sizes (128,256) the overall training
time is shorter since fewer iterations are needed to process the
entire dataset. Mini-batch statistics estimates are more accurate
when the batch sizes are larger, resulting in better normalisation.
This can contribute to improved accuracy, especially when the
dataset is large and diverse. However, using larger batch sizes
might also reduce the randomization effect and potentially lead
to overfitting, especially if the model is complex or the dataset is
relatively small. In the present study, the model’s performance
is good with batch size 128. The validation accuracy is 87.9 %
with a training time of 361.6 sec.

5.9 Momentum
The effect of using momentum is that it smoothens out

the estimates of mean and variance over time, making them
more stable and reliable. It improves the convergence speed
and improves the generalisation performance of the model.
Since the batch size determines the regularization strength of
BN, a small batch size could cause an under-fitting problem,
which would make the model less useful. The noise level in
the training process can be automatically controlled using
momentum parameters. As a result, the model performs better
with small batch sizes. Table 7 displays the effect of applying
the momentum in the batch normalisation layer while training
a small batch size of 16, the training time is reduced when
compared without momentum. The graph showing the plots of
classification accuracy and cross-entropy loss is depicted with
and without momentum with batch size 16 is shown in Fig. 7.

The results in Table 7 display the classification accuracy
using batch normalisation after activation without momentum
and with batch size 16.

Table 5. classification accuracy

Classification
accuracy

With BN at the input layer
Training Test Time
74.5 % 71.9 % 472.1

Figure 5. Classification accuracy with BN at the input layer.

Table 6. Classification accuracy with BN at input layer

Batch
size

Training
accuracy Test accuracy Training

time(s)
32 92.1 % 87.4 % 1009.5
64 90 % 87.3 % 486.9
128 91.8 % 87.9 % 361.6
256 85.6 82.2 107.8

Figure 6. Classification accuracy with different batch
sizes-32,64,128,256.

Table 7. Classification accuracy using batch normalisation

Classification accuracy
with batch Size =16

Trng
(%)

Test
(%)

Epoch
(No)

Trng
Time(s)

Without momentum 87.8 85.8 743 1376.2
With momentum 89 86.5 519 835.87

GUPTA, et al.: ACCELERATING DEEP NETWORK TRAINING FOR RADAR IDENTIFICATION USING BATCH NORMALIZATION

883

6. BETA AND GAMMA PARAMETERS
Beta and Gamma parameters aim to restore the

representation power of the networks. Since transforming input
data to a 0-mean unit-variance distribution on its own, may
affect what the layer represents, Table 8 shows that the beta and
gamma parameters which are learnable parameters in batch
normalisation provide the model with additional flexibility to
adjust the mean and variance of the output features. They allow
the model to learn biases and scaling factors that optimize the
normalisation process and improve the model’s performance.
They provide automatic scaling and shifting of the standardized
layer inputs.The graph showing the plots of classification
accuracy and cross-entropy loss is depicted in Figure 8.

The results in Table 8 displays the classification accuracy
using batch normalisation after activation with beta and gamma
parameters

6. CONCLUSION
 This research paper explored the use of batch normalisation

as a technique to quicken the training of deep neural networks
for radar emitter identification. The experimental results
demonstrated that batch normalisation significantly reduces
the training time while maintaining or even improving the
accuracy of radar emitter identification. The findings highlight
the benefits of batch normalisation for training efficiency,
convergence, and overall performance. The use of BN in radar
emitter identification tasks has practical implications for real-
world applications. The accelerated training process allows for
faster model development, enabling quicker response times
and improved system efficiency. The improved convergence
and stability of the models contribute to better overall
performance and robustness. There were some challenges
faced during the training process as the batch normalisation
process can be sensitive to the choice of learning rates. Using
too high or too low learning rates might affect the convergence
and stability of the training. However, some limitations with
batch normalisation are there as batch normalisation introduces
additional computations during both training and inference,
which can increase the overall computational cost. While batch
normalisation is generally beneficial, there are cases where it
might not lead to improvements depending on the architecture
and characteristics of the task or dataset.

REFERENCES
1. Bjorck, N.; Gomes, P.C.; Selman, B. & Weinberger, K.Q.

Understanding batch normalisation. Adv. Neural Inf.
Process. Syst., 2018, 31.

2. Ioffe, S. & Szegedy, S. Batch normalisation: Accelerating
deep network training by reducing internal covariate shift.
CoRR, 2015.

3. Shimodaira, H. Improving predictive inference under
covariate shift by weighting the log-likelihood function.
J. Stat. Planning and Inference, 2000, 90(2), 227 – 244.

 doi: 10.1016/S0378-3758(00)00115-4
4. Lange, S.; Helfrich, K. & Ye, Q. Batch normalisation

preconditioning for neural network training. J. Machine
Learn. Res., 2022, 23, 1-41

5. Luo, P.; Wang, X.; Shao, W. & Peng, Z. Towards

Figure 7. (a) Classification accuracy With BN after activation
function with batch size 16, and (b) Classification
accuracy with BN after activation function with batch
size 16 using momentum.

(a)

(b)

 Table 8. Classification accuracy using batch normalisation
after activation with beta and gamma parameters

Classification accuracy with beta and gamma parameters

Training accuracy (%) Test accuracy (%)

91.6 88.6

Figure 8. Cross-entropy & classification accuracy with BN
using beta and gamma parameters.

DEF. SCI. J., VOL. 74, NO. 6, NOVEMBER 2024

884

understanding regularisation in batch normalisation,
2018. (arXiv.org)

 doi: 10.48550/arXiv.1809.00846
6. Huang, L.; Yang, D.; Lang, B. & Deng, J. Decorrelated

batch normalisation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 791-800

 doi: 10.1109/CVPR.2018.00089
7. Liao, Z. & Carneiro, G. On the Importance of normalisation

layers in deep learning with piecewise linear activation
units. CoRR, 2015.

 doi: 10.1109/WACV.2016.7477624
8. Goodfellow; Bengio, Y. & Courville, A. Deep learning.

Book in preparation for MIT Press, 2016.
 doi: 10.1007/s10710-017-9314-z
9. Garbin, C.; Zhu, X. & Marques, O. Dropout vs. batch

normalisation: An empirical study of their impact on deep
learning. Multimedia Tools and Appl., 2020, 79, 12777-
12815.

 doi: 10.1007/s11042-019-08453-9
10. Laurent, C.; Pereyra, G.; Brakel, P.; Zhang, Y. & Bengio.

Y. Batch normalized recurrent neural networks. In IEEE
International Conference on Acoustics, 2016, pp. 2657-
2661.

 doi:10.1109/icassp.2016.7472159
11. Li, Y.; Wang, N.; Shi, J.; Hou, X. & Liu, J. Adaptive batch

normalisation for practical domain adaptation. Pattern
Recognition, 2018, 80, 109-117.

 doi:10.1016/j.patcog.2018.03.005
12. Yao, Z.; Cao, Y.; Zheng, S.; Huang, G. & Lin, S. Cross-

iteration batch normalisation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

 doi:10.1109/cvpr46437.2021.01215
13. Jung, W.; Jung, D.; Kim, B.; Lee, S.; Rhee, W. & Ahn,

J.H. Restructuring batch normalisation to accelerate CNN
training. In Proceedings of the 2ndSysML Conference,2019.

 doi:10.48550/arXiv.1807.01702
14. Ismail, A.; Ahmad, S.A.; Soh, A.C.; Hasan, K. &

Harith, H.H. Improving Convolutional Neural Network
(CNN) Architecture (miniVGGNet) with batch
normalisation and learning rate decay factor for image

classification. Int. J. Integrated Engin., 2019, 11,51-59.
doi:10.30880/ijie.2019.11.04.006

15. Wu, S.; Li, G.; Deng, L.; Liu, L.; Wu, D; Xie, Y. & Shi,
L. L1-Norm batch normalisation for efficient training of
deep neural networks. IEEE Transact. Neural Networks
and Learn. Syst., 2018, 30, 2043-2051.

 doi: 10.1109/tnnls.2018.2876179
16. Gao, S.; Han, Q.; Li, D.; Cheng, M. & Peng, P.

Representative batch normalisation with feature
calibration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp.
8669-8679.

 doi:10.1109/cvpr46437.2021.00856
17. Yong, H.; Huang, J.; Meng, D.; Hua, X. & Zhang, L.

Momentum batch normalisation for deep learning with
small batch size. Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XII, pp. 224–240.

 doi:10.1007/978-3-030-58610-2_14

CONTRIBUTORS

Ms Preeti Gupta obtained her M.E. (Digital Systems) from
NIT, Allahabad. She is working as a Scientist at DRDO-
DLRL, Hyderabad. Her areas of research include: Design and
development of an electronic warfare operational support system.
Her contribution in the current study: She undertook a retrospective
qualitative study to accelerate deep learning techniques for
radar emitter identification.

Dr Pooja Jain obtained her PhD from JUIT, Solan. She is
presently employed by the Department of Computer Science
and Engineering at IIIT, Nagpur. Her area of interest include:
Machine learning algorithms.

Dr O.G. Kakde obtained his PhD from Visvesvaraya National
Institute of Technology (VNIT), Nagpur. He is currently working
as a Director at IIIT, Nagpur. His area of interest include:
Machine learning algorithms.
His contribution in the current study: He has given insightful
suggestions and provided guidance and support as part of his
contribution to the current study.

