Perturbation of Initial Stability of an FSAPDS Projectile

R.S. Acharya ${ }^{1}$ and S.D. Naik ${ }^{2}$
${ }^{1}$ Modern College of Engineering, Pune-411 005
${ }^{2}$ Institute of Armament Technology, Pune-411 025

Abstract

For a spinning projectile, the initial stability condition is $\sigma^{2}=1+\left(4 \mathrm{~K}_{3} / \mathrm{K}_{2}{ }^{2}\right)>0$. In the present study, this condition has been modified for the malalignments arising due to pressure gradient and damping moment for an FSAPDS projectile. The equations of motion are established for the first phase of motion. A mathematical model for the first phase of motion has been developed. The effect of perturbation on the trajectory and stability of motion are discussed. It is proved that if $K_{3}^{\prime \prime}$ (a parameter appearing due to perturbation) $\leq\left(-\mathrm{K}_{2}{ }^{2} \sigma^{2} / 4\right)$, the initial stability of motion will breakdown.

Keywords: FSAPDS projectile, spinning projectile, equation of motion, mathematical model, projectile trajectory simulation

NOMENCLATURE	$\left(C_{M q t}+C_{M q \alpha}\right)$	Pitch damping moment coefficient	
O-XYZ	Inertial coordinate system	$\left(C_{N q}+C_{N \alpha}\right)$	Pitch damping force coefficient.
$I_{x x}$	Moment of inertia about the X-axis	u, v, w	Velocity components in projectile frame
$I_{y y}$	Moment of inertia about the Y-axis	$\omega_{1}, \omega_{2}, \omega_{3}$	Angular velocity components of projectile
m	Mass of the overall projectile	r_{p}	Position vector of the effective pressure point and centre of mass of the projectile
C	Mass centre of projectile	Ω^{2}	Angular velocity wrt inertial frame
x, y, z	Range, altitude, and drift, respectively	δ_{1}, δ_{2}	Angles made by projectile axis in velocity frame
F_{1} / M_{1}	Propellant gas force/Moment	η_{1}, η_{2}	Angles made by the propellant gas direction in projectile frame
F_{2} / M_{2}	Aerodynamic force/Moment	$\varepsilon_{1}, \varepsilon_{2}$	Angles made by propellant gas direction in inertial frame
F_{3} / M_{3}	Gravity force/Moment		

Revised 01 March 2005

P	Pressure in gas flow
ρ	Air density
l	Projectile characteristics length
p	Axial spin
S	Projectile reference area
V	Velocity of projectile
$C_{L \alpha} / C_{N \alpha}$	Lift /Normal coefficient
C_{D} / C_{X}	Drag /Axial coefficient
$C_{N p \alpha}$	Magnus force coefficient
$C_{t p}$	Spin damping moment
$C_{M} \alpha$	Overturning moment coefficient
θ	Angle of attack
Φ	Angle of side slip

Convention

$X \quad$ Vector cross product

Suffix

1

2
Denotes the projectile coordinate systems

Denotes the velocity coordinate systems

1. INTRODUCTION

Dynamical study of a fin-stabilised armour piercing discarding sabot (FSAPDS) round is very important till the sabots are separated and the thin penetrator moves ahead. The sabots are separated from the projectile under the action of aerodynamic forces.Yang ${ }^{1}$ has discussed the complete dynamic modelling of a sabot discard process of an FSAPDS round. With three turning points, he has divided the sabot discard process in four phases and two transition periods (Fig. 1). The motions points are defined as

0 At the muzzle end.
1 The first turning point is at the instant when the fixed circle of sabots reaches the limit stress state and its groove teeth break due to the aerodynamic force.
2 The second turning point is at the instant when circle groove teeth of a sabot component separate from those of projectile body and their mechanical interaction vanishes.

3 The third turning point is at the instant when the intersect point between the projectile and the shock wave at the head of a sabot moves to the projectile base and the projectile gets free from the influence of sabot.

The turning points are defined for each sabot, separately. The first turning point for the three

Figure 1. Turning points, four phases and transition periods of sabot discarding process.
sabots is at the same time and the same position relative to the projectile body. The second turning point is at the same position relative to the projectile body but is at different time, whereas the third turning point is at different time and different relative positions, which can be studied with the help of transition periods separately. The different phases of the motion are given below:

Phase I : Motion between points of 0 to 1
Phase II : Motion between points of 1 to 2
Phase III : Motion between points of 2 to 3
Phase IV : Motion after point 3 onwards.
First transition period is motion during the second turning point of the first sabot component to second turning point of the third sabot component. Second transition period is motion during the third turning point of the first sabot component to third turning point of the third sabot component motion condition at the end of the previous phase is the initial condition for the next phase, but the initial conditions for different sabots are distinct.

In this paper, the trajectory and stability of motion during phase I of the motion has been discussed. Propellant gases released from the muzzleend develop a flow field around the projectile. At the muzzle, it commences with the formation of a strong blast and a jet which continues till the gun tube becomes empty. The flow field around the projectile continues till ambient conditions are reached. The projectile moves forward in this flow field. The propellant gases expand supersonically, due to which the pressure drops rapidly. Due to asymmetric flow of gases, the pressure is misaligned. The pressure acts at a point on the projectile having position vector $\left(\bar{r}_{p}\right)$, from the centre of gravity of the body. Though damping force is small and can be ignored, damping moment may affect the stability of the projectile. These two aspects of the FSAPDS projectile have been considered. In the first part, the trajectory of the projectile is modelled and simulated. In the second part, the stability criterion of motion has been discussed.

2. COORDINATE SYSTEMS

Figure 2. Coordinate system.
The motion has been studied with the help of three coordinate systems defined in Fig. 2.
(a) Inertial Coordinate System (O-XYZ)

O Origin at the muzzle-end along the barrel axis

OX Along the barrel direction
OY Vertical axis normal to the OX
OZ Completes the right-handed system.
(b) Projectile Coordinate System $\left(\mathrm{C}-\mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Z}_{1}\right)$

C Origin at the centre of mass of the projectile
CX ${ }_{1}$ Along the axis of rotation of the projectile
CY_{1} Normal to the CX_{1} in the plane of reflection symmetry of the projectile
CZ_{1} Completes the right-handed system.
(c) Velocity Coordinate System $\left(\mathrm{C}-\mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}\right)$

C Origin at the centre of mass of the projectile
CX_{2} Along the instantaneous velocity direction
CY_{2} Normal to the CX_{2} in the plane of motion
CZ_{2} Completes the right-handed system.

2.1 Transformation Matrices

- Transformation from the Inertial Coordinate System to Velocity System

$$
\begin{aligned}
& \left(\hat{i}_{2}, \hat{j}_{2}, \hat{k}_{2}\right)=A^{X}(\pi / 2) A^{Z}\left(\theta_{2}\right) A^{Y}\left(\phi_{2}\right)(\hat{i}, \hat{j}, \hat{k}) \\
& \therefore\left[\begin{array}{l}
\hat{\dot{i}} \\
\hat{\dot{h}} \\
\hat{k}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta_{2} \cos \phi_{2} & \sin \theta_{2} & -\cos \theta_{2} \sin \phi_{2} \\
\sin \phi_{2} & 0 & \cos \phi_{2} \\
\sin \theta_{2} \cos \phi_{2} & -\cos \theta_{2} & -\sin \theta_{2} \sin \phi_{2}
\end{array}\right]\left[\begin{array}{l}
\hat{i} \\
\hat{j} \\
\hat{k}
\end{array}\right]
\end{aligned}
$$

- Transformation from the Projectile Coordinate System to Velocity System

$$
\left(\hat{i}_{2}, \hat{j}_{2}, \hat{k}_{2}\right)=A^{Z}\left(\delta_{1}\right) A^{Y}\left(\delta_{2}\right)\left(\hat{i}_{1}, \hat{j}_{1}, \hat{k}_{1}\right)
$$

$$
=\left[\begin{array}{ccc}
\cos \delta_{1} \cos \delta_{2} & \sin \delta_{1} & -\cos \delta_{1} \sin \delta_{2} \\
-\sin \delta_{1} \cos \delta_{2} & \cos \delta_{1} & \sin \delta_{1} \sin \delta_{2} \\
\sin \delta_{2} & 0 & \cos \delta_{2}
\end{array}\right]\left[\begin{array}{l}
\hat{i}_{1} \\
\hat{j}_{1} \\
\hat{k}_{1}
\end{array}\right]
$$

- Transformation from the Inertial Coordinate System to Projectile System

$$
\left[\begin{array}{l}
\hat{i}_{1} \\
\hat{j}_{1} \\
\hat{k}_{1}
\end{array}\right]=A^{X}\left(\gamma_{1}\right) A^{Z}\left(\theta_{1}\right) A^{Y}\left(\phi_{1}\right)\left[\begin{array}{l}
\hat{i} \\
\hat{j} \\
\hat{k}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\cos \phi_{1} \cos \theta_{1} & \sin \theta_{1} & -\sin \phi_{1} \cos \theta_{1} \\
-\cos \gamma_{1} \cos \phi_{1} \sin \theta_{1}+\sin \gamma_{1} \sin \phi_{1} & \cos \gamma_{1} \cos \theta_{1} & \cos \gamma_{1} \sin \phi_{1} \sin \theta_{1}+\sin \gamma_{1} \cos \phi_{1} \\
\sin \gamma_{1} \cos \phi_{1} \sin \theta_{1}+\cos \gamma_{1} \sin \phi_{1} & -\sin \gamma_{1} \cos \theta_{1} & -\sin \gamma_{1} \sin \phi_{1} \sin \theta_{1}+\cos \gamma_{1} \cos \phi_{1}
\end{array}\right]\left[\begin{array}{l}
\hat{i} \\
\hat{j} \\
\hat{k}
\end{array}\right]
$$

2.2 Angular Velocity

- Angular Velocity of the Projectile $\left(\bar{\Omega}_{1}\right)$

$$
\bar{\Omega}_{1}=\dot{\phi}_{1} \hat{j}+\dot{\theta}_{1} \hat{k}+\dot{\gamma}_{1} \hat{i}
$$

which can be obtained from

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\cos \phi_{1} & 0 & -\sin \phi_{1} \\
0 & 1 & 0 \\
\sin \phi_{1} & 0 & \cos \phi_{1}
\end{array}\right]\left[\begin{array}{c}
0 \\
\dot{\phi}_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\dot{\phi}_{1} \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
\cos \theta_{1} & \sin \theta_{1} & 0 \\
-\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
\dot{\phi}_{1} \\
\dot{\theta}_{1}
\end{array}\right]=\left[\begin{array}{c}
\dot{\phi}_{1} \sin \theta_{1} \\
\dot{\phi}_{1} \cos \theta_{1} \\
\dot{\theta}_{1}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma_{1} & \sin \gamma_{1} \\
0 & -\sin \gamma_{1} & \cos \gamma_{1}
\end{array}\right]\left[\begin{array}{c}
\dot{\phi}_{1} \sin \theta_{1}+\dot{\gamma}_{1} \\
\dot{\phi}_{1} \cos \theta_{1} \\
\dot{\theta}_{1}
\end{array}\right]} \\
& =\left[\begin{array}{c}
\dot{\phi}_{1} \sin \theta_{1}+\dot{\gamma}_{1} \\
\dot{\phi}_{1} \cos \theta_{1} \cos \gamma_{1}+\dot{\theta} \sin \gamma_{1} \\
-\dot{\phi}_{1} \cos \theta_{1} \sin \gamma_{1}+\dot{\theta}_{1} \cos \gamma_{1}
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
\therefore \bar{\Omega}_{1}= & \left(\dot{\phi}_{1} \sin \theta_{1}+\dot{\gamma}_{1}\right) \hat{i}_{1}+\left(\dot{\phi}_{1} \cos \theta_{1} \cos \gamma_{1}\right. \\
& \left.+\dot{\theta} \sin \gamma_{1}\right) \hat{j}_{1}+\left(-\dot{\phi}_{1} \cos \theta_{1} \sin \gamma_{1}+\dot{\theta}_{1} \cos \gamma_{1}\right) \hat{k}_{1} \tag{1}\\
& =\omega_{1} \hat{i}_{1}+\omega_{2} \dot{j}_{1}+\omega_{3} \hat{k}_{1}
\end{align*}
$$

- Angular Velocity of the Velocity Coordinate System $\left(\bar{\Omega}_{2}\right)$

$$
\bar{\Omega}_{2}=\dot{\theta}_{2} \hat{k}+\dot{\phi}_{2} \hat{j}
$$

$$
\begin{align*}
& {\left[\begin{array}{ccc}
\cos \phi_{2} & 0 & -\sin \phi_{2} \\
0 & 1 & 0 \\
\sin \phi_{2} & 0 & \cos \phi_{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
\dot{\phi}_{2} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\dot{\phi}_{2} \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
\cos \theta_{2} & \sin \theta_{2} & 0 \\
-\sin \theta_{2} & \cos \theta_{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
\dot{\phi}_{2} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{c}
\dot{\phi}_{2} \sin \theta_{2} \\
\dot{\phi}_{2} \cos \theta_{2} \\
\dot{\theta}_{2}
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\phi}_{2} \sin \theta_{2} \\
\dot{\phi}_{2} \cos \theta_{2} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{c}
\dot{\phi}_{2} \sin \theta_{2} \\
\dot{\theta}_{2} \\
-\dot{\phi}_{2} \cos \theta_{2}
\end{array}\right] } \\
& \therefore \bar{\Omega}_{2}=\dot{\phi}_{2} \sin \theta_{2} \hat{i}_{2}+\dot{\theta}_{2} \hat{j}_{2}-\dot{\phi}_{2} \cos \theta_{2} \hat{k}_{2} \tag{2}
\end{align*}
$$

3. FORCES AND MOMENTS FOR THE MOTION

3.1 Forces

Propellant Gas Force: The forces developed by the propellant gases will be acting on the projectile for some time till the effective force becomes zero. This force acts along the gas flow direction which may be different from the barrel direction as well as from the projectile direction.

$$
\begin{equation*}
\bar{F}_{1}=P A \hat{i}_{g} \tag{3}
\end{equation*}
$$

where \hat{i}_{g} is a unit vector along the gas direction.

3.1.1 Modelling of Pressure

The pressure affecting the projectile motion varies continuously. The pressure at the muzzleend is muzzle pressure, which further decreases as the projectile moves in the propellant gas flow field till it reduces to atmospheric pressure. Generally, the pressure reduces to atmospheric pressure at a distance of $10-15$ calibers.

It is assumed that the decrease in the pressure is continuous and linear. The pressure at any point at a distance X away from the muzzle is given by
$P=P_{0}(1-X / 1)$, where P_{0} is the muzzle pressure.

Figure 3. Trajectory of FSAPDS projectile in the first phase.
This change in the pressure P is calculated and plotted in Fig. 3.

- Aerodynamic Force

Here the aerodynamic forces due to drag, lift, magnus and pitch damping forces are considered and are given below ${ }^{2}$:

$$
\begin{aligned}
\bar{F}_{2} & =\bar{F}_{D}+\bar{F}_{L}+\bar{F}_{M}+\bar{F}_{P} \\
\bar{F}_{D} & =-(1 / 2) \rho S V^{2} C_{D} \hat{i}_{2} \quad(\text { Drag force }) \\
\bar{F}_{L} & \left.=(1 / 2) \rho S C_{L \alpha}\left[\begin{array}{l}
\bar{V} X \\
\left(\hat{i}_{1}\right.
\end{array} \quad \bar{V}\right)\right] \\
& \left.=(1 / 2) \rho S C_{L \alpha} V^{2}\left[\begin{array}{lll}
\hat{i}_{2} & X & \left(\hat{i}_{1}\right.
\end{array} X \bar{V}\right)\right]
\end{aligned}
$$

(Lift force)

$$
\bar{F}_{M}=(1 / 2) \rho S V^{2}(p l / V) C_{N_{p \alpha}}\left(\hat{i}_{2} X \quad \hat{i}_{1}\right)
$$

(Magnus force)

$$
\bar{F}_{P}=(1 / 2) \rho S V l\left(C_{N_{q}}+C_{N \alpha}\right)\left(d \hat{i_{1}} / d t\right)
$$

(Pitch damping force)

By the transformation

$$
C_{D}=C_{X} \cos \delta_{1} \cos \delta_{2}+C_{N} \sin \delta_{1}
$$

and

$$
C_{L \alpha}=-C_{X} s \sin \delta_{1} \cos \delta_{2}+C_{N} \cos \delta_{1}
$$

The magnus force coefficient $C_{N p \alpha}$ is usually a small negative quantity. It always acts in a direction perpendicular to the plane of yaw. Pitch damping force acts in the plane of transverse angular velocity,
which is not necessarily the same as the yaw plane. The pitch damping force contains two parts, first part proportional to transverse angular velocity (pitching velocity) and the second part proportional to the rate of change of total angle of attack.

$$
\begin{align*}
\overline{F_{2}}= & (1 / 2) \rho S V^{2}\left\{-C_{D} \hat{i}_{2}+C_{L \alpha}\left[\bar{i}_{2} X\left(\hat{i}_{1} X \hat{i}_{2}\right)\right]\right. \\
& +(p l / V) C_{N_{p \alpha}}\left(\hat{i}_{2} X \hat{i}_{1}\right) \\
& \left.+(l / V)\left(C_{N_{q}}+C_{N \alpha}\right)\left(d \hat{i}_{1} / d t\right)\right\} \tag{8}
\end{align*}
$$

- Gravity Force

$$
\begin{equation*}
\bar{F}_{3}=-m g \hat{j} \tag{9}
\end{equation*}
$$

In the separation process, the mechanical force and shock wave force also act on the sabots. These forces are present in $2^{\text {nd }}$ and $3^{\text {rd }}$ phases. Hence in the first phase of motion, these forces and moments are ignored.

3.2 Moments

- Propellant Gas Moment

Due to malalignment, the pressure is acting at a point on the projectile having position vector $\left(\bar{r}_{p}\right)$ from the centre of gravity of the body. This pressure force generates a moment.

$$
\begin{equation*}
\bar{M}_{1}=\bar{r}_{p} x \bar{F}_{1}, \quad \bar{r}_{p}=r_{p} \hat{i}_{p} \tag{10}
\end{equation*}
$$

where $\left[\begin{array}{l}\hat{i}_{p} \\ \hat{j}_{P} \\ \hat{k}_{P}\end{array}\right]=A^{Z}\left(\eta_{1}\right) A^{Y}\left(\eta_{2}\right)\left[\begin{array}{l}\hat{i}_{1} \\ \hat{j}_{1} \\ \hat{k}_{1}\end{array}\right]$ and

$$
\hat{i}_{p}=\cos \eta_{1} \cos \eta_{2} \hat{i}_{1}-\sin \eta_{1} \cos \eta_{2} \hat{j}_{1}+\sin \eta_{2} \hat{k}_{1}
$$

Due to the above aerodynamic forces, the corrosponding moments ${ }^{2}$ are:

- Aerodynamic Moment

(a) Spin damping moment

$$
=(1 / 2) \rho S u^{2} l C_{t_{p}}(p l / u) \bar{i}_{1}
$$

(b) Overturning moment
$=(1 / 2) \rho S u^{2} l C_{M_{\alpha}}\left(\bar{i}_{2} X \bar{i}_{1}\right)$
(c) Magnus moment

$$
=(1 / 2) \rho S u^{2} l C_{M p \alpha}(p l / u)\left[\left(\bar{i}_{1} X\left(\bar{i}_{2} X \bar{i}_{1}\right)\right]\right.
$$

(d) Pitch damping moment
$=(1 / 2) \rho S u l^{2} C_{M q t}\left(\bar{i}_{1} X d \bar{i}_{1} / d t\right)$

- Malalinment (Off Set) Gravity Moment
\bar{r}_{g} is the position vector of off set from the centre of gravity of the body.

$$
\begin{equation*}
\bar{M}_{3}=\bar{r}_{g} X \bar{F}_{3} . \tag{12}
\end{equation*}
$$

In this phase of motion, \bar{r}_{g} is along the axis of the body, hence $\bar{M}_{3}=0$.

4. EQUATIONS OF MOTION

The equations of motion by Newton's second law, because of moving frame, are given as

$$
\begin{align*}
m \frac{d \bar{V}}{d t} & =m \frac{\partial \bar{V}}{\partial t}+\bar{\Omega} \times \bar{V}=\sum \bar{F}_{i} \\
\frac{d \bar{H}}{d t} & =\frac{\partial \bar{H}}{\partial t} \quad+\bar{\Omega} \times \bar{H}=\sum \bar{M}_{i} \tag{13}
\end{align*}
$$

5. TRAJECTORY SIMULATION

In the first phase of motion, the trajectory of the projectile as a whole body can be obtained by resolving the equation in velocity coordinate system. The pressure applies force on the base of the projectile which affects its trajectory. The moment equations are resolved in projectile coordinate system. The scalar equations are:

$$
\begin{align*}
\dot{V}= & (P A / m)\left(\cos \varepsilon_{1} \cos \varepsilon_{2} \cos \theta_{2} \cos \phi_{2}-\sin \varepsilon_{1} \cos \varepsilon_{2} \sin \theta_{2}-\sin \varepsilon_{2} \cos \theta_{2} \sin \phi_{2}\right) \\
& +(1 / 2 m) \mathrm{p} S V^{2}\left[-C_{D}+(l / V)\left(C_{N q}+C_{N \alpha}\right)\left[\sin \delta_{1}\left(-\dot{\phi}_{1} \sin \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \cos \gamma_{1}\right)\right.\right. \\
& \left.+\cos \delta_{1} \sin \delta_{2}\left(\dot{\phi}_{1} \cos \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \sin \gamma_{1}\right)\right]-g \sin \theta_{2} \tag{14}\\
\dot{\phi}_{2}= & \left\{P A\left(\cos \varepsilon_{1} \cos \varepsilon_{2} \sin \phi_{2}+\sin \varepsilon_{2} \cos \phi_{2}\right)+(1 / 2) \rho S V^{2}\left[-C_{L \alpha} \sin \delta_{1} \cos \delta_{2}\right.\right. \\
& -(p l / V) C_{N p \alpha} \sin \delta_{2}+(l / V)\left(C_{N q}+C_{N \alpha}\right)\left[\cos \delta_{1}\left(-\dot{\phi}_{1} \sin \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \cos \gamma_{1}\right)\right. \\
& \left.\left.-\sin \delta_{1} \sin \delta_{2}\left(\dot{\phi}_{1} \cos \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \sin \gamma_{1}\right)\right]\right\} /\left[-m V \cos \theta_{2}\right] \tag{15}\\
\dot{\theta}_{2}= & P A\left(\cos \varepsilon_{\mathrm{f}} \cos \varepsilon_{2} \sin \theta_{2} \cos \phi_{2}+\sin \varepsilon_{1} \cos \varepsilon_{2} \cos \theta_{2}-\sin \varepsilon_{2} \sin \theta_{2} \sin \phi_{2}\right)
\end{align*}
$$

$$
\begin{align*}
& +(1 / 2) p S V^{2}\left[C_{L \alpha} \sin \delta_{2}-(p l / V) C_{N p \alpha} \sin \delta_{1} \cos \delta_{2}\right. \\
& \left.\left.-(l / V)\left(C_{N q}+C_{N \alpha}\right) \cos \delta_{2}\left(\dot{\phi}_{1} \cos \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \sin \gamma_{1}\right)\right]+m g \cos \theta_{2}\right\} /[-m V] \tag{16}
\end{align*}
$$

The velocity in inertial frame is:

$$
\begin{align*}
& \dot{x}=V \cos \theta_{2} \cos \phi_{2} \tag{17}\\
& \dot{y}=V \sin \theta_{2} \cos \phi_{2} \tag{18}\\
& \dot{z}=-V \sin \phi_{2} \tag{19}
\end{align*}
$$

Moment equations are:

$$
\begin{align*}
& I_{Y Y}(\partial / \partial t)\left(\dot{\phi}_{1} \cos \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \sin \gamma_{1}\right) \\
& \left.=\left(I_{Y Y}-I_{x x}\right)\left(\dot{\phi}_{1} \sin \theta_{1}+\dot{\gamma}_{1}\right)\left(-\dot{\phi}_{1} \sin \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \cos \gamma_{1}\right)\right] \\
& \quad+r_{p} P A\left(\operatorname{sim} \eta_{1} \cos \xi \cos \varepsilon_{2}-\cos \eta^{\left.\cos \eta_{2} \sin \varepsilon_{2}\right)+(1 / 2) \rho S V^{2} l\left[-C_{M a} \cos \delta_{1} \sin \delta_{2}\right.}\right. \\
& \left.\quad+C_{M o p}(p l / V) \sin \delta+(l / V)\left(C_{M q t}+C_{M q i}\right)\left(\dot{\phi}_{1} \cos \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \sin \gamma_{1}\right)\right] \tag{20}\\
& {\left[I_{Y Y}(\partial / \partial t)\left(-\dot{\phi}_{1} \sin \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \cos \gamma_{1}\right)\right.} \\
& = \\
& \left.\quad\left(I_{x x}-I_{Y Y}\right)\left(\dot{\phi}_{1} \sin \theta_{1}+\dot{\gamma}_{1}\right)\left(\dot{\phi}_{1} \cos \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \sin \gamma_{1}\right)\right] \\
& \quad+r_{p} P A\left(-\cos \eta_{1} \cos \eta_{2} \sin \varepsilon_{1} \cos \varepsilon_{2}+\sin \eta_{1} \cos \eta_{2} \cos \varepsilon_{1} \cos \varepsilon_{2}\right) \\
& \quad+(1 / 2) p \operatorname{SV} V^{2} l\left[-C_{M \alpha} \sin \delta_{1}+C_{M \alpha p}(p l / V) \cos \delta_{1} \sin \delta_{2}\right. \tag{21}\\
& \left.\quad+(l / V)\left(C_{M q t}+C_{M q i}\right)\left(-\dot{\phi}_{1} \sin \gamma_{1} \cos \theta_{1}+\dot{\theta}_{1} \cos \gamma_{1}\right)\right]
\end{align*}
$$

5.1 Simulation Results

Equations (14) - (21) give the mathematical model for trajectory of the projectile in phase I. The trajectory for phase I over the time period 0.00 s to 0.001 s has been simulated for the following data with fixed step size, $h=0.0001$.

5.1.1 Data

$$
\begin{array}{crrr}
P=405 \mathrm{MPa} & I x x=4.000 \mathrm{~kg} / \mathrm{m}^{3} & \rho=1.225 \mathrm{~kg} / \mathrm{m}^{3} & I y y=560 \mathrm{~kg} / \mathrm{m}^{3} \\
1=0.486 \mathrm{~m} & m=6.400 \mathrm{~kg} & \mathrm{p}=145 \mathrm{rpm} & C_{x}=1.250 \\
C_{N}=7.020 & C_{N p \alpha}=0 & C_{N q \alpha}=0 & C_{t p}=0 \\
\left(C_{M q t}+C_{M q \alpha}\right)=-570.600 & C_{N q}=0 & V=1450 \mathrm{~m} / \mathrm{s} & C_{M \alpha}=2.500 \\
\delta_{1}=\Phi_{1}=1.500^{\circ} & \delta_{2}=\theta_{1}-\theta_{2} & \theta_{1}=1.500^{\circ} & \\
\eta_{1}=\eta_{2}=\varepsilon_{1}=\varepsilon_{2}=\gamma_{1}=0 & x=y=z=0 & &
\end{array}
$$

5.1.2 Results

In this short interval of time, it is observed that

- The projectile travels a distance of 1.4489 m
- Velocity decreases approx. by $2.1 \mathrm{~m} / \mathrm{s}$
- Pressure reduces from 405 Mpa to 46.112 Mpa (Fig. 4).
- The altitude remains the same
- The projectile drifts slightly towards left (3.1 cm) (Fig. 5)
- Angle of attack, θ_{2} decreases but θ_{1} remains constant
- Angles of side slip, Φ_{1} and Φ_{2} remain constant

Figure 4. Pressure against distance.

Figure 5. Range X against drift \mathbf{Z}.

- The trajectory remains unchanged due to the pressure
- The drift slightly decreases due to damping moment but range is unaltered
- There is no change in θ_{1}, Φ_{1} and Φ_{2} due to pressure and damping moment but θ_{2} cntinuously decreases due to damping moment (Fig. 6).

6. STABILITY OF MOTION

The FSAPDS projectile is generally stabilised
by spin in the first phase, as fins are not active. The stability can be discussed with the six DOF equations expressed in the projectile frame. The design of the projectile is stable. In the first phase, the pressure gradient and its malalignment may disturb the stability of the projectile. The modified stability criterion due to perturbations caused by pressure gradient and damping moment has been analysed.

The vector equations in projectile frame with these perturbations are:

ACHARYA \& NAIK: PERTURBATION OF INITIAL STABILITY OF AN FSAPDS PROJECTILE

Figure 6. Angle of attack θ_{2} against time.

$$
\begin{align*}
& m\left(\partial \mathrm{u} / \partial t+\omega_{2} w-\omega_{3} v\right) \hat{\mathrm{i}}_{1}+m\left(\partial v / \partial t+\omega_{3} u-\omega_{1} w\right) \hat{\mathrm{j}}_{1}+m\left(\partial w / \partial t+\omega_{1} v-\omega_{3} u\right) \hat{k}_{1} \\
&=\left\{P A\left(\cos \varepsilon_{1} \cos \varepsilon_{2}\right)-(1 / 2) \rho S u^{2} C_{D}-m g \sin \theta_{1}\right\} \hat{i}_{1}+\left\{-P A \sin \varepsilon_{1} \cos \varepsilon_{2}\right. \\
&\left.\left.+(1 / 2) \rho S u^{2}\left[-C_{L \alpha}(v / u)+(p l / u) C_{M_{p a}}(w / u)+1\left(\omega_{3} / u\right) C_{N_{q}}+C_{N a}\right)\right]-\mathrm{mg} \cos \theta_{1}\right\} \hat{j}_{1} \\
&+\left\{P A \sin \varepsilon_{2}-(1 / 2) \rho S u^{2}\left[-C_{L \alpha}(w / u)+(\mathrm{pl} / \mathrm{u}) C_{M_{p a}}(v / u)+1\left(\omega_{2} / u\right)\left(C_{N_{q}}+C_{N a}\right)\right]\right\} \hat{k}_{1} \tag{22}\\
& I_{x x} \frac{d \omega_{1}}{d t} \hat{i}_{1}+\left[I_{y y} \frac{d \omega_{2}}{d t}+\omega_{3} I_{x x} \omega_{1}-\omega_{1} I_{y y} \omega_{3}\right] \hat{j}_{1}+\left[I_{y y} \frac{d \omega_{3}}{d t}+\omega_{1} I_{y y} \omega_{2}-\omega_{2} I_{x x} \omega_{1}\right] \hat{k}_{1} \\
&= {\left[r_{p} P A\left(-\sin \eta_{1} \cos \eta_{2} \sin \varepsilon_{2}+\sin \eta_{2} \sin \varepsilon_{1} \cos \varepsilon_{2}\right)+(1 / 2) \rho S u^{2} C_{l_{p}}(p l / u)\right] \hat{i}_{1} } \\
&+\left\{p P A\left(\cos \eta_{p} \cos \eta_{2} \sin \varepsilon_{2}-\sin \eta_{2} \sin \varepsilon_{1} \cos \varepsilon_{2}\right)+(1 / 2) \rho S u^{2}\left[C_{M_{\alpha}}(w / u)\right.\right. \\
&\left.\left.+(p l / u) C_{M_{p a}}(v / u)+C_{M_{q t}} 1\left(\omega_{2} / \mathrm{u}\right)\right]\right\} \hat{j}_{l}+\left\{r _ { p } P A \left(-\cos \eta_{1} \cos \eta_{2} \sin \varepsilon_{1} \cos \varepsilon_{2}\right.\right. \\
&\left.\left.+\sin \eta_{1} \sin \eta_{2} \cos \varepsilon_{1} \cos \varepsilon_{2}\right)+\left[-C_{M_{a}}(v / u)+(p l / u) C_{M_{p a}}(w / u)+C_{M_{q t}} 1\left(\omega_{3} / \mathrm{u}\right)\right]\right\} \hat{k}_{1}
\end{align*}
$$

7. NONDIMENSIONALISATION

The motion can be studied in the cross plane of the body ${ }^{3}$ for its stability. Let the nondimensional velocities in complex form can be defined as

$$
\xi=\frac{v+i w}{u} \text { and } \eta=\left(\frac{\omega_{2}+i \omega_{3}}{u}\right) l
$$

where

$$
\begin{aligned}
& B^{\prime}=I_{x x} / I_{y y} ; \varepsilon=(1 / 2 m) S l \rho ; K_{t}^{2}=I_{y y} / m l^{2} \\
& \sigma^{2}=1+\left(4 K_{3} / K_{2}^{2}\right) \quad[\text { Cranz stability parameter }]
\end{aligned}
$$

The aerodynamic forces $\bar{F}\left(F_{x}, F_{y}, F_{z}\right)$ and moments $\bar{G}\left(G_{x}, G_{y}, G_{z}\right)$ in body frame can now be expressed in the complex plane as

$$
\bar{F}=F_{y}+i F_{Z} \quad \bar{G}=G_{y}+i G_{Z}
$$

Changing the independent variable from time to nondimensional axial distance, one has:

$$
\bar{x}=x / l, \quad \frac{d}{d t}=\frac{u}{l} \frac{d}{d \bar{x}}
$$

and ignoring the term $\left(w \omega_{2}-v \omega_{1}\right)$ [as it is very small compared to $\left.\dot{u}\right]$ the equations in the complex plane reduce to

$$
\begin{align*}
& \xi^{\prime}+\left[\left(g_{x} l / u^{2}\right)+\left(F_{x}^{*} l / u^{2} m\right)+i \overline{a_{1}}\right] \xi-\dot{\eta}=\left(g_{y} l / u^{2}\right)+\left(F l / u^{2} m\right) \tag{24}\\
& \eta^{\prime}+\left[\left(g_{x} l / u^{2}\right)+\left(F_{x}^{s} l / u^{2} m\right)-i\left(B^{\prime} \zeta-\overline{\omega_{1}}\right)\right] \eta=\left(G l^{2}\right) /\left(u^{2} I_{y y}\right) \tag{25}
\end{align*}
$$

where

$$
\bar{\omega}_{1}=\omega_{1} l / u \text { and }{ }^{\prime} \text { denotes differentiation wrt } \overline{\mathrm{x}} .
$$

From the above equations of ballistic equation, a second-order differential equation in ξ can be derived by eliminating η to study the motion in the cross plane. The equation is of the form

$$
\begin{equation*}
\xi^{\prime \prime}+\left(-K_{1} I+i K_{2} J\right) \xi^{\prime}+\left(K_{3} I+i K_{4}\right) \xi=K_{5}+i K_{6} \tag{26}
\end{equation*}
$$

Here, $K_{\mathrm{i}}(i=1,2,3,4)$ refers to damping, spin, positional and magnus parameters, respectively.
These parameters are functions of the density of air, aerodynamic coefficients, spin, frame velocity and nondimensional gravity groups for linear force systems.

$$
\begin{aligned}
K= & \varepsilon C_{D}-\left(2 g_{x} l / u^{2}\right)-\left(2 l / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}+\varepsilon K_{t}^{-2}{ }_{t}\left(C_{M q t}+C_{M q \alpha}\right) \\
K_{2}= & -B^{\prime} \zeta+2 \bar{\omega}_{1}-\zeta \varepsilon C_{N p \alpha} \\
K_{3}= & -\varepsilon K^{-2}{ }_{t} C_{M \alpha}+\varepsilon^{2} C_{D}\left(C_{D}-C_{L \alpha}\right)+\left(g_{l} l / u^{2}\right)-\bar{\omega}_{1}^{2}-\left(g_{x} l / u^{2}\right) \varepsilon\left(2 C_{D}-C_{L \alpha}\right) \\
& +B \zeta \bar{\Omega}_{x}-\bar{\omega}^{2} \varepsilon G_{N p \alpha}-B \zeta C_{x} C_{N p \alpha}+\left(2 d / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}\left[\left(2 g_{x} l / u^{2}\right)\right. \\
& \left.\left.-\varepsilon\left(2 G-C_{\alpha}\right)-\varepsilon K_{t}^{2}\left(C_{M q t}+C_{M q \alpha}\right)\right]-\varepsilon K_{t}^{-2}{ }_{t}\left(C_{M q t}+C_{M q \alpha}\right)\left(g_{x} l / u^{2}\right)-\varepsilon\left(C_{D}-C_{L \alpha}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \underset{\sim}{K}=B^{\prime} \zeta \varepsilon\left(G_{D}-C_{\alpha}\right)-B^{\prime} \zeta\left(g_{\alpha} l / u^{2}\right)-\overline{\varrho_{1}}\left[\varepsilon\left(2 C_{D}-C_{L \alpha}\right)-\left(2 g_{x} l / u^{2}\right)-\varepsilon^{2} C_{D} C_{N p \alpha}\right. \\
& \left.-\left(\varepsilon C_{p \alpha}-\varepsilon\right) K^{2}{ }_{t}\left(C_{M q t}+C_{M q \alpha}\right)\right]-\left(2 l / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}\left[B^{\prime} \zeta-2 \bar{\omega}_{1}+\bar{\omega}_{1} \varepsilon C_{N p \alpha}\right] \\
& K_{\xi}=-\left[\varepsilon C_{D}-g_{\cdot} l / u^{2}-\left(2 l / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}+\varepsilon K^{-2}{ }_{t}\left(C_{M q t}+C_{M q \alpha}\right)\right] \\
& +\left[g l / \hat{u}+(2 l / \hat{\imath}) P A \sin \varepsilon_{1}\right]+\left(B^{\prime} \zeta-\overline{q_{1}}\right)\left(2 l / u^{2}\right) P A \sin \varepsilon_{2}-\varepsilon K^{-2}{ }_{t} r_{p} P A B_{2} /\left(u^{2} m\right) \\
& +\left[g l / \hat{u}+(2 l / \hat{u}) P A \sin \varepsilon_{1}\right]+\left(B^{\prime} \zeta-\overline{q_{1}}\right)\left(2 l / u^{2}\right) P A \sin \varepsilon_{2}-\varepsilon K^{-2}{ }_{t} r_{p} P A B_{2} /\left(u^{2} m\right) \\
& K_{6}=\left(\bar{\Phi}-B^{\prime} \zeta\right)-\left[g_{y} l / u^{2}+\left(2 l / u^{2}\right) P A \sin \varepsilon_{1} \cos \varepsilon_{2}\right]-\varepsilon K^{-2}{ }_{t} r_{p} P A B_{1} /\left(u^{2} m\right) \\
& -(2 l / \hat{u}) P A \sin \varepsilon_{2}\left[{ }_{\alpha} l / u^{2}-\varepsilon C_{D}+\left(2 l / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}-\varepsilon K^{-2}{ }_{t}\left(C_{M q t}+C_{M q \alpha}\right)\right] \tag{27}
\end{align*}
$$

where

$$
\begin{aligned}
& \left.B_{1}=\sin \eta_{2} \cos \varepsilon_{1} \cos \varepsilon_{2}-\cos \eta_{1} \cos \eta_{2} \sin \varepsilon_{2}\right) \\
& B_{2}=\left(-\cos \eta \cos \eta_{2} \sin \varepsilon_{1} \cos \varepsilon_{2}+\sin \eta_{1} \cos \eta_{2} \cos \varepsilon_{1} \cos \varepsilon_{2}\right)
\end{aligned}
$$

To study the effect of pressure, its malalignment and damping moment on the stability of the projectile, the parameters are expressed as

$$
\begin{equation*}
K_{i}^{\prime} s \text { as } K_{i}=K_{i}^{\prime}+K_{i}^{\prime \prime} \tag{28}
\end{equation*}
$$

where K_{i}^{\prime} s represent the terms due to aerodynamic, drag, lift, and gravity and $K_{i}^{\prime \prime}$ consists of the terms arising due to perturbation (due to pressure effect and damping moment)

$$
\begin{aligned}
K_{1}^{\prime \prime}= & -\left(2 l / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}+\varepsilon K_{t}^{-2}\left(C_{M q t}+C_{M q \alpha}\right) \\
K_{2}^{\prime \prime}= & -\zeta \varepsilon C_{N p \alpha} \\
K_{3}^{\prime \prime}= & -\bar{\omega}^{2} \varepsilon C_{X_{p \alpha}}-B \zeta C C_{N p \alpha}+\left(2 l / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}\left[\left(2 g_{x} l / u^{2}\right)-\varepsilon\left(2 C_{D}-C_{L \alpha}\right)\right. \\
& \left.\left.-\varepsilon K_{t}^{2}{ }_{(}\left(C_{M q t}+C_{M q \alpha}\right)\right]-\varepsilon K_{t}^{-2}\left(C_{M q t}+C_{M q \alpha}\right)\left[g_{x} l / u^{2}\right)-\varepsilon\left(C_{D}-C_{L \alpha}\right)\right] \\
K_{4}^{\prime \prime}= & -\bar{\omega}\left[-\varepsilon^{2} C_{D} C_{N p \alpha}-\left(\varepsilon^{2} C_{N p \alpha}-\varepsilon\right) K_{t}^{-2}\left(C_{M q t} C_{M q \alpha}\right)\right] \\
& -\left(2 l / u^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}\left[B^{\prime} \zeta-2 \bar{\omega}_{1}+\bar{\omega}_{1} \varepsilon C_{N p \alpha}\right)
\end{aligned}
$$

$$
\begin{align*}
K_{Y^{\prime \prime}}= & \left(2 l / \hat{u}^{2}\right) P A \cos \varepsilon_{1} \cos \varepsilon_{2}-\varepsilon K^{-2}{ }_{t}\left(C_{M q t}+C_{M q \alpha}\right)+\left(2 l / u^{2}\right) P A \sin \varepsilon_{1} \\
& +\left(B^{\prime} \zeta-\overline{\omega_{p}}\right)\left(2 l / u^{2}\right) P A \sin \varepsilon_{2}-\varepsilon K^{-2}{ }_{t} r_{p} P A B_{2} /\left(u^{2} m\right) \\
K_{K^{\prime \prime}}= & \left(2 l / u^{2}\right)\left(-P A \sin \varepsilon_{1} \cos \varepsilon_{2}\right)\left(\bar{\omega}-B^{\prime} \zeta\right)-\varepsilon K^{-2}{ }_{t} r_{p} P A B_{1} /\left(u^{2} m\right) \\
& -(2 l / \hat{u}) P A \sin \varepsilon_{2}\left[{ }_{\alpha} l / u^{2}-\varepsilon C_{D}+\left(2 l / u^{2}\right) P A \cos \varepsilon_{1}{\cos \varepsilon_{2}-\varepsilon K^{-2}}_{t}\left(C_{M q t}+C_{M q \alpha}\right)\right] \tag{29}
\end{align*}
$$

8. STABILITY CRITERIA

The projectile is made stable by applying spin or by attaching fins to the projectile. For fin-stabilised projectile, $K_{3}^{\prime}>0$ and for fin-stabilised bodies, $K_{3}^{\prime}<0$. For FSAPDS round, K_{3}^{\prime} can be positive or negative.

A spinning projectile is made stable by static stability parameter

$$
\begin{equation*}
S_{S}=\frac{I_{X X}^{2} \omega^{2}}{4 I_{Y Y} C_{M \alpha}} \quad ; 1<S_{S}<3.5 \text { for the stable bodies. } \tag{30}
\end{equation*}
$$

During motion due to perturbation and aerodynamic forces/moments, the projectile can become unstable. This stability is called as dynamic stability. The dynamic stability can be studied with the stability condition for the motion of projectile as given by Naik^{4} is:

$$
\begin{align*}
& K_{1}^{\prime 2} K_{3}^{\prime}+K_{1}^{\prime} K_{2}^{\prime} K_{4}^{\prime}-K_{3}^{\prime 2}-K_{4}^{\prime 2}>0 \tag{31}\\
& -\left(\frac{K_{3}^{\prime}}{K_{1}^{\prime}}-\frac{K_{1}^{\prime}}{2}\right)^{2}+\frac{K_{1}^{\prime 2}}{4}+\frac{K_{2}^{\prime}}{4}-\left(\frac{K_{4}^{\prime}}{K_{1}^{\prime}}\right)^{2}>0 \tag{32}
\end{align*}
$$

so Eqn (31) reduces to

$$
\begin{equation*}
\frac{K_{1}^{\prime 2}}{4}+\frac{K_{2}^{\prime} K_{4}^{\prime}}{4}-\left(\frac{K_{4}^{\prime}}{K_{1}^{\prime}}\right)^{2}>0 \tag{33}
\end{equation*}
$$

The modified stability parameter

$$
\begin{equation*}
S=1+\frac{\left(2 K_{4}^{\prime} / K_{1}^{\prime}\right)-K_{2}^{\prime}}{\left[K_{1}^{\prime 2}+K_{2}^{\prime 2}\right]^{1 / 2}} \text { reduces this condition to } S(S-2)>0 \tag{34}
\end{equation*}
$$

which means S lies between 0 to 2 .
Equation (31) can be also be expressed as

$$
\begin{equation*}
-4\left(K_{4}^{\prime}-\frac{K_{1}^{\prime} K_{2}^{\prime}}{2}\right)^{2}+K_{1}^{\prime 2}\left(K_{2}^{\prime 2}+4 K_{3}^{\prime}\right)-4 K_{3}^{\prime 2}>0 \tag{35}
\end{equation*}
$$

It is satisfied provided $K_{2}{ }^{12}+4 K_{3}{ }^{\prime}>0$, which is the same as gyroscopic stability given by Cranz stability parameter σ as $0<\sigma<1$.

To study the effect due to perturbation, let Liapunov's approach be followed.
P-method ${ }^{5}$ has been applied to develop the Liapunov function.
The motion is given by Eqn (26)

$$
\begin{equation*}
L \equiv X^{\prime \prime}+\left(-K_{1} I+K_{2} J\right) X^{\prime}+\left(K_{3} I+K_{4} J\right) X^{\prime}=0 \tag{37}
\end{equation*}
$$

Define a generating function as

$$
\begin{equation*}
N \equiv 2 \dot{X}+P \tag{38}
\end{equation*}
$$

the inner product $\langle L, N\rangle+\langle N, L\rangle \equiv 0$
The Eqn (36) leads to a suitable Liapunov function V and its derivative \dot{V}

$$
\begin{equation*}
V=2\left(\dot{X}^{t} \frac{X^{t} P^{t}}{2}\right)\left(\dot{X}+\frac{P X}{2}\right)+X^{t}\left(2 K_{3}+2 Q-\frac{P^{t} P}{2}\right) X \tag{40}
\end{equation*}
$$

and

$$
\begin{align*}
\dot{V}= & \left\{\dot{X}^{t}\left[-\left(P+P^{t}+4 K_{\nu}\right)\right]^{-\frac{1}{2}}-X^{t}\left(K_{1} I+K_{2} J\right) P+2 K_{4} J+2 Q^{t}\left[-\left(P+P^{y}+4 K_{1}\right)\right\}^{-\frac{1}{2}}\right. \\
& {\left[\left(-\left(P+P^{\prime}+4 K_{1}\right)\right)^{-\frac{1}{2}} \dot{X}-\left(-\left(P+P^{t}+4 K_{1}\right)^{-1}\right)^{\frac{1}{2}}\left\{\left(K_{1} I+K_{2} J\right) P+2 K_{4} J+2 Q\right\} X\right] } \\
& -X\left\{\{ (K _ { I } I + K _ { 2 } J) P + 2 K _ { 4 } J + 2 Q \} ^ { t } \{ - (P + P ^ { t } + 4 K _ { 1 }) \} ^ { - 1 } \left\{\left(K_{1} I+K_{2} J\right) P\right.\right. \\
& \left.+2 K_{4} J+2 Q\right\}+\left\{\left(K_{3} I+K_{4} J\right) P+P^{t}\left(\left(K_{3} I+K_{4} J\right)^{t}\right\}\right] X \tag{41}\\
Q & \text { can be selected as } Q=-K_{3}+\frac{P^{t} P}{2} \tag{42}
\end{align*}
$$

since $P^{\mathrm{t}}-P>0, \mathrm{~V}$ is always positive.
A choice of $P=-K_{1} I+K_{2} J$ gives the condition for $\dot{\mathrm{V}}<0$ as

$$
\begin{equation*}
K_{1}^{2} K_{3}+K_{1} K_{2} K_{4}-K_{3}^{2}-K_{4}^{2}>0 \tag{43}
\end{equation*}
$$

which is similar to Eqn (31).
Following the same steps, the modify stability parameter is defined as

$$
\begin{equation*}
S_{M}=1+\frac{\left(2 K_{4} / K_{1}\right)-K_{2}}{\sqrt{K_{1}{ }^{2}+K_{2}{ }^{2}}} \tag{44}
\end{equation*}
$$

where the condition for stability is

$$
\begin{equation*}
S_{M}\left(S_{M}-2\right)>0 \tag{45}
\end{equation*}
$$

that is $0<S_{M}<2$
Separating the terms of K_{i}^{\prime} and $\mathrm{K}_{i}^{\prime \prime}$ the condition becomes:

$$
\begin{align*}
& S_{M}= S+\frac{2 K_{1}^{\prime}\left(K_{1}^{\prime 2}+K_{2}^{\prime 2}\right) K_{4}^{\prime \prime}-2\left(K_{1}^{\prime 2}+K_{2}^{\prime 2}\right) K_{4}^{\prime} K_{1}^{\prime \prime}}{K_{1}^{\prime 2}\left(K_{1}^{\prime 2}+K_{2}^{\prime 2}\right)^{3 / 2}} \\
&-\frac{K_{1}^{\prime \prime} K_{1}^{\prime 2}\left(2 K_{4}^{\prime}-K_{1}^{\prime} K_{2}^{\prime}\right)+K_{1}^{\prime 4} K_{2}^{\prime}+2 K_{1}^{\prime} K_{2}^{\prime} K_{4}^{\prime} K_{2}^{\prime \prime}}{K_{1}^{\prime 2}\left(K_{1}^{\prime 2}+K_{2}^{\prime 2}\right)^{3 / 2}}<2 \tag{46}
\end{align*}
$$

The other condition from Cranz stability parameters becomes:

$$
K_{2}{ }^{2}+4 K_{3}>0 .
$$

Substituting for K_{2} and K_{3}, one gets:

$$
\begin{equation*}
K_{3}^{\prime \prime}>\left(-K_{2}{ }^{2} \sigma^{2} / 4\right) . \tag{47}
\end{equation*}
$$

Equations (46) and (47) give the conditions for stability of FSAPDS round in the first phase due to malalignment.

For the given data, the value of stability parameter gets modified from $S=1.859147$ to $S_{M}=1.891418$ due to perturbation. The value of this parameter still lies between 0 to 2 and therefore, does not vary stability.

9. CONCLUSIONS

- For an FSAPDS projectile, a mathematical model has been developed in 6-DOFS. The trajectory has been simulated. It is observed that the addition of pressure and damping moment in the simulation does not affect the trajectory, in the first phase of motion.
- Stability of an FSAPDS projectile in the first phase is affected by the gas pressure as well
as damping moment. A modified stability parameter has been developed using the Liapunov function with the help of generating matrix (P) and parametric matrix (Q). The stability in the cross plane can be achieved for $K_{3}^{\prime \prime}>\left(-K_{2}^{2} \sigma^{2} / 4\right)$. For a particular data, it was verified that the stability will not be disturbed due to pressure and damping moment, as their contributions are very small.
- The two conditions

$$
\begin{aligned}
S_{S} & =\frac{I_{X X}^{2} \omega^{2}}{4 I_{Y Y} C_{M \alpha}} ; 1<S_{S}<3.5 ; \\
S & =1+\frac{\left(2 K_{4}^{\prime} / K_{1}^{\prime}\right)-K_{2}^{\prime}}{\left[K_{1}^{\prime 2}+K_{2}^{\prime 2}\right]^{1 / 2}} ; \quad 0<S<2
\end{aligned}
$$

are sufficient for the designer to decide minimum spin.

ACKNOWLEDGEMENTS

The authors are grateful to the Dean and Director, Institute of Armament Technology and the Director, Modern College of Engineering for their support and encouragement.

REFERENCES

1. Yang, Q.R. A study of dynamic modelling of sabot discard. In Proceeding of $12^{\text {th }}$ International Symposium of Ballistics, USA, 1990, pp. 26978
2. McCoy, R. L. Modern exterior ballistics, Schiffer Publishing Ltd., Atglen, PA 19310, China, 1999. pp. 32-40.
3. Bakshi, S.B. \& Sharma, K.C. A fresh look at the free dynamics of a spinning projectile. Sadhana, 1988, 12(4), 321-37.
4. Naik, S.D. Stability criterion for a finned spinning projectile. Def. Sci. J., 2000, 50, 31-35.
5. Sharma, K.C. On the dynamic stability of a missile. Def. Sci. J., 1997, 27(1), 29-32.
