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ABSTRACT

Estimating highly spinning projectiles’ base drag and burn time by static trials is challenging. Drag profiles 
obtained using numerical methods or experimental or wind tunnel estimations should be updated using the estimates 
obtained from dynamic flight test data. This paper proposes a novel methodology to estimate the base drag and 
burn time from flight data using an extended Kalman Filter. Trajectory positional data is used to calculate base drag 
and indirect measurement of burn time. The simulation is carried out for two cases, artillery shell and rocket. The 
proposed method works well for both cases. Exhaustive simulation results indicate that the technique can be used 
for any configuration. Estimating both base drag and burn time is within 5 % accuracy. 
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NOMENCLATURE
x  : Horizontal distance (Range), m
y  : Lateral distance (Drift), m
z  : Vertical distance (Height), m
d  : Diameter of projectile, m
m  : Mass of projectile, kg
Ix  : Axial moment of inertia, kg m2 r
r  : Density of air, kg/m3

sp  : Roll rate, rad/s
v  : Projectile speed, m/s
t  : Time, s
Vx,Vy,Vz  : Air velocity components, m/s
ux,uy,uz  : Projectile velocity components, m/s
cx,cy,cz   : Coriolis acceleration components, m/s2

gx,gy,gz  : Gravitational acceleration components,  
     m/s2

Tx,Ty,Tz  : Thrust acceleration components, m/s2

Wx,Wy,Wz : Wind velocity components, m/s
x, y, z     : Projectile acceleration components, m/s2

Ts  : Sampling time, s
mx,my,mz : Components of yaw of repose
ms  : Process noise
CD  : Drag force coefficient

boDC   : Base drag coefficients
fdr  : Base drag coefficient factor
CLa  : Lift force coefficients 
CLd  : Roll coefficient due to the CA angle
C1p  : Roll damping coefficient 

  : Magnus force coefficient 

CMa  : Pitching moments coefficient
x  : System state vector
f(x)  : Nonlinear function of states
w  : Random zero mean process noise
z  : Measurement state vector
h(x)  : Measurement Eqn. 
v  : Random zero mean measurement noise
I  : Identity matrix

kx   : Estimate obtained from system dynamics
kx̂   : Updated estimates

Q  : Random zero mean process noise R
R  : Random zero mean measurement noise F
F  : Jacobian of system dynamics H
H  : Jacobian of measurements
M  : Error covariance matrix before update
P  : Error covariance matrix after update
K  : Kalman gain matrix
x , y , z , sp′ ′ ′ ′  : Actual measurements
dx,dy,dz,dsp : Gaussian noise in the measurement

1. INTRODUCTION  
The trajectory of artillery projectiles, rockets, and mortar 

bombs depends primarily on the mass, diameter, and inertia of 
projectiles, launching conditions and atmospheric conditions 
and aerodynamic parameters like drag. The total drag acting 
on a projectile can be divided into three components: pressure, 
dense and base. When the projectiles move in the air, the 
airflow cannot return quickly enough to fill the space behind the 
projectile, creating a region of low pressure immediately behind 
the projectile. Due to intense pressure at the base, a vacuum or 
suction effect generates a resistance to motion. The resistance 
produced by the suction effect at the base of the projectile is 
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called base drag. The relative magnitude of aerodynamics drag 
components are 20 % pressure drag, 30 % viscous drag, and 
50 % base drag1. Hence, base drag is a significant component 
of the total drag. Therefore, minimization of the base drag is 
essential to reach the maximum range or to achieve higher 
terminal velocity. The analysis of various components of drag 
is crucial in the preliminary design stage of a shell or a rocket 
and it can aid the designer in finding potential areas for drag 
reduction2.

To reduce base drag as much as possible, putting a 
‘boattail’ on the rear of the shell is desirable. A boattail is a 
frustum of a cone designed to entrain the boundary layer into 
the base region of the artillery shell. Another way to reduce 
base drag is to generate gas into the base region of a projectile 
in-flight by burning a small quantity of fuel fitted into the rear 
of the projectile. This technique is known as Base Bleeding 
(BB).The propellant burns at low pressure and generates a jet 
of gas at the base, increasing the pressure behind the projectile 
base and reducing base drag by up to 50 % due to a reduction in 
base drag range increases of up to 30 %3. BB units are widely 
used as a means of projectile drag reduction to extend the range 
of artillery shells. 

The BB units are usually subject to high spin rates and 
changes in velocities and ambient atmospheric pressures at 
every instance. Burn rate increases due to spin and decreases 
in higher ambient pressure4. Standard lump sum models for gas 
generation usually achieve good predictions for total burn time 
under these varying conditions, especially if erosive burning 
underspin is considered. However, it has proven difficult to 
predict observed BB active drag accurately in practice. Fitting 
functions need to be introduced, which need to be determined 
from extensive test firings. Therefore, a reliable model predicts 
BB burn time and drag with good accuracy and minimal 
input number of parameters5. The flow out of the base bleed 
is subsonic, which means that the internal ballistics of the 
base bleed unit are coupled to the external base pressure. Base 
pressure controls the base drag. The coupling between base 
drag and base bleed internal ballistics is often given through 
empirical expressions due to a need for more understanding of 
viscous-inviscid flow interactions between a near-wake flow 
and a freestream6. Little is known about the fluid dynamic 
processes inside the unit and the base flow region. BB units 
are, therefore, mainly designed empirically, using extensive 
and expensive test firings to estimate the drag reduction. 

For a slowly spinning fin-stabilized rocket, the base flow 
in the power phase has complex fluid dynamic behaviour 
involving separated flows, free-shear layers, high levels of 
turbulence, and strong shock waves and expansions, which 
may be subject to interference effects. The situation may 
be further complicated by additional chemical and thermal 
effects7. Prediction of power-on base drag is a very critical 
part of overall drag. Estimating the power of the base drag 
component for a given geometry and propulsion unit bp

p∞

 is 
essential.

The average base pressure and free stream pressure ratio 
are essential to estimate base drag. Many approximations 
are developed to predictand used to compute the base drag 
coefficient and drag reduction factor. Improved methods for 
base pressure prediction under base bleed and rocket motor-on 

conditions have been developed8. All these methods are either 
based on approximation or numerical computation.  

Many researchers and designers suggested a correlation 
law to estimate the base drag of bodies of revolution with a 
central jet exhaust at the base. Improved correlation laws 
were proposed and implemented. Aero prediction code is a 
commercial code that can estimate the base drag of missiles, 
rockets and projectiles at supersonic and transonic speeds. 

The past few years have witnessed widespread application 
of various techniques, e.g., semi-empirical based models 
and computational fluid dynamics (CFD) methods, etc., for 
providing flow field details. The difficulties in determining full-
scale nonlinear flow effects from subscale wind tunnel test data 
are some factors that impose limitations on using wind tunnels 
in routine flight analysis. Further to theoretical estimates, a 
ground test spin fixture was used to obtain measurements 
in the base region of the projectile. However, there are still 
limitations to building and operating test facilities changing 
altitude pressure as experienced by projectiles9. To model base 
flow, support at the wing tip, which restricts spin, is required. 
Base drag measurement with spin and changing surrounding 
pressure is almost impossible. Thus, the practical problems in 
using wind tunnel tests for this estimation, the data complexity, 
and the high computational costs of the CFD methods are 
functional limitations. Consequently, analysis guided by flight 
data for parameter estimation is the best recourse10. 

There are methods to improve the initial estimation of 
aerodynamic coefficients. The resistance coefficient is identified 
in each step to correct aerodynamic parameters in the missile 
space motion model11-12the optimal dynamic fitting method was 
successfully applied to an optimal tracking control problem, 
namely aerodynamic curve identification from flight testing 
data. An iterative learning identification method is proposed 
to extract a projectile’s optimal fitting drag coefficient curve 
from radar-measured velocity data13. The extended high-order 
iterative learning identification scheme effectively applies to 
practical curve identification problems14.

The extended Kalman Filter technique estimates two 
major unknown factors: manoeuvrable acceleration and 
ballistic coefficient of re-entry targets15.  

To estimate the trajectory state parameters and accurate 
impact point, a prediction method is proposed16. EKF is used to 
precisely reconstruct the state’s position, velocity, acceleration, 
and ballistic coefficient of high-speed re-entry targets. The 
estimation of manoeuvrable accelerations has also been 
explored17.

An improved hybrid extended Kalman filter is proposed 
for drag coefficient estimation from flight data of projectiles. 
The unknown constant parameters to be identified are obtained 
in18. The GPS measurements of the absolute position can also 
be used as measurements. Extended Kalman filtering is used to 
extract wind profile19. EKF is used to estimate the yaw angle at 
each point on the trajectory from the flight data20. The method 
uses an extended Kalman filter, and system dynamics are 
modelled using a modified point mass trajectory model. 

It is a routine practice to capture the trajectories of these 
projectiles in motion using a ground-based tracking radar 
system. Generally, typical trajectory data of a projectile in 
motion, acquired by tracking radar, contain measurements 
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of trajectory variables, namely range (x), height (z), and 
drift (y). This trajectory data could effectively be processed 
using an appropriate estimation algorithm to estimate a few 
aerodynamic parameters of the artillery projectile in motion. 
Given the availability of primary trajectory data, a method of 
estimation of base drag from flight data will be helpful.  

Section 2 of this paper briefly introduces the Extended 
Kalman Filter, the approach for estimating base drag, and 
the system dynamics model used for trajectory computation. 
Section 3 presents the base drag estimation results obtained 
with the proposed approach for spin-stabilized shells and 
rockets. The method of burn time estimation is demonstrated 
in Section 4. Section 5 concludes the paper.    
    
2. PROBLEM FORMULATION AND SYSTEM 

DYNAMICS     
2.1. Extended Kalman Filter

For the application of the Extended Kalman Filter (EKF), 
the system is expressed in the state space form as given by 
Eqn. (1)

( )    x f x w= +              (1)
A vector f representing the system’s state is a nonlinear 

function of the state and is a random zero mean process noise 
w. The process noise matrix describing the process is given 
Q=E[wwT] a covariance matrix of the noise.

In EKF, the measurement Eqn. connecting state and 
measurements is also considered nonlinear and given by  
Eqn. (2).

( )z h x v= +                                                                                                   (2)
where, v is zero mean random process representing 
measurement noise with covariance matrix given by R=E[vvT] 

For application purposes, a discrete version of EKF 
is used. At kth time instant, let the state be represented by xk 
and measurement be zk. Let the estimate of the state at kth 
time instant, obtained from propagating the state estimate at  
(k-1)th instant, be denoted by kx . After updating with the help 
of measurement, the state’s estimate zk is represented by ˆ kx
and obtained using the integration of the system dynamics 
Eqn. using the Runge Kutta Method. 

The system Eqn. governing the projectile are highly 
nonlinear, and the observation Eqn. are also nonlinear. Let 
f=(f1,f2,…,fn) be system dynamics Eqn. and measurement 
dynamics Eqn. The Riccati Eqn. system and measurement 
dynamics matrices are used to calculate filter gain. The filtering 
process uses the Jacobian F of the system dynamics and the 
Jacobian H of the measurement Eqn.s. These matrices will be 
calculated at each timestep and used by the filter to update the 
estimates of the state variables. The Jacobian of the system 
is calculated by taking partial derivatives of each of the state 
Eqn.s concerning each of the state variables.

The first-order approximations of system and measurement 
Eqn.sare used to obtain the system dynamics matrix and 
measurement matrix H. And are given by Eqn. (3) and  
Eqn. (4), respectively. When the state estimate is x̂ , 

ˆ

( )

x x

f xF
x =

∂
=

∂                                                                                              (3)
and   

ˆ

( )

x x

h xH
x =

∂
=

∂                                                                                             
(4)

The fundamental matrix, which in general is used for 
propagating the state forward by time t, is obtained using 
Taylor’s series expansion as given in Eqn. (5)

2( )
2!( ) 1 ... FtFtt e FtΦ = = + + +             (5)

When t, i.e., the time step is small, then Eqn. (5) can be 
approximated to Eqn. (6)

( ) 1 t FtΦ ≈ +              (6)
This paper is used to calculate Kalman gain, which 

controls the amount of correction to be made in the estimation. 
The Ricatti Eqn. (7) to Eqn. (9) required for obtaining 

Kalman gain at kth time instant are given as follows. 
-1

T
k k k k kM P Q= Φ + Φ +                                                                                               (7)

-1( )T T
k k k kK M H HM H R= +                                                                                    (8)

( - )k k kP I K H M=                                                                                                        (9)
where, is the covariance matrix representing errors in the state 
estimate before the update, and Pk is the covariance matrix 
representing errors in the state estimate after the update? Matrix 
Kk represents the Kalman gain and kΦ  is a fundamental matrix 
when the state estimate is kx   If the time step or sampling time 
is Ts, then the discrete process noise matrix Qkis obtained using 
Eqn. (10)

0

( ) ( )
sT

T
kQ Q dτ τ τ= Φ Φ∫

                                                                                                        
(10)

In the matrix, the covariance of the measurement noise is 
characteristic of the sensors used for measurement. This matrix 
may remain constant throughout the filtering process or depend 
on the current state. In this work, we assume it to be stable. 

Now, in EKF, the estimate kx  obtained from system 
dynamics is updated with the help of measurement vector 
using Eqn. (11)

ˆ [ ( )]    k k k kx x K z h x= + +                                                                                                    (11)
This new estimate is expected to be more accurate state 

of the system as measurements are used to update prediction 
obtained from the system model and given by Eqn. (12).

-1 -1ˆ ˆ( )  k k k sx x f x T= +                                                                                                      (12)
For each time step of the filter, the states and error 

covariance matrix are first propagated according to the system 
dynamic model and dynamic noise. 

2.2 System Dynamic and the Proposed Approach
If the projectile has good dynamic stability, the Modified 

Point Mass (MPM) model can approximate the projectile’s 
motion. MPM model is a conventional point mass model with 
an axial roll and instantaneous equilibrium yaw term added to 
it. The MPM considers accelerations due to drag, lift, Magnus 
force, Coriolis force, and gravity. It estimates the angle of yaw, 
drag, drift, and Magnus force effects resulting from yaw of 
repose. Drag, lift, Magnus force coefficient, and pitch and roll 
damping coefficients are aerodynamic inputs to the model. It 
has been proved that the modified point mass model accurately 
calculates trajectories of roll stabilized, slowly rolling, and 
finned projectiles.

To estimate, we have considered the state of the system as 
it is assumed that all the system dynamics parameters except 
the drag coefficient are known or measured. In addition, if 
we believe that the drag coefficient m is constant concerning 
time, that means its derivative must be zero, i.e.. However, 
the new state component requires an additional process noise 
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component since the drag coefficient of the projectile may have 
an error since it is not modelled precisely in system dynamics. 
The drag coefficient can be described as the function of a Mach 
number and other parameters. To account for the fact that the 
drag coefficient may vary and to make the resultant filter 
more robust we can add process noise to the derivative of the 
drag coefficient. Therefore, the Eqn. for the derivative of the 
ballistic coefficient becomes where is process noise. 

It is known that the filter’s performance strongly depends 
on the motion model. Hence, system dynamics, including the 
most essential forces and moments, can be adopted for better 
results. The tuned Modified Point Mass model is selected as 
system dynamics since the Modified Point Mass model after 
appropriate tuning, and 6 DOF give equivalent results as 
reported in21. For the study, input trajectory data available 
for estimation is range (x), drift (y), height (z), and spin rate 
(sp)considered. Given the availability of input data and the 
capability of MPM compared to 6 DOF, it is adequate to use 
MPM as system dynamics to estimate the base drag and time 
of flight. It is necessary to convert the point mass trajectory 
differential Eqn. into state space form to apply an extended 
Kalman filter.

The projectile positions range, line and height, spin, 
respective velocities, and drag coefficient to be estimated are 
represented as state vector T= [x, y, z, sp, x, y, z, μ = CD]x  

 

 
Then modified point mass(MPM) trajectory model in state 
space form is ( )x f x w= +  given by Eqn. (13)
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             (13)   
where, are projectile velocity components, vx, vy, vz are air 
relative velocity components, wx,wy,wz are wind velocity 
components, Tx, Ty, Tz thrust force components, cx, cy, cz are 
Coriolis force components are yaw of repose components, 

, ,x y z   are projectile acceleration components. Components 
are defined using yaw of repose and relative velocity.  
gx,gy,gz are gravitational acceleration components. The 
velocity of the projectile is v, an axial moment of inertia Ix and 
ms denotes noise. 

Here, the total drag coefficient, lift force coefficient 
LC

a
, Magnus force coefficient , and pitching moments 

coefficientC
aΜ are primary aerodynamics coefficients used in 

MPM. It is assumed that the m mass of the projectile and d is 
the diameter of the projectile, and air density concerning height 
are known. The values during the ballistics phase and boost or 
base bleed phase differ. 

MPM will compute the trajectory elements, i.e., range, 
drift, and height, at every time step. Using Cartesian to spherical 
transformations, these will be transformed into angles. In the 

absence of actual flight measurement data, it can be generated 
by adding suitable noise to the model simulation output. 
Noise will be added into respective slant range, elevation, and 
azimuthal angles. Finally, these noisy slant ranges and angles 
will be converted into (x,y, z) representing radar measurements.

We assume process noise to be present in the unknown 
state variable m=CD. The measurement vector is in state space 
form and can be written as Eqn. (14). 

x

y

z

sp

x x
y y
z z

sp sp

d
d
d
d

′     
    ′     = +
 ′   
    
                                                   (14) 

where, denotes actual positions and spin and [ , , , ]T
x y z spd d d d

is Gaussian measurement noise vector representing noise in 
respective coordinates.

The trajectory data is filtered using EKF. At each stage, 
a new state is estimated with the help of EKF. Thus, the 
state variable m gives the drag coefficient value at each time 
instance. Combining this information with the speed at this 
specific instance, we can create a drag profile for the velocity 
profile the projectile has experienced. 

2.3 Initialization and Tuning
To achieve objectives in designing the Kalman filter for 

a given application is a tricky job. Initialization and tuning of 
filters are open problems. The filter tuning varies from ad hoc 
through empirical to rigorous methods. In this work, the initial 
state is the average of the first few measurements for known 
states. This is possible since we are processing data offline. For 
the parameters that are used as augmented states or unobservable 
as unknown in the EKF, some computational and experimental 
results are available. It is necessary to make a proper choice, 
which is neither zero nor consisting of tremendous values, to 
obtain accurate estimates and uncertainty. It is assumed that 
an initial value in the filter is close to zero and later adaptively 
updates and estimates it. Usually, a good initial estimate can be 
obtained from the calibration of the measuring instrument. The 
more details on initialization are given in references 22-24.

The process noise matrix is defined as follows. Since it 
is assumed that the system dynamics Eqn. are well defined for 
known variables and process noise is present only in unknown 
variables. We can assume the covariance between process 
noise of different state variables for other variables is zero i.e., 

0
ijpσ =  except i=j=8

11 18

81 88

p p

p p

Q

σ σ

σ σ

… 
 

=  
 
 
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

                                                                                                   (15)
The measurement noise matrix R is defined as using

0
ijmσ =  0

ijmσ = noise in respective measurement variables and 
their covariance i.e.,   0

ijmσ =  except i=j

11 14

41 44

p p

p p

R

σ σ

σ σ

… 
 

=  
 
 

  

                                                                                                    (16)
The simulation is also carried out for different noise levels. 

It is assumed that the radar and launch point are collocated 
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and radar gives processed range, drift, and height data. Three 
different noise levels σ = 5m, 10m, and 15m were simulated 
to test the robustness of the proposed method. The results are 
presented for noise level σ = 10 m.

3. BASE DRAG ESTIMATION
Artillery projectiles are either spin-stabilized or fin-

stabilized. In this paper, the proposed method is evaluated 
fortwo types of projectile configurations given in Table 125.

Gyroscopically stable configuration has very high 
spin rate and fin stabilized configuration is slowly spinning 
configuration. The assumed values of the mass, inertia and 
burn time etc. for both the configuration are given in Table 1.

3.1 Base Drag of Rocket
The simulation is carried out for a 122 mm rocket. 

Measurements are generated for launch angle 45°. It is 
assumed that velocity of rocket at launch is 26 m/s. The burn 
time is 5.67 s. Range achieved is 33.6 km and vertex height 
attended during flight is 11.3 km. Total flight time is 100.2 s. 
The maximum velocity at all burnt point is 1003 m/s in 5.67 s. 
The Mach number at launch is 0.076 and at all burnt points is 

Table 1. BB shell and rocket configurations

Parameters Unit
Base 
bleed 
shell

Rocket

Stability - Spin Fin
Configuration type - Shell Rocket
Diameter m 0.155 0.122
Total length m 0.8787 2.970
In flight mass kg 47.00 46.5
Axial moment of inertia (boost /
base bleed phase) kg/m3 0.1610 0.1499

Lateral moment of inertia (boost/
base bleed phase) kgm3 2.1061 41.18

Axial moment of inertia kgm3 0.1592 0.1238

Lateral moment of inertia kgm3 2.0367 33.43

Muzzle velocity m/s 900 26.7

Thrust/burn time/ s 23 /26 5.6

Thrust kgf - 1018.7

Propellant mass kg 0.8 19

Figure 1. Errors in the estimated velocity components.

Figure 2. Errors in drag coefficient estimation and theoretical bounds.
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Figure 3. Boost and ballistics phase drag estimation.

Figure 4. Percentage error drag estimation.

2.95 and it reduces to Mach 1 along with the trajectory at the 
impact point. 

The drag acting on the rocket during the boost phase 
is different and smaller since the rocket motor produces 
thrust opposite to drag. Hence, as such, there is no base drag 
component during the boost phase of the rocket. In this work, 
the drag during the boost and ballistics phase is estimated. 
Using these estimations, a reduction in total drag due to rocket 
mortar on can be obtained. The measurement data generated 
after adding a noise is passed to the developed EKF model. 

The estimated velocity components are within theoretical 
bounds indicating that the filter is not diverging and are shown 
in Fig. 1.

The drag coefficient error and theoretical bounds of the 
drag coefficient estimated are shown in Fig. 2. The estimated 
drag profile concerning Mach no is shown in Fig. 3 and it can 
be inferred that the filter is following the drag profile. 

Moreover, the mean of innovation, i.e., the difference 
between the measurement and predicted values. It is expected 
that the mean of innovation is close to zero for well well-
performing filter. In this case, after settling the filter i.e., after 
1/3 samples an innovation of range is calculated and it is 
0.00086 indicating that the filter is performing well.

In the boost phase, the Mach number starts at 0.09 and 
increases and reaches 2.8 at all burnt points and decreases 
along with the ballistics phase of the trajectory. 

 It is observed that EKF can switch to ballistics phase 
coefficients automatically once measurements of the boost 
phase are over. The estimated base drag is compared with 
existing known drag values used to generate the trajectory, 
i.e., measurements in the respective phase. It is a direct 
comparison. The percentage error is calculated for both the 
estimated boost and ballistics phases. The percentage error is 
calculated for estimated boost and ballistics phase drag and is 
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shown in Fig. 4. In the regime of the subsonic boost phase, 
the error is up to 11% as the filter is not fully converged. Once 
the filter converges, the error in the boost and ballistics phase 
is less than 5 %. EKF estimates ( )

o boD D DC C C= −  in both the 
boost and ballistics phases. The boost and ballistics phase 
drag values are calculated for Mach number for which both 
the values are estimated and tabulated in Table 2. The average 
percentage difference is around 29 %. It means that the boost 
phase drag is 0.71 times the ballistics phase drag.  

Table 2. Ballistics and Boost phase difference

Mach No Ballistics phase 
drag

Boost phase 
drag

Percentage 
difference

1.0 0.577 0.395 31.5
1.2 0.623 0.433 30.5
1.4 0.566 0.410 27.6
1.6 0.509 0.366 28.1
1.8 0.462 0.335 27.5
2.0 0.434 0.313 27.9
2.2 0.422 0.302 28.5
2.4 0.415 0.296 28.7
2.6 0.408 0.293 28.3

3.2 Base Drag of Base Bleed Projectile
As discussed, drag acting during base bleeding is very 

difficult to obtain as the performance of base bleed depends on 
ambient atmospheric pressure and spin of projectiles. The burn 
time also depends on these parameters. In this work, estimation 
of base bleed drag and burn time is done effectively. 

The projectile of 155 mm is considered for simulation. 
The input and physical properties are listed in Table 1. The 
trajectory is obtained for muzzle velocity 900 m/s and launch 
angle 45°. The range of trajectory is 36.2 km, and the attending 
height is 12.2 km. The time of flight is 102 s. The required 
trajectory is expressed in terms of a set of measurements. 
These measurements are passed to the developed EKF model 
to estimate drag during the base bleed and ballistics phase. 
We can see that the estimation error is well within theoretical 
bounds. This indicates that the proposed method is working 
well. The actual and estimated drag is shown in Fig. 5, and the 
error in drag coefficients is shown in Fig. 6.

The relation ( )
o r boD D d DC C f C= − and these computations 

may provide a correlation of change in the base pressure with 
mass injection and Mach number by processing multiple 
trajectories. 

Figure 5. Drag coefficient error w.r.t time.

Figure 6. Base bleed and ballistics phase drag estimation.
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Figure 7. Percentage error drag estimation.

Figure 8. Drag estimation in zoomed view.

Figure 9. Drag coefficient w.r.t. time.
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The percentage error is calculated for the estimated base 
bleed and ballistics phase drag and is shown in Fig. 7. The 
error in the base bleed and ballistics phase is less than 5 %. 

In the base bleed phase, the Mach number starts at 
2.64 and reduces to 1.75 when the base bleed propellent is 
completely burnt out. After switching to the ballistics phase, 
it decreases further along with the trajectory. The drag value at 
the end of the base bleed is 0.184 and just after the base bleed 
is off is 0.279. It can be inferred that due to base bleed, there is 
an overall 34 % reduction in drag. 

 
4. BURN TIMEESTIMATION

It is known that during burn of rocket mortar or base bleed 
the total drag is less than the ballistics phase due to absence 
or reduction in base drag. It is expected that once burning is 
over, the total drag will suddenly increase due to the acting of 
base drag. The sudden change in total drag will be indicated 
by the gap in the drag profile. It is interesting to note that the 
filter automatically takes care of both phases. Moreover, if 
we plot estimated data concerning time then burn time can be 
estimated by monitoring the sudden change in total drag which 
is indicated by the gap in the drag profile. 

For a 122 mm fin-stabilized rocket the drag coefficient 
during the boost and ballistics phase is estimated the zoom 
view is shown in Fig. 8. The EKF switched to the ballistics 
phase around 5.6. It means that by processing trajectory flight 
data using EKF, the burn time can be estimated.

For the 155 mm base bleed case, we plotted estimated 
data concerning time. The sudden change in total drag will be 
indicated by the gap in the drag profile. In this case, the sudden 
change occurred at 23 sec. The burn time for the current 
simulation is 23 sec and it can be inferred from Fig. 9.

The conditions of the firings were controlled by changing 
elevation and muzzle velocity, weapon altitude, propellant 
charge, and grain temperature. The separation of these influence 
parameters is tough. These most influential parameters are 
highly correlated and cannot be varied independently. For 
instance, increasing the velocity or the elevation results in a 
decrease in the mean ambient air pressure on which the base 
bleed is on.

Spin is the most important parameter affecting the 
characteristics of burning. Static burning and burning with spin 

Table 3. Base bleed conditions

Parameters Unit Case I Case II

Muzzle Velocity m/s 900 750

Thrust/ Burn Time/ s 23 26

Launch Angle deg 45 45

Burn end Altitude m 10000 8000

Pressure at Burn start hpa 1013.0 1013.0

Pressure at Burn end hpa 264 356

Spin at the Burn start rpm 17424 14520

Spin at the Burn end rpm 15536 13316

Figure 10. Burn time estimation for higher spin and lower pressure.

are completely different behaviour. At the moment, there is no 
complete, satisfactory theory explaining this effect. At high 
spin rates, due to centrifugal forces, the flames of the reacting 
gases are closer to the grain surface. It enforces a higher rate 
of burning24. 

The pressure inside the base bleed unit is related to the 
outside pressure. Therefore, the burning rate must be a function 
of the outside air pressure. Measuring burning performance at 
ambient pressure on the ground is highly tricky and costly.  

As discussed previously, measurement of the exact burn 
time of base bleeding is very difficult since it is depending 
on the spin rate and ambient atmospheric pressure in which 
the projectile is flying. To demonstrate the capability of 
the proposed method to estimate burn time, two cases are 
simulated. The base bleed conditions are given in Table 3.

Indication of burn time off can be seen in the plot of drag 
estimation concerning time.

The estimation of the drag coefficient in both cases is 
within a 95 % confidence level. To find burn time, one needs to 
observe timing when the filter is switching to ballistics phase 
drag coefficient. The filter switching timing can be noted when 

Table 4. Estimated burn time and error

Parameters Unit Case I Case II

Actual burn time s 23.0 26.0
Estimated burn time s 23.2 26.7
Error s 0.2 0.7
Percentage error % 0.9 2.3



GITE & DEODHAR: A NOVEL METHOD TO ESTIMATE BASE DRAG AND BURN TIME FROM FLIGHT DATA USING EXTENDED KF

437

there is a sudden increase in drag coefficients as shown in  
Fig. 10 and Fig. 11 for cases I and II respectively. 

We can see in Table 4 that the percentage error in the 
first case is 0.9 % and in the second case 2.3 %. Burn time 
estimation is within 5 %. 

5. CONCLUSION
Obtaining base drag or base bleed drag or the effect of 

tracer burning is highly dependent on empirical methods. 
The mass flow rate is measured at steady conditions, and 
then it is empirically converted into base drag reduction. In 
particular, measurement of the burn time of base bleeding is 
very difficult since it depends on the spin rate and ambient 
atmospheric pressure in which the projectile is flying. It 
requires instrumentation and onboard sensor, ground telemetry 
to measure these parameters. Due to space constraints and high 
g launching accelerations, survival of the on-board sensor itself 
is a challenging task. In this paper, trajectory flight data is used 
to estimate base drag and indirect measurement of burn time. 
An estimation of both base drag and burn time is within 5 % 
accuracy. The simulation is carried out for two configurations, 
artillery shell and rocket. The proposed method works well for 
both conditions. Exhaustive simulation results indicate that the 
method can be used for any configuration.

No special measurements are needed other than trajectory 
data for this estimation. The proposed methods are simple, 
useful, and cost-effective. Estimation by other methods requires 
explicit trials, large infrastructure, and higher costs. The 
proposed methods can be used as effective tools for post-trial 
analysis too. An estimation by these methods can be used to 
compare estimations by other methods or direct measurement 
or experimental results. The proposed method can be enhanced 
if all the other aerodynamic coefficients are known. In this case, 
the highly nonlinear and coupled trajectory model, i.e., six-
degree freedom, can be used as a system dynamics filter. EKF 
can be replaced with an Unscented Kalman Filter or Particle 
filter to remove first-order linearization of the nonlinear system 
dynamics and to cater for non-Gaussian noise.
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