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ABSTRACT

In the era of artificial cognizance, context-aware decision-making problems have attracted significant attention. 
Contextual bandit addresses these problems by solving the exploration versus exploitation dilemma faced to provide 
customized solutions as per the user’s liking. However, a high level of accountability is required, and there is a 
need to understand the underlying mechanism of the black box nature of the contextual bandit algorithms proposed 
in the literature. To overcome these shortcomings, an explainable AI (XAI) based FuzzyBandit model is proposed, 
which maximizes the cumulative reward by optimizing the decision at each trial based on the rewards received in 
previous observations and, at the same time, generates explanations for the decision made. The proposed model 
uses an adaptive neuro-fuzzy inference system (ANFIS) to address the vague nature of arm selection in contextual 
bandits and uses a feedback mechanism to adjust its parameters based on the relevance and diversity of the features 
to maximize reward generation. The FuzzyBandit model has also been empirically compared with the existing 
seven most popular art of literature models on four benchmark datasets over nine criteria, namely recall, specificity, 
precision, prevalence, F1 score, Matthews Correlation Coefficient (MCC), Fowlkes–Mallows index (FM), Critical 
Success Index (CSI) and accuracy.

Keywords: Explainable AI(XAI); Adaptive neuro-fuzzy inference system; Contextual multi-arm bandit; Personalization; 
Reinforcement learning

1. INTRODUCTION
In today’s digital era, where a user is overwhelmed 

with information, presenting the user with the most relevant 
information, service, or product tailored as per the user’s liking 
at the right moment and in a specific context has become the 
utmost priority for online applications. This personalized 
service or information improves the user’s overall experience 
and engagement with the applications. With the advent of 
machine learning algorithms, a lot of solutions have been 
proposed to recommend items or services, but not much 
progress has been made when it comes to personalization. 
Contextual bandit algorithms address this issue and provide a 
way to optimise decisions by observing the payoffs associated 
with past decisions. With contextual bandits, it is possible to 
find a good trade-off between exploration(choosing the new 
option expecting a better payoff) and exploitation(choosing 
the known option ) to get personalized decisions for every 
situation. In a nutshell, contextual bandits learn from user 
feedback to provide the best possible option on the fly, 
thereby reducing the risk of showing poor options to the user 
for too long by exploring the existing options and exploiting 
the most promising ones. Thus, contextual bandits are used 
successfully in real-life decision-making problems like 
clinical trials12, recommender systems13,37-40, dialogue systems6, 

cognitive radio32-33, brain and behavioural modelling14, online 
advertisement24, and many more.

Although these models can optimize decisions and provide 
accurate predictions, there is little explanation as to why and 
how a decision is made. Unfortunately, the black-box nature of 
the contextual bandits’ algorithms is still unresolved, and many 
machine decisions are still poorly understood. Thus, there is a 
need for explainable AI-based models that interpret information 
in real-time settings, provide personalized solutions, and 
improve human understanding of the decisions made by the 
model. Further, the model should learn by itself without any 
human intervention so that it can be deployed at scale. Another 
major challenge faced is the cold-start problem41, where many 
newly added items have very little past interactions with the 
users, thereby making it impossible to provide a personalized 
recommendation.

To meet these requirements, an explainable AI-based 
FuzzyBandit model has been proposed in this paper, where 
each arm in FuzzyBandit mimics an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) to provide personalized choices 
to the user for the applications. The FuzzyBandit model is 
interpretable, i.e., the user can easily understand the underlying 
mechanism and justify the decision. It also allows the user to 
successfully answer questions such as why a particular action 
(or decision) is chosen at any instance of time or explain why 
things go wrong? Thereby, the user can easily understand the 
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decisions made by the proposed model. Further, coherent 
mathematics is also provided to calculate a trust score for the 
proposed FuzzyBandit model, which induces trust in the user 
regarding the decisions taken and detects erroneous reasoning 
in the proposed model, if any.

The paper is organised as follows: Section 2 reveals 
the existing literature on different types of contextual bandit 
models, their limitations, and their applications. An explainable 
AI-based FuzzyBandit model is proposed in section 3, and 
a detailed analysis of the benchmark datasets is described in 
section 4. The simulations and result analysis are carried out in 
section 5. Finally, the conclusions are given in section 6.

2. LITERATURE REVIEW
The multi-armed bandit problem26 was first introduced as 

a sequential decision problem with statistical assumptions over 
the distribution of rewards over each arm to establish worst-
case lower bounds for bandit experiments. It is recognized as 
an exploration/exploitation trade-off problem, maximizing the 
user’s satisfaction by selecting the best arm, i.e. exploitation, 
while exploring the new choices/arms for uncertainties in 
the user’s interests.Epsilon-greedy21 and Epoch Greedy18 are 
classic algorithms for random exploration, whereas Thompson 
Sampling1,7 is the heuristic algorithm that handles the 
exploration-exploitation trade-off by maintaining probability 
distributions for each arm and then sampling from them on 
every trial to choose the one that predicts better rewards. 
LinUCB8,20 assumed a linear relationship between the expected 
reward and the context. However, Chapelle & Li7 showed that 
Thompson Sampling (TS) beats UCB. 

With time, variants of the initial problem with different 
practical scenarios and constraints, such as non-stationary 
data (both data distributions and rewards may change with 
time), personalization on a per-user basis, and no assumption 
on how the rewards get generated, were introduced. In 
adversarial bandits4, an adversary controls the rewards, and 
in stochastic bandit formulation17, arms reward distribution 
is given by a well-behaved stochastic process instead of the 
statistical assumption as in the originally defined multi-arm 
bandit problem. Various optimal solutions using a stochastic 
formulation17,29, adversarial formulation3,30 and Bayesian 
formulation5,16 have been provided in the literature. 

Similarly, to provide personalized services, i.e. tailor 
the content as per the user needs and preferences, Contextual 
Multi-Armed Bandit Problem (CMAB)10,18 uses a context 
feature vector (consists of the user’s profile and choices) on 
each iteration and predicts the best choice out of the possible 
choices for user’s satisfaction and interest. Recently, many 
solutions have been developed around contextual bandits 
to represent real-world problems. In the policy elimination 
algorithm11, only good policies are kept in the working set, and 
the epoch-greedy algorithm is used for exploration. However, 
it is difficult to keep track of good policies and difficult to 
implement. If one removes an optimal policy by mistake, the 
algorithm can never recover. EXP-33 used weights for each 
arm, and weights were incremented exponentially for choosing 
the best arm. EXP-43 algorithm used advice from multiple 
experts to explore the connection between the context vector 
and the rewards of each arm, making it a suitable algorithm for 
non-stationary data.Banditron15 model employed a perceptron27 

Figure 1. The proposed FuzzyBandit model.
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At the end of the T trials, the model aims to minimize 
the regret or maximize the total reward observed. This CMAB 
property allows the proposed FuzzyBandit model to simulate 
real-world problems for e.g., in an online food ordering 
app, each time the user logs into the app, the model uses the 
information about the user and renders a serviceable restaurant 
(i.e., action) to the user from a set of possible restaurants 
partner advertisement (modelled as k arms).The context feature 
is the information about the user: the user’s past order history, 
favourite restaurants, average order values, a device used to 
order food, etc. The user feedback i.e. click/ no click on the 
advertisement, will act as a reward. 

As depicted in Fig.1, the proposed model consists of 
k fuzzybandit arms where each fuzzybandit arm (FBA) 
corresponds to an action from an alternate number of choices/
actions possible. Each FBA represents a standalone ANFIS 
model developed using the Sugeno fuzzy model19,23 and 
inputs an n-dimension user context feature x(t). Since the 
inputted context feature vector is vague or imprecise, x(t) is 
represented with more than one fuzzy set with membership 
functions, A11,A21,…ADn, to accommodate the possibility of 
more than one linguistic variable associated with the feature. 
For each membership function, F maps the element of x(t) to 
a value between 0 and 1 i.e. F(x(t))→[0,1]. We have used the 
gaussian membership function for each node, as shown in the 
Fuzzification layer in Fig. 1 and is defined as: 

      (2)

where, {ai,j,bi,j}ϵRXR are arm-tuning parameters associated 
with each node and get updated with each iteration. n is the 
number of features of the user context feature vector, and m 
represents the number of membership function associated with 
each feature. The number of membership functions for each 
feature is data-dependent and is calculated experimentally. 
Next the real-time relevance scoring, FBAi(t) for each action 
associated with FBA is calculated using the FuzzyBandit 
Ranking Algorithm. The FBAi(t) score is calculated as:

             (3)

where, b will be , qj,i are arm-rules based 
parameters and W is the output from the previous layer for each 
FBA. 

The arm-rule based parameters for each FBA is computed 
as the best solution for Eqn. (3) which is minimizing the square 
error . It is given as:

b*=(WTW)-1WTZ             (4)
where, WT is the transpose of W and (WTW)-1WT is the pseudo 
inverse of W. 

The FBAi(t) score calculated in Eqn. (4) is inputted into 
the FuzzyBandit Arm Selection Unit (FB-ASU).FB-ASU 
ranks each action, ai(t) corresponding to the arm, i based on 
the FBAi(t) score in the descending order i.e. the arm with 
the highest FBAi(t) the score gets the lowest rank. The lowest 
ranked arm is then outputted as the best possible arm for the 
given x(t) by the proposed model and fed into the FuzzyBandit 
Arm Tuning Unit (FB-ATU). For each trial, FB-ATU checks 

to model expected rewards. It maintained weight vectors for 
each arm and outputs a prediction to the arm with the highest 
score. The algorithm employs a linear model. When banditron 
is coupled with upper confidence bound techniques, it is called 
Confidit9.Confidit provides better performance than its base 
algorithm, banditron.

Linear algorithms lack representational power, and to 
overcome this shortcoming, deep neural networks became 
popular. Many deep neural networks use Thompson sampling 
as an exploration technique where a context is drawn at each 
round, and posterior distribution is updated with the result of the 
action, i.e. the feedback. An empirical comparative study28 on 
how different posterior approximations by various algorithmic 
approaches/models, such as the Dropout model, neural linear 
model, etc., affect the decision-making performance via 
Thompson Sampling is presented. In deep neural network 
approaches, like Neural Bandits2, a neural model is maintained 
for each arm for the ease of adding and removing arms. At each 
step, the context vector is taken as input for each neural model, 
and a score is obtained. The model chooses the arm with 
the highest score. Epsilon-Greedy is used as an exploration 
technique in this case. However, there are various limitations. 
Firstly, it is a very daunting task to train different architectures 
and to find optimal hyperparameters for each architecture, 
which requires a lot of computational power. Secondly, a neural 
network requires a large training dataset, which is infeasible in 
real-time applications where it is essential to respond quickly. 
The dropout25 model addresses the above issues by dropping 
out the hidden layers in the network, i.e. randomly zeroes out 
the output of a neuron in the forward pass with a probability 
p. This prevents both overfitting and computational power to 
train the model. However, the number of hyperparameters to 
tune and the training time required will still be much higher 
when compared to the linear models.

3. METHODOLOGY
In this paper, it is proposed that a novel explainable 

AI (XAI) based FuzzyBandit model usage, an autonomous 
decision system that not only optimizes and personalizes 
decisions for every situation based on the previous observations 
but at the same time generates explanations for the decisions 
made. For every decision, the model generates a confidence 
score a, which enables the end user to easily understand and 
trust the decisions taken by the model. The proposed model 
simulates contextual multi-arm bandit (CMAB) model settings 
where it inputs a finite n-dimension user context feature vector,  
x(t)={x1(t), x2(t),…xn(t)} and chooses an action, a(t) from an 
alternate number of choices/actions for each trial t. Each action 
is associated with a reward that is unknown to the model and 
is revealed after the action is chosen. The proposed model 
observes a binary reward, ra(t)(t) i.e. +1 if the rendered action is 
accepted by the user; otherwise, 0.For each trial, t let a*(t) be 
the optimal arm/choice which would yield the highest reward, 
ra*(t)(t). Then the regret(t) is defined as the difference between 
the maximum reward for trial t and the observed reward by the 
model, i.e.

regret(t)= ra*(t)(t)- ra(t)(t) I x(t)            (1)
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whether the selected arm by the proposed model is the optimal 
arm or not and generates relevant feedback for network 
training. The feedback is the difference in the score calculated 
by the proposed FuzzyBandit model and the actual score 
using the Recursive Least Square Estimator (RLSE) method. 
In case the selected arm is the optimal arm, positive feedback 
is generated and back propagated to the selected arm. This is 
done to ensure that the next time the model is presented with 
the same user context feature vector, the previously selected 
arm FBA_i(t) score is higher than its peer arms, thereby 
exploiting the same action/choice as by the user in the past. 

Also, if the arm outputted by the FB-ATU is not the desired 
arm, negative feedback is not generated to minimize the score 
of the selected arm. This enables the model to explore a new 
action in the subsequent trial. Arm Tuning based parameters 
are trained using the derivation as proposed by Jang22.

3.1  FuzzyBandit Ranking Algorithm
The FuzzyBandit Ranking Algorithm consists of three 

subsections. The first one is the FBA_fuzzification subsection 
computes fuzzy membership value associated with the user 
contextual feature vector for each FBA and stores it into the 

Figure 2. Explainable AI model for FuzzyBandit.
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matrix, O1 of dimension n×m where n is the number of features 
of the user contextual feature vector, and m is the number of 
membership functions associated with each feature. The second 
subsection, FBA_integration, first combines the membership 
of all features computed from the previous subsection by 
multiplying the membership values calculated in the matrix, 
O1 and then normalizing the membership of each feature as 
each feature is represented with more than one membership 
function.Lastly, the FBA_defuzzification subsection returns 
the crisp output score FBA_score for each FBA. To calculate 
FBA_score, the normalized weights calculated in FBA_
normalization subsection are multiplied with a function, F, and 
stored in a matrix O4. F is a linear function of arm-rule based 
parameters and the user context feature vector. The same can 
be visualized in the defuzzification layer ( as shown in Fig. 
1) which multiplies the inference of normalized firing strength 
of each node and the first-order polynomial of user contextual 
feature vector and arm-rule based parameters. The score for 
each FBA shown in Fig. 2.

The summation of matrix, O4 and stored in FBA_score. 
Each FBA is ranked in descending order of the FBA_score. 
The arm with the lowest rank is selected and the action 
corresponding to the selected arm is displayed to the user. If 
the user clicks on the displayed action, then the action selected 
by the model is correct and positive feedback is sent back i.e. 
exploiting the choice for the next iteration. If the selected arm 
is not clicked by the user, then no feedback is sent back which 
allows the proposed model to explore new actions in the next 
iteration.

3.2 Explainable AI
The proposed FuzzyBandit model incorporates 

explainable AI(XAI) by computing FuzzyBandit-User reward 
difference so that the model learns by itself without any 
human intervention and a user can also easily understand the 
decisions made by the model. This enables the proposed model 
to be transparent and perform autonomously. Thus, the model’s 
decisions in the real-world environment can be trusted by the 
user, thereby allowing the model to be deployed at scale. 

Figure 2 shows how the explanations are generated 
by the model using the FuzzyBandit-User (FB-U) reward 
difference. The FuzzyBandit model inputs ann-dimensional 
context vector bi(t)ϵRd associated with each arm i at time t 
and yields a random reward ra(t)(t) with unknown distribution 
qi(t) for the corresponding action ai(t) chosen. If the user 
disapproves of the action chosen by the model or seeks an 
explanation as to why ai(t) is chosen, then the user chooses 
an action  preferred over the action ai(t) by the user and 
observes the reward, . Let the optimal arm at time t is  
a*(t)=argmax1 ≤ i ≤ N {qt(bi (t))}. The FuzzyBandit-User (FB-U) 
reward difference vector can be computed as:

 
 
 FB-U 

For t =1,2,..T steps, total reward difference R(T) can be 
calculated as:

If the total reward difference, R(T) is greater than zero 
that means the total reward generated by the FuzzyBandit 
model is more than that of the reward generated by the user. 
A high positive magnitude of R(T) shows the decisions made 
by the proposed FuzzyBandit model are much higher reward 
yielding as compared to the decisions made by the user and 
thus enables humans to understand the decisions or predictions 
made by the proposed model. In order to quantify this and 
get deeper insight, we look into each component Δc(FB-U) 
which numerically can take either 0, -1, or +1. Logically, each 
component of FB-U signifies either a positive or negative 
reason for choosing action ai(t) over user-generated action,  

. Since the FB-U vector is computed over 
T steps, it can become overwhelming for the human to 

visualize each action preference individually, so in order 
to simplify this we have computed two sets ofpositive and 
negative reasons i.e. FB-U+ and FB-U-. Mathematically,

and

where I is the identity function.

We have computed the confidence score, a using 
FuzzyBandit-User reward difference, which signifies how 
much percentage the user can trust the FuzzyBandit model 
decisions in real-time settings. Alternatively, a represents 
the total percentage of the FuzzyBandit model’s decisions (or 
actions chosen) better than the user’s decisions. Similarly, b 
is the total percentage of the user’s decisions better than that 
of the FuzzyBandit model. They can be computed as follows:

In the above Eqn., a and b act as the trust factor for the 
user as they quantify that by how much value the FuzzyBandit 
model’s decisions are better or worse than the user’s decisions. 
This enables our proposed FuzzyBandit model to be deeply 
coupled with explainable AI to yield insight into complex 
model decisions and deployed autonomously without any 
human interventions.

4. EXPERIMENTAL RESULTS 
In this paper, four publicly available datasets, namely the 

Forest Cover type dataset, Mushroom dataset, Statlog (Shuttle) 
dataset, and Adult Income from the UCI Machine Learning 
Repository31, are being used. These datasets have been widely 
used in the literature as benchmark datasets to measure the 
performance of various contextual multi-arm bandit algorithms. 
The objective of this experiment is to test the suitability of the 
proposed FuzzyBandit model by combining various criteria for 
the datasets. In this paper, we considered nine criteria39, namely 
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Table 1. Performance of contextual bandit models on the mushroom database for the optimal arm

Parameters Uniform 
sampling RMS Dropout BootRMS ParamNoise BBAlphaDiv FuzzyBandit Banditron

Recall 0.502 0.829 0.735 0.873 0.739 0.818 0.851 0.669
Specificity 0.504 0.756 0.695 0.826 0.708 0.834 0.853 0.668
Precision 0.521 0.785 0.722 0.843 0.731 0.841 0.862 0.684
Prevalence 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518
F score 0.511 0.809 0.727 0.856 0.735 0.829 0.855 0.674
MCC 0.006 0.588 0.431 0.701 0.4469 0.652 0.703 0.337
FM 0.260 0.650 0.530 0.733 0.540 0.690 0.730 0.450
CSI 0.340 0.680 0.570 0.751 0.581 0.710 0.748 0.510
Overall accuracy 50.31 79.39 71.59 85.03 72.39 82.57 85.18 66.84

Table 2. Performance of contextual bandit models on the adult database for the optimal arm

Parameters Uniform 
sampling RMS Dropout BootRMS ParamNoise BBAlphaDiv FuzzyBandit Banditron

Recall 0.499 0.758 0.773 0.770 0.747 0.673 0.742 0.613
Specificity 0.504 0.756 0.770 0.768 0.745 0.679 0.729 0.611
Precision 0.754 0.905 0.910 0.910 0.900 0.870 0.893 0.828
Prevalence 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753
F1 score 0.599 0.823 0.836 0.834 0.816 0.759 0.809 0.704
MCC 0.002 0.459 0.487 0.482 0.438 0.308 0.420 0.194
FM 0.374 0.682 0.704 0.701 0.672 0.586 0.663 0.508
CSI 0.429 0.702 0.719 0.715 0.690 0.609 0.681 0.544
Overall accuracy 50.02 75.74 77.2 76.93 74.67 67.48 73.87 61.23

Figure 3. Prediction accuracy for adult dataset. Figure 4. Prediction accuracy for covertype dataset.

Figure 5. Prediction accuracy for mushroom dataset.     Figure 6. Prediction accuracy for statlog dataset.
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recall, specificity, precision, prevalence, F1 score, Matthews 
correlation coefficient (MCC), Fowlkes–Mallows index (FM), 
critical success index (CSI), and accuracy as summarized in 
Table 1 and Table 2.These criteria39 are important as the number 
of observations for each arm/ choice varies significantly in 
the dataset, and thereby, relying alone on accuracy can be 
misleading. For e.g., in the mushroom dataset, there are 3916 
instances where the mushroom is edible and 4084 instances 
where the mushroom is poisonous, and the algorithm has to 
predict out of the two choices, i.e., mushroom is either edible 
or poisonous. A particular algorithm/model might predict all 
the observations as poisonous, giving an overall accuracy of  
51 %, but in more detail, the algorithm has 100 % sensitivity 
for the poisonous class but a 0 % sensitivity for the edible class.

All the experiments are conducted in online settings, 
where the context is fed into the model and action is recorded. 
The model is then updated with the feedback observed. We 
have tested the performance of the proposed FuzzyBandit 
model on various criteria with the existing seven contextual 
bandit models. The first one is the uniform sampling model, 
a random policy model that ignores the context vector and 
chooses an arm randomly for each iteration. The second model 
is the Banditron model, which uses a simple perception model 
for exploitation and epsilon greedy as an exploration policy 
for each iteration. The third model is the Dropout model, 
a variation of the Neural Model (which uses each arm as a 
neural model for exploiting the best arm and epsilon greedy 
policy for exploration) and uses the Dropout neural network 
to predict the best arm in each trial. Next is the RMS model, 
which trains a neural network and chooses the action based on 
the highest score predicted, i.e., acts greedily for the current 
context. BootRMS model uses Bootstrap36 to offer significant 
performance gain with respect to its parent RMS model.

The remaining models, namely BBAlphadiv35 and Param 
Noise34, are non-linear models and use Thompson Sampling 
for exploitation.

4.1  Adult Income Dataset
In Figure 3, the curves for the five models, namely the 

RMS, the BootRMS, the Dropout, the ParamNoise, and the 
FuzzyBandit model, overlap where The RMS model and the 
dropout model take the lead in the latter part of the experiment 
with an accuracy of 73-77 %. The FuzzyBandit mode with 
5 % exploration achieved an accuracy of about 73-75 % and 
performed better than the Banditron and the BBAAlphadiv 
model.

4.2  Cover Type Dataset
An interesting trend in the curves of all the models can be 

seen in Fig. 4. The accuracy for all the models initially dips and 
then increases as the experiment progresses. The FuzzyBandit 
model emerges as a clear winner and achieves an accuracy 
of about 65-70 %, beating all other models by a significant 
margin. Surprisingly, the banditron model is the second-best-
performing model, with an accuracy of around 48-52 %.

 
4.3  Mushroom Dataset

The experimental results on the Mushroom dataset in  

Fig. 5 show that all the curves of different models follow a similar 
trend. They reach a peak and then start to fall as the experiment 
progresses. However, the FuzzyBandit model adapts better to 
new input than its other neural model counterpart and flattens. 
The FuzzyBandit model achieves a maximum accuracy of  
93 % with an average accuracy of about 85-87 %, outperforming 
the other models except for the BootRMS model, which 
performs almost similar to the FuzzyBandit model.

 
4.4  Statlog Dataset

In Fig. 6, it can be seen that the curves of all the models 
show an increasing trend as the experiment progresses.Initially, 
the FuzzyBandit model takes the lead by outperforming all 
other models, but as the experiment progresses, the accuracy 
of the FuzzyBandit model remains the same at around 83 %, 
while the BootRMS model takes the lead. The ParamNoise 
model performs at par with the FuzzyBandit model with an 
accuracy of 80-83 %.

5. CONCLUSION
A new FuzzyBandit model for the contextual multi-

arm bandit problem has been proposed. Each arm in the 
FuzzyBandit model mimics ANFIS independently by adjusting 
arm tuning and arm-rules based parameters according to user 
choice. The model can easily tune all its parameters by back 
propagation and can be successfully trained in both offline and 
online settings for real-time applications where the rewards and 
data distribution can be dynamic. A comparative study of the 
contextual bandit’s models on nine criteria has been proposed. 
It is observed that none of the models has outperformed the 
other remaining models on different criteria in all four datasets. 
However, the FuzzyBandit model has shown promising results 
for all the datasets.
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