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Extended Kalman Filters for Target Tracking
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ABSTRACT

Two-filter schemes have been evaluated to handle the polar measurements using error model
(for bias correction and measurement noise covariance computation) for target-tracking
application. It is assumed that a good reference source of target information is available.
Schemes based on error model converted measurement Kalman filter (ECMKF) and error model
modified extended-Kalman filter (EMEKF) algorithms are presented. Also some comparison with
CMKF (debiased) is given. It is inferred that EMEKF gives better performance compared to
other filters. Features of CMKF (debiased), ECMKF, and EMEKF are highlighted. Also the
sensitivity study on the performance of EMEKF is carried out wrt to processing order of radar
measurement channels.

 Keywords: Polar measurements, target tracking, radar measurements, filter scheme, ECMKF, CMKF,
EMEKF, algorithms, Kalman filter, target algorithms, Cartesian coordinate frames, polar frame

1 . INTRODUCTION

Algorithms for obtaining improved accuracy
with radar measurements in target-tracking
applications using Kalman filters are available in
the literature1-3. Target dynamics are best described
in Cartesian coordinate frame, since the dynamic
equations are uncoupled and linear. However, radars
measure the target range, elevation and azimuth,
resulting in a nonlinear relation between the states
and the measurements. It is known that, the
inaccuracies of the measurements have a direct
effect on the performance of the tracking algorithms.
For target tracking using the radar measurements,
two approaches are commonly used. The first approach
is a linear Kalman filter (CMKF), wherein the
measurements used for updating the states are
generated by converting the raw measurements

in polar frame to the Cartesian frame so that the
measurements are linear functions of the states2.
In this case, the converted measurement errors
get correlated. Also, when the cross-range
measurement errors are large, the mean of the
errors is high, and hence, debiasing is required.
The measurement noise covariance matrix should
include cross-covariance terms to account for correlated
measurement errors. Analytical expressions for
debiased consistent estimates (CMKF-D) have been
derived 2. Implementation necessitates the evaluation
of complex equations. The second approach is an
extended-Kalman filter (EKF), wherein the
measurements used for updating the states are
the range, azimuth, and elevation in polar frame
so that one has a filter where the measurements
are nonlinear functions of the states resulting in a
mixed coordinate filter. It is well-known that in



680

DEF SCI J, VOL. 56, NO. 5, NOVEMBER 2006

the EKF, the initial covariance depends on the
initial converted measurements and the gains depend
on the accuracy of the subsequent linearisation.
The overall performance depends on these accuracies.
A simple way to handle the nonlinearities has been
proposed4. The method involves sequential processing
of the radar measurements in elevation, azimuth,
and range while linearising the nonlinear equations
wrt the estimated states at each instant of time.
The sequential processing results in considerable
computational savings. However, when the nonlinearities
are significant, modified expressions for the mean
and covariance errors are used and a modified
(measurements are sequentially processed) EKF
(called MEKF) was proposed3. Thus, for achieving
better accuracies, both the methods require certain
modifications to handle bias as well as measurement
error covariances in the conventional linear Kalman
filter as well as in EKF.

An alternative way of achieving debiasing and
obtaining an estimate of the measurement error
covariances using converted radar measurements
is proposed. This method, termed ECMKF (error
model converted measurement Kalman filter)
presupposes the availability of a very accurate
reference data from an independent measurement
source. It is known that GPS gives very accurate
measurements of position of, eg, aircraft. Hence,
it can be used to get accurate estimates of the bias
as well as measurement noise covariance of the
converted measurements in the Cartesian frame
using Kalman filter with error state space formulation5.
The estimated bias is used to correct the converted
measurements, and the estimated covariance values
are used in the ECMKF.

The performance of the ECMKF is compared
with the EMEKF algorithm which handles
measurements of range, azimuth, and elevation
directly using simulated data of a target with different
measurement accuracies. The algorithms are
implemented in PC MATLAB. The algorithms are
evaluated for their performances in terms of root
sum square position error (RSSPE), and fit error
wrt true data. The algorithms are also used for
tracking a moving aircraft from the ground-based
radar measurements when GPS measurements of
position of the aircraft are available. For the sake

of comparison, the results of CMKF-D2 are also
presented 6.

2 . ECMKF AND EMEKF ALGORITHMS

Target motion model is described in the Cartesian
coordinate system by linear discrete–time difference
equation with additive noise as
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where the Cartesian state vector (X) consists of
the position and velocity of the target moving in
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are assumed to be mutually
uncorrelated and zero-mean white Gaussian noise
with variances 222 ,,r , respectively..

2.1 ECMKF Algorithm

The measured range, azimuth, and elevation
from radar are converted to positions in Cartesian
frame using the following relations:
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)sin(* mmrz (3)

][ zyxZm

Error Model Kalman Filter

With the GPS data as reference and the converted
measurement data, the objective is to utilise the
information and combine the same in an optimal
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manner to estimate the bias errors in the sensor
measurements and obtain estimate of the measurement
noise covariance for the sensors. Although GPS
would be accurate, there would be some outages
due to atmosphere disturbances/obstacles in the
path of the signal. Hence GPS signal only cannot
be used for target tracking. Also GPS signal is
available at one second interval and radar data are
available at much faster rate, and hence, for accurate
results, KF is needed to process radar data. Kalman
filter for this purpose has the advantage of using
the statistical characteristics of the errors in both
the reference data and other sensors to determine
the optimal estimate of the bias characteristics. In
this application, the Kalman filter uses error state
space formulation in place of the actual state space
formulation [Fig.1(a)]. The error state space Kalman
filter estimates the errors in the converted sensor
data using the difference between the measured
position data and the reference data (supposed to
be accurate and independent source data). Error
model Kalman filter (EMKF) gives optimal estimates
of the errors ( X̂ ) in the sensors-based on the
error state model it carries, the difference between
the converted radar data and the GPS reference
data and the noise statistics. The error estimates
are used to correct the measurement data. The
error state model in discrete form is given as1

X
K+1 

= F X
K 

+ Gw
K

(4)

Z
K 

= H X
K 

+ v
K

(5)

where X is the vector of position and velocity
errors in all the three axes, Z is the vector of

computed position error in all the three axes (GPS–
radar measurement), F is the transition matrix, H is
the output matrix, w is the process noise with mean
zero and variance Q, and v is the measurement noise
with mean zero and variance R. The estimated position
error is used to correct the converted data which is
used for the measurement update. The ECMKF
equations follow the conventional linear Kalman filter.
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Error state/states used in above equations are
commonly used for error model/KF. The scheme
is shown in block diagram of Fig.1(b) for ECMKF.

2.2 EMEKF Algorithm–Measurement Data
Updates

In EMEKF, 3-D radar measurement vector is
processed one component at a time in the preferred
order of elevation, azimuth, and range, while linearising

Figure 1(a). Error model Kalman filter.
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the corresponding nonlinear measurement equation
wrt to the latest position estimate before each
update. The initialisation and time propagation are
done using Eqns (6) and (7). The error (model)
states will be r, 

 

and

 

here. It is to be noted
that the measurement update the range measurement,
includes extra terms in the measurement covariance
part to account for nonlinear cross-coupling between
the range, azimuth and elevation measurements.
The following description assumes that the
measurements are processed starting with 

 

and
predicted states, and then 

 

and range3.
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Figure 1(b). Schematic of error model converted measurement Kalman filter.
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Here m
k

m
k

m
kr ,, are the radar measurements at

k th scan. Figure 2 shows the block diagram of the
EMEKF. For clarity and completeness, the details
of CMKF-D2 are also given in Appendix 1. Table 1
gives the features/differences in the CMKF-D,
ECMKF, and EMEKF schemes .

3. RESULT AND DISCUSSION

The simulated data (Set 1 and Set 2) with
different measurement accuracies are generated
for validation purpose. The appropriate models for
simulation are given as
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Figure 2. Schematic of error model modified extended Kalman filter: P2C is the polar to Cartesian coordinate conversion, C2P
is the Cartesian to polar coordinate conversion and EMKF computes measurement bias and noise covariance.

Table 1. Main features of CMKF-D, ECMKF, and EMEKF methods

CMKF-D

Uses linear Kalman filter.

Measurements converted from Polar to
Cartesian using nonlinear transformation
(P2C).

Uses the debiased2 technique (through
nonlinear transformation) for bias estimation
and measurement noise covariance estimation
in Cartesian frame.

Nonlinear transformation (debiased) called
at every instant of measurement.

Computationally complex.

ECMKF

Uses linear Kalman filter.

Measurements converted from Polar
to Cartesian using nonlinear
transformation (P2C).

Uses error model (EMKF) technique
for bias and measurement noise
covariance estimation in Cartesian
frame.

Nonlinear transformation (debiased)
not used.

Computationally less complex.

EMEKF

Uses extended Kalman filter.

Measurements not converted.

Uses error model (EMKF) technique for
bias and measurement noise covariance
estimation in Polar frame.

Nonlinear transformation (debiased) not used.

Computationally less complex.

MEKF
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where, F, G, H are the state transition, process
noise gain, observation matrices, respectively and
T is the sampling time interval in seconds.

The data is generated with the initial conditions:
[100 -100 100] (m) for position and [5 -5 5](m/s)
for velocity, Q = 0.25 and 500 data points with a
sampling interval of 1.0 s are used. Random noise
is added to the true data with following standard
deviations:

Set 1 Data

r 
=30 m ; = 0.015o ; 

 

= 0.015o

Set 2 Data

r 
=30 m ; = 1.5o ; 

 

= 1.5o

Figures 3(a) to 3(c) (Set1 data) and Figs
4(a) to 4(c) (Set 2 data) show the range, azimuth,
and elevation errors for ECMKF and EMEKF.
It is clear that the range errors are well within
the theoretical bounds. Here, the bounds vary
because the computation is based on windowing
method. However the azimuth and elevation errors
using ECMKF are outside the theoretical bounds
during the initial portion of the data. Figures
3(d) and 4(d) show the root sum square position
error. The performance of the two algorithms
shows comparable root sum square position error
for Set 1 data and EMEKF indicates lower root
sum square position error than the ECMKF for
Set 2 data. Figures clearly show that when the
angular accuracies of the measuring radar are
low, the EMEKF performs better than the ECMKF,

whereas the performance of the two algorithms
is roughly similar when the angular radar
measurements are accurate
(Tables 2 and 3). A Monte-Carlo simulation of
25 runs is also carried out on Set 2 data. The
seed number for the process noise was kept
constant, however, i t was varied for the
measurement noise, for 25 runs. The results of
this exercise are given in Table 3 from which
it was observed that also the average EMEKF
shows better performance over the ECMKF
algorithm. This is further confirmed from Figs
4(e) and 4(f).

Figures 5(a) to 5(c) show the performance of
the EMEKF and ECMKF algorithms for Set 3 data
[independently generated by another agency] of a
moving aircraft tracked by a ground-based radar
and for which accurate GPS position measurements
are available. It is clear that the errors are well
within the theoretical bounds. However, the EMEKF
gives somewhat better performance in terms of
root sum square position error.

The performance of the ECMKF and EMEKF
is evaluated in terms of percentage fit error in
polar and Cartesian frames (Tables 2-4) for data
(Sets 1, 2 and 3), respectively. It is clear that when
the angular accuracies of the measuring radar are
low, the EMEKF performs better than the ECMKF.

3.1 Sensitivity Study on EMEKF

A 3-D radar measurement vector is processed,
one component at a time, in the preferred order
(based on the assumption that radar will give more
accurate angular data than the range) of elevation,
azimuth, and range. The effect of changing the
order of measurement processing on the performance
has been studied for three cases: Case1 – Elevation,
azimuth, and range, Case 2 - Azimuth, range, and
elevation, Case 3 – Range, elevation and azimuth.
Table 5 gives statistics of the EMEKF performance
for Set 2 data. The Set 2 data is used to highlight
the performance of the EMEKF even when the
measurement data are highly noisy. It is clear that
the measurement sequencing has little effect on
the performance.
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3.2 Comparison of CMKF-D, ECMKF AND
EMEKF

For (Set 4) data, the following values are used:

r 
=30 m ; =1.5o

X(0) = [100 100 5 5]; Q = 0.25; N = 500; t = 1.0

The results of Set 4 data processed in the
CMKF-D (Appendix 1) are shown in Table 6
which also compares the performance of other
algorithms. Figure 6 shows comparison of the estimated
measurement noise covariance using the three
techniques. The results show that

• ECMKF has better performance as compared to
CMKF-D-T/CMKF-D-M in terms of percentage fit error.

• The estimated measurement noise covariance
R (for ECMKF) is, on an average (Fig. 6),
comparable with that of CMKF-D-T and CMKF-
D-M methods. The window length used for R
(ECMKF) is 10.

• EMEKF has overall better performance in terms
of percentage fit errors.

• The performance of CMKF-D-T, CMKF-D-
M, ECMKF, and EMEKF algorithms in term
of percentage of fit error is compared (Fig. 7).
It is clear that most of the time, EMEKF
shows better performance compared to other
algorithms for various sets of data.

Figure 3(a). Range error comparison for EMEKF and ECMKF
– simulated Set 1 data.

Figure 3(b). Azimuth error comparison for EMEKF and
ECMKF – simulated Set 1 data.

Figure 3(c). Elevation error comparison for EMEKF and
ECMKF – simulated Set 1 data.

Figure 3(d). RSSPE comparison for EMEKF and ECMKF –
simulated Set 1 data.
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Figure 4(a). Range error comparison for EMEKF and ECMKF
– simulated Set 2 data.

Figure 4(b). Azimuth error comparison for EMEKF and
ECMKF – simulated Set 2 data.

Figure 4(c). Elevation error comparison for EMEKF and
ECMKF – simulated Set 2 data.

Figure 4(d). RSSPE comparison for EMEKF and ECMKF –
simulated Set 2 data.

Figure 4(e). Elevation error comparison for EMEKF and
ECMKF – simulated Set 2 data (Monte-Carlo
simulation of 25 runs).

Figure 4(f). RSSPE comparison for EMEKF and ECMKF –
simulated Set 2 data (Monte-Carlo simulation
of 25 runs).
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3.3 Comparison of Block and Sequential
Processing of EMEKF Algorithm

The simulated data is generated with the initial
conditions: [100 -100 100] (m) for position and
[5 -5 5] (m/s) for velocity, Q = 0.25. 500 data
points with a sampling interval of 1.0 s are used.
Random noise was added to the true data with the
following standard deviations:

r 
= 3m ; = 10o ; = 10o

A Monte-Carlo simulation of 25 runs was carried
out for this data set. The seed number for the
process noise was kept constant, however, it was
varied for the measurement noise, for 25 runs.
Fig. 8 shows the comparison of block and sequential
processing techniques in term of root sum square

position error. In block processing, all the measurement
are processed at a time to update the target states
(vector processing). In sequential processing the

Figure 5(b). Azimuth error comparison for EMEKF and
ECMKF – real Set 3 data.

Figure 5(a). Range error comparison for EMEKF and ECMKF
– real Set 3 data.

Figure 5(d). RSSPE comparison for EMEKF and ECMKF–
real data Set 3.

Figure 5(c). Elevation error comparison for EMEKF and
ECMKF – real data Set 3.

Figure 6. Measurement noise covariance estimation –
simulated Set 4 data.
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Table 2. Results of Set 1 data (single run)

Method Per cent fit error in polar frame Per cent fit error in Cartesian frame
(wrt reference) (wrt reference)

Range Azimuth Elevation X-pos Y-pos Z-pos

ECMKF 0.2037 0.3687 0.4460 0.2366 0.2465 0.2331

EMEKF 0.2212 0.0078 0.0085 0.2138 0.2185 0.2259

Table 3. Results of Set 2 data (single/multiple runs)

Method Percent fit error in polar frame Percent fit error in Cartesian frame
(wrt reference) (wrt reference)

Range Azimuth Elevation X-pos Y-pos Z-pos

ECMKF 0.3878 (0.2993) 0.9742 (0.6491) 0.7774 (0.5444) 1.3434 (0.8935) 0.7998 (0.5751) 0.5506 (0.3065)

EMEKF 0.2393 (0.1821) 0.5235 (0.5810) 0.4806 (0.2366) 0.7280 (0.7495) 0.5625 (0.4647) 0.3687 (0.2118)

(.) Computed based on Monte-Carlo simulation of 25 runs.

Table 4. Results of Set 3 data

Method Percent fit error in polar frame Percent fit error in Cartesian frame
(wrt reference) (wrt reference)

Range Azimuth Elevation X-pos Y-pos Z-pos

ECMKF 0.0010 0.0013 0.0409 0.0001 0.0215 0.0606
EMEKF 0.0004 0.0017 0.0047 0.0011 0.0283 0.0062

target states are updated based on the sequential
processing, of measurements (ie, one measurement
at a time). In the present case, the processing
order of measurement is elevation, azimuth, and
range. It is clear that sequential processing in
EMEKF algorithm obtains slightly better performance
than the block processing. If very accurate reference
data or measurements from independent sources

are not available, then, the performance of the
schemes is likely to degrade.

4. CONCLUSION

The performance of the ECMKF and EMEKF
algorithms, when an accurate reference signal (say
GPS) is available for getting estimate of the measurement

Table 5. Performance results of EMEKF – Set 2 data (single run)

Sequencing Per cent fit error in polar frame Per cent fit error in Cartesian frame
order (wrt reference) (wrt reference)

Range Azimuth Elevation X-pos Y-pos Z-pos

r 0.239 0.5235 0.4806 0.728 0.562 0.3687

 

,r, 0.239 0.5234 0.4806 0.727 0.562 0.3686
r,

 

0.239 0.5235 0.4805 0.727 0.562 0.3686

Table 6. Performance results of CMKF-D, ECMKF, and EMEKF – Set 4 data (single run)

Method Per cent fit error in polar frame Per cent fit error in Cartesian frame
(wrt reference) (wrt reference)

Range Azimuth X-pos Y-pos

CMKF-D-T 0.5205 1.4889 0.8432 1.2734

CMKF-D-M 0.5267 1.4960 0.8404 1.2764

ECMKF 0.4867 1.2271 0.7741 1.1584

EMEKF 0.4781 0.6715 0.4062 0.5733
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noise covariance, is evaluated. The algorithms are
validated with three sets of data. Also the other
versions of CMKF are evaluated. It has been found
that the EMEKF shows better performance when
the angular accuracies are low. Further, error model-
based CMKF gives good results.
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The accuracy of the converted measurements depends on: (i) the geometry (range and bearing), and
ii) on the original measurements. In case of large cross-range error (ie, range multiplied by bearing error),
the converted measurements can have inherent bias that needs to be corrected by debiasing technique
known as CMKF-D2. This technique is based on the following a priori information:

• Measurement noise inaccuracies 
r
, 

• If the reference data in polar frame is available, evaluation of bias and measurement noise covariance,
R, can be done with a technique named as CMKF-D-T (T is the true data).

• In case the reference data is not available, the measurement data in polar frame can be used for
the same with a technique named as CMKF-D-M (M is the measured data).

• Equations used in CMKF-D-T are reproduced
2 

here for the sake of clarity and completeness as
follows:
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Measurement Noise Covariance Estimation
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are the estimated measurement noise covariance for x and y axes, respectively, whereas
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are the measurement noise covariance across x and y axes.
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Equations used in CMKF-D-M are reproduced
2 

for the sake of clarity and completeness as follows:

Bias Estimation
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are measured range and bearing (ie, azimuth), whereas 
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are the bias estimated in x

and y axes, respectively.

Measurement Noise Covariance Estimation
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The comparison of the ECMKF and CMKF-D schemes is shown in Table 1 and in the following figure

Schematic of ECMKF and CMKF-D*: T is the true reference data and M is the measured data.
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