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ABSTRACT

In the defense sector, where mission success often hinges on the reliability of complex mechanical systems, the 
health of bearings within aircraft, naval vessels, ground vehicles, missile systems, drones, and robotic platforms is 
paramount. Different signal processing techniques along with Higher Order Spectral Analysis (HOSA) have been used 
in literature for the fault diagnosis of bearings. Bispectral analysis offers a valuable means of finding higher-order 
statistical associations within signals, thus proving to detect the nonlinearities among Gaussian and non-Gaussian 
data. Their resilience to noise and capacity to unveil concealed information render them advantageous across a range 
of applications. Therefore, this research proposesa novel approach of utilizing the features extracted directly from 
the Bispectrum for classifying the bearing faults, departing from the common practice in other literature where the 
Bispectrum is treated as an image for fault classification. In this work vibration signalsare used to detect the bearing 
faults. The features from the non-redundant region and diagonal slice of the Bispectrum are used to capture the 
statistical and higher-order spectral characteristics of the vibration signal. A set of sixteen machine learning models, 
viz., Decision Trees, K-Nearest Neighbors, Naive Bayes, and Support Vector Machine, is employed to classify the 
bearing faults. The evaluation process involves a robust 10-fold cross-validation technique. The results reveal that the 
Decision Tree algorithm outperformed all others, achieving a remarkable accuracy rate of 100  %. The naive Bayes 
algorithm also demonstrated the least performance, with an accuracy score of 99.68  %. The results obtained from 
these algorithms have been compared with those achieved using Convolutional Neural Network (CNN), revealing 
that the training time of these algorithms is significantly shorter in comparison to CNN.
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NOMENCLATURE 
fs : Shaft speed (Hz), i.e., 

60
RPM  

RPM  : Rotations per minute
Db  : Ball Diameter (mm)
Dc   : Cage Diameter (mm)
Di   : Inner Diameter (mm)
Do : Outer Diameter (mm)
NB  : Number of Balls
q  : Contact angle (load angle with relation to the radial  
    plane in deg) 

1.  INTRODUCTION
The condition health monitoring in defense applications, 

particularly regarding critical components like bearings, is 
vital. Bearings are the unsung heroes of military machinery, 
ensuring the smooth operation of aircraft, naval vessels, ground 
vehicles, missiles, drones, and robotic platforms. Failures in 
these components can lead to costly downtime, mission failure, 
and, in worst-case scenarios, compromise national security. 
Condition health monitoring, specifically using HOSA, is 

pivotal in safeguarding these assets. As an advanced spectral 
analysis technique, HOSA offers a unique window into the 
health of bearings. It excels at capturing subtle high-frequency 
spectral patterns hidden within vibration signals’ patterns that 
are early indicators of wear, degradation, or impending failure. 

Vibration analysis is a prevalent and valuable technique 
in condition monitoring1. Linear analysis may not work for 
non-linear systems, which show variations before potential 
failures. The power spectrum is helpful for Gaussian signals 
but not for non-Gaussian and non-stationary signals in 
vibration data, which needs phase information. Higher-order 
signal analysis techniques step in to tackle phase information 
detection challenges. Among these, the Bispectrum stands 
out for its ability to process non-Gaussian signals, facilitating 
the detection and quantification of nonlinearities within time-
series data2

. A technique for diagnosing planetary gearbox 
faults early is suggested3. The analysis of modulation signal 
bispectrum and wavelet packet energy is used in this technique 
to diagnose defects. Cyclic bispectral slices, frequency shift 
bispectrum, and bispectral distributions are a few examples of 
the various bispectral approaches. 

Bispectral distribution is recommended as a method of 
defect diagnostics for the rolling element under circumstances 
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of changeable load4. It was demonstrated that by training 
Deep Convolutional Neural Networks (CNNs) on images 
generated from faulty signals’ Bispectrum data, highly precise 
fault detections can be achieved. Various transfer learning 
approaches were employed, to uncover patterns within the 
Bispectrum data derived from vibration signals5. An approach 
called the sparse modulation signal bispectrum method has 
been utilized to determine the bearing’s carrier frequency 
precisely6. The current signal has been described utilizing an 
amplitude modulation feature that combines the higher and 
lower sidebands simultaneously using a modified bispectrum7. 

Motor faults are detected through motor current signature 
analysis. This method involves analyzing current signals 
using both the power spectrum and MSB. Equating the two 
reveals that MSB exhibits a distinct spectrum structure. MSB 
outperforms conventional bispectrum in mitigating noise 
effects on envelope signals8. Bispectral characteristics are also 
of research interest in the field of medicine to identify various 
disorders. Bispectral-based characteristics have been retrieved 
to assess the differences between diseased and normal heart 
sounds9. A bispectrum features-based channel selection 
strategy is suggested in for the brain-computer interface10. 
Similarly, many researchers have employed the Bispectrum in 
medical fields for disease detection, leveraging its capacity to 
provide frequency domain information and its inherent ability 
to suppress Gaussian noise.

In the context of bearing fault classification, traditional 
approaches have involved treating signals as images using 
Bispectrum analysis. Notably, the utilization of bispectral 
features for the classification of bearing faults has not been 
explored in processing rolling bearing signals11. Building upon 
these observations, our research departs from the established 
practice of treating signals as images using Bispectrum 
analysis. Instead, we embrace a distinctive approach, where 
Bispectrum features were used to classify biomedical 
signals9-10. In this work, features are directly extracted from the 
Bispectrum for the purpose of classifying bearing faults. This 
paper is in continuation of our previousresearch paper12, where 
we are using the bispectral features  for data fusion of two 
sensors for bearing fault classification. This choice is rooted in 
the inherent capability of the Bispectrum to provide valuable 
frequency domain information about bearings, particularly 
when analysing vibration signals. 

Consequently, this paper focuses on delving into and 
concentrating on the exploration of the frequency band 
region in the diagonal slice of the bispectrum. This research 
aims to integrate Bispectrum analysis with machine learning 
algorithms for health monitoring in rotating machinery. It 
emphasizes exploring features in the nonredundant region and 
utilizing fault frequency bands within the diagonal slice of the 
Bispectrum to enhance fault detection.

1.1  Higher-Order Spectral Analysis
Higher harmonics and their interactions with the signal’s 

phase are discovered, extracted, and studied using higher-
order spectra, also called polyspectra. Conventional spectral 
analysis, which only applies to Gaussian signals, often uses 
a power spectrum to determine the power distribution among 

its frequency components. Non-Gaussian signals are analyzed, 
and signal phase relationships are studied using higher-order 
spectral analysis. In contrast to power spectrum, it can reveal 
more details about the non-Gaussian signals. 

Bispectrum is the Fourier transform (FT) of third-
order statistics. The Bispectrum which isthe 2D Fourier 
transformation is the signal’s third ordercumulant13. The 
third-order cumulants of a zero-mean random process are 
presented14–16. The third-order moment function of x(k) is given 
by { }3 1 2 1 2( , ) ( ) ( ) ( )xC E x t x t x tt t t t= + +                        (1) 
 
where, E{.} is expectation operator and t1 and t2 denote 
the time shift. The cumulants are given by Eqn. (1.2) for a 
summable third order:
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Then, Bispectrum of signal x(t) can be defined as:
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The  bispectrum using FT for a finite energy signalis given by:
*

1 2 1 2 1 2( , ) ( ) ( ) ( )B f f X f X f X f f= ⋅ ⋅ +                         (4)
where, B is the Bispectrum of the two frequencies f1 & f2, and 
w=2pf and X(f) is FT of the signal, given by
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X*(f) being the complex conjugate of X (f). The Bispectrum 
analysis explores the relationship between sinusoids at 
fundamental frequencies (f1, f2) and their modulation at  
(f1 + f2), forming a triplet of frequency components. It calculates 
the correlation between these components.

2.  ESTIMATION OF BISPECTRUM
The bispectrum estimation can use direct or indirect 

methods. The direct approach involves computing the discrete 
Fourier transform of the signal’s third-order autocorrelation, 
which is simpler, and this paper adopts this method.

2.1  Direct Method16

• Split the signal into K segments of M samples. 
The samples can be x(1), x(2)……x(k) ensuring  
M=2l,l ϵ Z+ for FFT convenience.

• Apply DFT to each of the K segments i.e
( ) ( ( ))i iX FFT x kλ =                                                       (6)

• Determine each segment’s bispectrum from the DFT 
coefficients using

1 2 1 2 1 2( , ) ( ) ( ) ( )i i i ib X X Xλ λ λ λ λ λ= +                       (7)
 

• Calculate bispectrum’s average estimate over all the 
segments using

3 1 2 1 2
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where, 
0

2( )f
N
pw λ=  and N0 is total samples in a segment.
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3.  METHODOLOGY
This work uses the data obtained from the oscillatory 

bearing test rig shown in Fig. 1 which has been installed at 
CSIR-NAL to investigate bearing defects. In this study ball 

bearing with a single row of ballsis used for testing. Three 
different types of defects: ball defect, inner race defect, 
and outer race defect have been manually seeded. Various 
loads, ranging from 0 to 40 kgs in 10 kgs increments, were 
applied to evaluate its performance. Figure 1 illustrates the 
testing rig utilized at CSIR-NAL for bearing assessment. A 
vibration sensor (Type 352C33) is placed in the vertically on 
the housing where bearing is placed. The data was collected 
from the vibration sensor at a sampling rate of 51200 samples/
sec with a load of 40 kg and a rotational speed of 1500 rpm. 
During the bearing test, four different signals were acquired: 
Normal data (fault-free), Ball defect data, Inner race fault data, 
and outer race fault data. Figure 2 displays the raw signals 
of all the faults. These raw vibration signals are segmented 
into 256 samples, from which the Bispectrum is obtained.  
Figure 3 shows the proposed methodology applied in this 
research12.

4. NON REDUNDANT REGION AND DIAGONAL 
SLICE OF BISPECTRUM 
Due to the conjugate symmetry of the FT, the bispectrum 

exhibits symmetrical properties. So, the bispectrum is 
Figure 1.  Oscillatory bearing test rig at CSIR-National Aerospace 

Laboratories.

Figure 2.   Raw data of normal/no fault, ball fault, Inner fault, 
and outer fault defects.

Figure 3. Block diagram of the proposed methodology.

Figure 4. Non Redundant region of outer race fault.
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Figure 5. Bispectrum, mesh plots and diagonal slices of normal data, ball fault, inner race fault and outer race fault.

considered in the triangular region known as the non-redundant 
region (Principal domain), Ω9-10,14-15. Figure 4 depicts the non-
redundant region for the outer race fault for 256 samples. The 

diagonal elements in the non-redundant region are d1 and d2, 
and d3 is the line that divides it into two halves.

The one-dimensional FT of the third-order cumulants is 
called the diagonal slice of the signal15, which can be defined as
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5.1  Fundamental Fault Frequencies
The fundamental fault frequencies are calculated from 

the diagonal slice of the bispectrum for all the bearing faults, 
i.e., Normal data, Outer race fault, inner race fault, and ball 
fault. The conventional formulae17 presented in Eqn. (11-14) 
compute the bearing fundamental fault frequencies assuming 
the inner race is rotating and the outer race is stationary.

fBPOF Ball pass outer 
case frequency 1 cos

2
B

s
N Dbf

Dc
q − 

            (11)
fBCF Ball cage 

frequency 1 cos
2

sf Db
Dc

q − 
                  (12)

fBPIF Ball pass inner 
case frequency 1 cos

2
B

s
N Dbf

Dc
q + 

             (13)
fBSF Ball spin 

frequency
2

2
21 cos

2
c

s
b

D Dbf
D Dc

q
 

− 
        (14)

Fault frequencies like Fx and its harmonics  
2Fx, 3Fx…., etc. often appear as peaks in the frequency 
spectrum. However, interference from other vibrations can 
make them hard to detect. Additionally, variations in speed and 
load levels may cause deviations from their expected values, 
posing extraction challenges. Bearings usually operate within a 
0-6 kHz frequency range. Figure 6 shows the bearing geometry 
for fault frequency calculations, emphasizing the need for 
Cage diameter accuracy. Frequency calculations require the 
cage diameter Dc, which can be estimated from the Eqn. (15)

63
2 2

b b
c i

D DD D mm≈ + + ≈                                         (15)
The dimensions of each componentof the bearing in mm 
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The bispectrum is projected onto the plane f1=f2 to 
create the bispectrum diagonal slice. This approach is 
computationally more efficient than other HOSA because the 
diagonal slice offers the advantage of reduced computational 
demands highlighting peak frequencies. Figure 5 displays the 
Bispectrum, Mesh plots, and diagonal slices for Normal data, 
Ball fault, Inner race fault, and Outer race fault. These plots 
reveal variations in the bispectrum when different faults are 
present.Normal data exhibits spectral peaks at the center of the 
contour plots. In contrast, Ball Fault data shows central peaks 
surrounded by side peaks. Notably, inner-race faults exhibit a 
more pronounced and stronger central peak compared to outer-
race faults with larger but less intense peaks. These variations 
underscore the usefulness of bispectrum characteristics.

The diagonal slice of the bispectrum, represented in FFT 
terms by Eqn. (9), enhances the fundamental frequency F0

15-16. 
Due to the diagonal slice’s symmetrical properties, frequencies 
are mirrored on the right-hand side of 0 Hz, requiring 
consideration of only one frequency side.

( ) [ ( ) ( ) (2 )]B f X f X f X f=            (10)

5.  FEATURE EXTRACTION
In the principal domain/ non-redundant portion of the 

bispectrum, only the phase and frequency-linked bifrequency 
peaks can be observed. On the other hand, the FT of the diagonal 
slice exhibits peaks at each of the frequencies implicated in 
the phase coupling. The fault bands about the fundamental 
fault frequencies are calculated, and the following features are 
extracted from fault bands: sum of all peaks in a frequency 
band, average and maximum of all peaks in the principal 
diagonal sum of all frequencies of principal diagonal d1, d2, 
and  d3 of the non-redundant region. Annexure I shows the 
features F1-F35 extracted from the non-redundant region, and 
Table 3 shows the features extracted from the fault frequency 
bands. The final step is integrating all 104 features and using 
them for fault classification

.

Figure 6. The geometry of ball bearing.
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Table 1 shows the calculated bearing fundamental fault 
frequencies. It is observed that the inner race defect excites 
with a high frequency among other faults, i.e., 150.8 Hz, while 
the cage defect excites with a low frequency among other 
faults, i.e., 10 Hz. 

5.2  Fault Frequency Bands
Practical fault frequencies can differ from theoretical ones 

due to factors like load variations, RPM shifts, and operational 
changes. Additionally, when describing bearing component 
geometry, the thickness and contact angle may be approximated 
due to uncertainty. To tackle this challenge and improve fault 
frequency identification, a specific frequency band is chosen 
for each fault frequency, offering robustness against real-world 
variations. These bands, denoted as [F-W/2], [F+W/2] are 
cantered at the fundamental fault frequencies, fF for inner case, 
outer case, bearing ball and cage/separator. Here, W represents 
the harmonic width, set at 0.55 times the shaft frequency to 
identify the required fault frequency peaks.In this work, the 
first two harmonics are considered.

So, for harmonic width W,      

0.55   
2 2

0.55 25 6.8750 Hz
2 2

W x shaft frequency

W x

=

= =
                                         

(16)

For a given harmonic number, h, the signal bands are 
calculated from 1 2 and .

2 2F F
W Wf hf f hf= − = + .

Within each frequency band, the highest value is 
determined, likely indicating the bearing fault frequency. 
Table 2 displays these frequency bands for four types of faults 
using fundamental and second harmonic frequencies. The 
first column (FB) contains of F-W/2 values, while the second 
holds F+W/2 values. FBc, FBo, FBi, and FBb represent the 
fault frequency bands for the cage, outer race, inner race, and 
ball defect. Features F69-F104 from these bands (Table 3) are 
combined with F1-F35 from Annexure I for classification.

6.  FAULT CLASSIFICATION
This work explores supervised machine learning 

algorithms, which aims to predict data labels. The features 
are extracted from the Bispectrum as explained in section 5. 
The features matrix obtained from the Bispectrum of vibration 
data is of the size 2420x104. The data is split into 80:20 ratio. 
Where 80 % of the data is taken for training i.e. 2420 × 0.8= 
1936 samples and the rest 20 % of the data which is 484 
samples are used for testing. For the validation technique, a 10-
fold cross-validation approach is chosen to train the training 
data due to its ability to mitigate overfitting. Subsequently, 
the classification process proceeds with the development of 
models. The current study employs various types of Decision 
Trees, Support Vector Machines, K-Nearest Neighbors, 
and Naive Bayes classifiers, each with distinct parameters 
such as splits, kernel functions, number of neighbors, and 
kernels, respectively.Sixteen classifiers (listed in Table 3) 
assess the performance of the extracted fault frequencies 
dataset.Machine learning techniques such as Decision Trees, 
Support Vector Machines, k-Nearest Neighbors, and Naive 
Bayes offer parameter adjustments beyond their defaults to fit 
dataset requirements. Each classifier has distinct optimizing 
parameters. For the decision tree, factors such as the maximum 
number of splits and split criterion are crucial. In this study, the 
impact of varying the number of splits on the decision tree’s 
performance was examined. For KNN, optimizing parameters 
include the number of neighbors, distance metric, and distance 
weight. Here, the distance metric was set to Euclidean, while 
variations in the number of splits were explored, with distance 
weight held constant. Naïve Bayes optimization involves 
the distribution name and kernel type, with the distribution 
type fixed at Gaussian. The study evaluated Naïve Bayes 
performance by varying kernel types while keeping distribution 

Table 1. Theoretical bearing fault fundamental frequencies

Outer race fault fundamental 
frequency (Hz), FBo

Inner race fault fundamental 
frequency (Hz), FBi

Ball pass fundamental defect 
frequency (Hz), FBb

Cage/ Train fault fundamental 
frequency (Hz), FBc

99.2063 150.7937 57.9976 9.9206

Table 2. Fault frequency band

Fault 
band

Harmonics 
No. 1 2F

W
f hf= -

2 2F

W
f hf= +

FBc I 3.0456 16.7956
II 12.9663 26.7163

FBo I 92.3313 106.0813
II 91.5377 205.2877

FBi I 43.9187 157.6687
II 94.7123 308.4623

FBb I 51.1226 64.8726
II 109.1201 122.8701

Table 3. Features extracted from a diagonal slice of the bispectrum

Feature No. Feature No. of 
features 

F36 Sum of all peaks 1

F37-F52 Mean and max of all peak 
frequencies in the principal diagonal 16

F53-F68 Mean and max of all peak 
frequencies in d1 16

F69-F84 Mean and max of all peak 
frequencies in d2 16

F85-F100 Mean and max of all peak 
frequencies in d 16

F101 Sum of all peaks in the principal 
diagonal 1

F102 Sum of all peaks in d 1

F103 Sum of all peaks in d1 1

F104 Sum of all peaks in d2 1
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Table 4. List of classifiers

Classifier Kernels Notations

Decision Tree (T) No. of Trees

T100
T20
T4
T3

Support Vector Machine (S)

Gaussian Sg

Polynomial
S1
S2
S3

K Nearest Neighbors (K) No. of neighbors

K1
K3
K10
K50
K100

Naive Bayes (NB) Gaussian/ Normal NBN
Uniform/ Box NBB
Epanechnikov NBE

Table 5. Overall performance of the classification model

Classifiers Training 
accuracy 

Train time 
(Sec)

Testing 
accuracy

Test time 
(Sec)

DT-100 100 6.6928 100 0.1705
DT-20 100 4.2167 100 0.1656
DT-4 100 4.7431 100 0.1579
DT-3 100 0.7098 100 0.1593
SVM-g 99.94 1.7776 99.945 0.1694
SVM-P1 99.954 9.5932 99.9726 0.1726
SVM-P2 99.8858 9.9482 99.8904 0.1732
SVM-P3 99.9574 10.1702 99.9863 0.182
KNN-1 100 0.8832 100 0.1636
KNN-3 99.9962 0.854 100 0.1634
KNN-10 99.9898 0.8675 100 0.17
KNN-50 99.7916 0.8857 99.8493 0.1705
KNN-100 99.5441 0.8987 99.4795 0.1711
NB-N 99.6877 22.6496 99.6301 0.4753
NB-B 94.9484 35.2905 95.0959 0.4543
NB-E 96.0822 29.7189 96.3973 0.4516
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Figure 7. Confusion matrix for the trained model.
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type constant. SVM optimizing parameters encompass 
the kernel function, box constraint level, and kernel scale. 
Different kernels influence each classifier’s behavior21. This 
research focused on varying kernel functions while keeping 
other parameters constant for assessing SVM performance. 
The varied parameters are listed in Table 4.

7.  RESULTS AND DISCUSSION
The bispectrum of the bearing vibration data obtained 

from the vertical accelerometer is computed using the HOSA 
toolbox in MATLAB22. Features are extracted from the non-
redundant region and bispectrum’s diagonal slice for all faults. 
Scaling is primarily applied for distance-based algorithms like 
KNN and SVM, as they operate based on data point distances. 
Note that scaling occurs during data division, with central 

parameters used during testing. Some classifiers, like decision 
tree-based algorithms, are insensitive to feature scaling since 
they split features independently. Sixteen classifiers are used, 
including Decision Tree (DT) with different splits, Support 
Vector Machine (SVM) with various kernels, K Nearest 
Neighbors (KNN) with different neighbors, and Naive Bayes 
(NB) with different kernel functions. Results are tabulated in 
Table 5.

This table displays mean accuracy, training, testing, and 
overall execution times across 100 Monte Carlo iterations. 
Monto Carlo is a phenomenon where classification is done for 
100 different random possibilities. Further, in each iteration, 
a 10-fold cross-validation technique23 is employed, wherein 
the dataset is split into ten equal folds. One fold serves as the 
validation set, while the remaining nine are used for training. 
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Figure 8. Confusion matrix for tested model.

This process repeats for each of the 100 Monte Carlo iterations, 
resulting in ten model trainings for each iteration.

Table 5 highlights that Decision Tree DT with all splits 
and K Nearest Neighbours with one neighbour achieve 100 % 
accuracy and quicker execution time (around 0.8 secs and 0.17 
secs) in terms of training and testing respectively compared 
to other classifiers. This is attributed to their fewer splits (DT-
3) and neighbors (KNN-1). In contrast, the Support Vector 
Classifier with polynomial kernel P3 offers good accuracy but 
takes longer to train than DT and KNN. Notably, Naive Bayes 
exhibits the longest training time among all classifiers. So for 
this data either DT or KNN would be an ideal classifier.

Figure 7 presents confusion matrices for DT-3 (highest 
accuracy) and Naive Bayes - Gaussian/Box (lowest accuracy). 
They are 4x4 matrices due to the four labels used. Additionally, 
Fig. 8 depicts a testing confusion matrix for one of the 100 
Monte Carlo iterations with 484 data points subjected to a pre-
trained model. Naive Bayes shows more misclassified data 
compared to other classifiers.

8.  COMPARISON OF RESULTS 
The results obtained in this paper are compared with 

our prior research24, where a Convolutional Neural Network 
(CNN) was utilized for fault classification on the same dataset. 
It is noted that employing machine learning algorithms for fault 
classification requires less training time compared to CNN. 
This is understandable as CNN processes inputs as images 
and subsequently extracts features, which is time-consuming. 
In this instance, CNN took 6 minutes and 14 sec for training, 
whereas all the machine learning models required less time to 
achieve approximately the same level of accuracy. Decision 
tree and KNN-1 achieved 100 % accuracy with a maximum 
training time of 0.11 min, whereas CNN took considerably 
longer. This indicates that machine learning algorithms 
exhibited faster training compared to CNN. A comparison of 
the training times and accuracy are presented in Fig. 9.

9.  CONCLUSION
In summary, this paper presents an innovative approach that 

Figure 9. Comparison of training time and accuracy of machine learning algorithms with CNN.
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leverages Bispectrum analysis for the classification of bearing 
faults. The diagonal slice, a simpler and computationally more 
efficient alternative to the full bispectrum, is utilized, offering 
the advantage of containing valuable phase information for 
handling nonlinear systems. The study involves the extraction 
of a total of 104 features from the non-redundant region 
and frequency bands of the diagonal slice, followed by the 
evaluation of 16 supervised machine learning algorithms 
for their performance in bearing fault classification. Results 
indicate that the decision tree exhibited the highest accuracy, 
achieving a perfect score of 100 %, followed by KNN and 
SVM, while Naïve Bayes performed the least with an accuracy 
of 99.68 %. Additionally, it’s noteworthy that in comparison 
to the Convolutional Neural Network (CNN) approach, the 
presented methodology showed superior performance in terms 
of accuracy and training time.

While this method has demonstrated superior 
performance, it entails additional work in feature extraction, 
which can be viewed as a limitation. Thus, there exists a trade-
off between employing machine learning and deep learning 
algorithms. Selecting the optimal approach depends on the 
specific characteristics of the problem at hand. Future research 
should investigate hybrid approaches that integrate machine 
learning with other techniques to address these limitations and 
potentially improve the overall effectiveness of bearing fault 
detection systems.
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Annexure I
 Bispectrum features from the Non-redundant region9-10,17-20

S. 
No Feature name Equation

F1 Normalised Bispectral entropy BE1
1 2 1 2

1 log

where [ ( , )] / | ( , ) |

n n
n

n

BE p p

p B f f B f f
Ω

= −

=

∑

∑

F2  Normalised Bispectral squared entropy BE2 
22

1 2 1 2

2 log

where q [ ( , )] / | ( , ) |

n n
n

n

BE q q

B f f B f f
Ω

= −

=

∑

∑
F3 Standard deviation of Bispectrum 2D standard deviation

F4 Mean magnitude of Bispectrum (MMOB) 1 2
1 | ( , ) |

where  is the no. of points in the region 

MMOB B f f
L

L
Ω

=

Ω

∑

F5 Weighted Center of Bispectrum WCOB for f1 frequency 
( , )

( , )

iB i i
WCOB

B i i
Ω

Ω

=
∑
∑

F6 Weighted Center of Bispectrum WCOB for f2 frequency 

( , )

( , )

Note: i,j denote the frequency bin index 

jB j j
WCOB

B j j
Ω

Ω

=
∑
∑

F7 Sum of logarithmic amplitudes of Bispectrum (SOLA) 1 2log( | , |)SOLA B f f
Ω

= ∑

F8 Sum of logarithmic amplitudes of diagonal elements d1 (SOLADE) 1 1( 1) log( | , |)SOLADE d B d d
Ω

= ∑

F9 Sum of logarithmic amplitudes of diagonal elements d2 (SOLADE) 2 2( 2) log( | , |)SOLADE d B d d
Ω

= ∑

F10 Sum of logarithmic amplitudes of height elements d3 (SOLADE) 3 3( 3) log( | , |)SOLADE d B d d
Ω

= ∑

F11 First order Spectral Moment of d1(FOSM) 1 1
1

( 1) log | ( , ) |
N

k
FOSM d k B d d

=

= ∑

F12 First order Spectral Moment of d2(FOSM) 2 2
1

( 2) log | ( , ) |
N

k
FOSM d k B d d

=

= ∑

F13 First order Spectral Moment of d3(FOSM) 3 3
1

( 3) log | ( , ) |
N

k
FOSM d k B d d

=

= ∑

F14 Second order Spectral Moment of d1 (SOSM) 2
1 1

1
( 1) ( ) log | ( , ) |

N

k
SOSM d k FOSM B d d

=

= −∑

F15 Second order Spectral Moment of d2 (SOSM) 2
2 2

1
( 2) ( ) log | ( , ) |

N

k
SOSM d k FOSM B d d

=

= −∑

F16 Second order Spectral Moment of d3 (SOSM) 2
3 3

1
( 3) ( ) log | ( , ) |

N

k
SOSM d k FOSM B d d

=

= −∑

F17 Sum of amplitudes of diagonal elements of d1
0

( 1) 1
n

i
i

Sum d d
=
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Sr. 
No Feature name Equation

F18 Sum of amplitudes of diagonal elements of d2
0

( 1) 2
n

i
i

Sum d d
=

= ∑

F19 Sum of amplitudes of diagonal elements of d3
0

( 3) 3
n

i
i

Sum d d
=

= ∑

F20 Simple Square Integral (SSI) of d1 2

0
( 1) | 1 |

n

n
i

SSI d d
=

= ∑

F21 Simple Square Integral (SSI) of d2 2

0
( 2) | 2 |

n

n
i

SSI d d
=

= ∑

F22 Simple Square Integral (SSI)of d3 2

0
( 3) | 3 |

n

n
i

SSI d d
=

= ∑

F23 Root mean square of d1 diagonal elements 2

1

1( 1) 1
N

n
n

rms d d
N =

= ∑

F24 Root mean square of d2 diagonal elements 2

1

1( 2) 2
N

n
n

rms d d
N =

= ∑

F25 Root mean square of d3 diagonal elements 2

1

1( 3) 3
N

n
n

rms d d
N =

= ∑

F26 Variance of d1 2

1

1var( 1) 1
1

N
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d d
N =
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F27 Variance of d2 2

1
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N

n
n

d d
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F28 Variance of d3 2
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d d
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∑
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