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ABSTRACT

The advancements in drone technologies, digital imaging, computer vision techniques, and the liberalized laws 
related to drone flying have opened up drone-based applications such as the delivery of supplies, search and rescue, 
aerial surveillance, and so on. The drones, especially the nano/micro/small drones, may be mounted with only low-
resolution camera(s) due to their maximum takeoff weight limitations. The low-resolution images generated by the 
cameras, if used for landing, can result in faulty detection unless the photos are taken from a very close distance to 
the point of interest. Detection and recognition of the point(s) of interest as early as possible is required to ensure 
sufficient response time for safe maneuvering. Hence, the images are to be captured at greater heights or distances 
from the point(s) of interest, and obtaining the high-resolution images from the captured low-resolution images is 
crucial. The High Resolution (HR) and the Low Resolution (LR) image pairs for training super-resolution models 
in the works presented in literature are generated using two different cameras or the HR images are captured by the 
camera and LR images are generated by degrading the HR images. As both methods are not appropriate for small/
micro/nano category drones, we propose a novel method based on Ground Sampling Distance (GSD) to capture the 
LR and HR images. In this paper, we have presented the designed methodology for the creation of a dataset using 
drone-mounted cameras covering a broad spectrum of views of the target(s) suitable for training and testing of the 
Single Image Super-Resolution (SISR) models. We also present a methodology for selecting an appropriate target 
for imaging that enables the visual quality assessment of the developed super-resolution model.

Keywords: Drone; Deep learning; Ground sampling distance; Real-time situation awareness; Computer-vision; 
Super-resolution

NOMENCLATURE
ILR : Low resolution image               
I  : High resolution image
σ  : Image degradation factors
D  : Image degradation function
GSDw  : Ground sampling distance for image width
GSDh  : Ground sampling distance for image height
h GSD  : Altitude of drone at GSD value
EFL  : Effective focal length
CF  : Crop factor
ϴ : Drone camera angle
Փ : Latitude of the selected point
λ  : Longitude of the selected point
H  : Altitude of flight above ground level
R  : Radius of earth
β  : Bearing angle of axis
nθ  : Number of waypoints on an axis 
nβ  : Number of axes
nH  : Number of graded heights
N  : Total number of images captured

1. INTRODUCTION
The advancements in digital camera technology and 

computer vision have paved the way for the deployment 
of drones in applications such as search and rescue, aerial 
surveying, goods delivery, and so on1. The Directorate General 
of Civil Aviation (DGCA), India, permits the use of drones for 
civilian purposes in India under the following categories– nano 
drones (all-up weight up to 250 grams, maximum flight altitude 
15m Above Ground Level (AGL)), micro (all-up weight 
greater than 250 grams up to 2 kg, maximum flight altitude 
of 60m above AGL), small (all-up weight >2 kg up to 25 kg, 
maximum flight altitude of 120 m above AGL), and medium 
drones between (all-up weight >25 kg up to 150 kg, maximum 
flight altitude of 9000 m above AGL) subject to registration 
and licensing rules2. 

A swarm of drones can be used to enable quick decision-
making via aerial surveillance during floods, landslides,  
etc.2-4. Machine learning-based object identification and 
detection techniques can enable drones to identify critical 
events and make landing and takeoff decisions during search 
and rescue, goods delivery, etc. With the availability of efficient 
computing resources, these techniques can be executed on 
board for decision-making. The cameras used in the nano/
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micro/small drones are limited in their resolution, as the high-
resolution cameras are generally heavy and can account for 
a significant percentage of their all-up weight4. As the height 
of flight increases, the image resolution, i.e., the capability 
to distinguish features on the ground for a given camera 
configuration, reduces. It is advisable to make the vision-based 
decisions as early as possible, and hence, the images are to 
be captured at greater heights or distances from the point(s) 
of interest, and obtaining the high-resolution images from the 
captured low-resolution images is crucial5-7. 

Single Image Super-Resolution (SISR), which generates 
a High-Resolution (HR) image from a Low-Resolution (LR) 
image, is an image processing technique for generating an 
enhanced resolution image from a single input image8-9. 
Datasets with annotated images of the target captured at 
various camera orientations and heights are required so that 
the images provide a realistic world view to develop Super-
Resolution (SR) models. Parameters such as Structural 
Similarity (SSIM), and Peak Signal to Noise Ratio (PSNR) 
are generally used as metrics for the performance assessment 
of the SISR applications10-11. Datasets consisting of labeled 
images captured from drones at various heights, orientations, 
etc., to reliably test the performance of the super-resolution 
are required to enable studies on super-resolution for drone-
based applications. Also, unique targets are required to be 
designed, which, when photographed from drones, can be used 
to visually test the performance of SISR techniques for drone-
based applications. The main contributions of this work are as 
follows. The paper presents 
• The designed methodology for the creation of a dataset 

using drone-mounted cameras covering a broad spectrum 
of views of the target suitable for training and testing of 
the SISR models.

•  The designed methodology for the selection of an 
appropriate target for imaging to visually evaluate 
the performance of SISR techniques for drone-based 
applications. 

•  The mission planning technique utilized for the generation 
of the image dataset.
The paper is organised as follows. Section 2 presents the 

related works and the gaps in research work. Section 3 presents 
the problem definition in detail. Section 4 presents the proposed 
methodology for dataset generation, and Section 5 covers the 
mission planning strategy. The performance analysis of the 
proposed methodology is presented in Section 6, followed by 
the conclusions. 

2. RELATED WORKS
Super-Resolution (SR) is particularly useful in the case of 

nano/micro/small/medium category drones due to their limited 
capability to use high-resolution cameras. For higher endurance 
due to lower air drag, greater coverage, and the overall field of 
view, it is desirable to fly the drone high. The Ground Sampling 
Distance (GSD) is higher for higher altitudes, and the capacity 
of the camera to resolve small artifacts decreases with height9. 
Hence, the SR techniques are critical for object identification9. 

Supervised machine learning techniques for the 
implementation of SISR require apriori training of the network/

model on a pair of Low-Resolution (LR) and the corresponding 
High-Resolution (HR) images. Let ‘I′ represent an HR image 
and ‘I LR′ represent the LR image. ‘ILR ′ can be described as 

ILR = D (I,s)                                                                   (1)
where, ‘D’ is the degradation function that maps the HR image 
to the LR image, and ‘σ′ refers to the image degradation factors 
such as camera orientation, resolution, blurring, noise, etc8. 
Unsupervised SISR techniques use an unlabeled set of images 
to generate new datasets from the pattern learned using deep 
networks8,12-13. Semi-supervised techniques use unlabeled 
datasets or a combination of unlabeled and labeled dataset 
(LR-HR) pairs for SR8. It is important to ensure that the dataset 
encompasses images that are captured at various orientations, 
heights, textures, and lighting conditions to represent the real-
world scenario8. Thus, the generation of the dataset is a vital 
exercise for the training or evaluation of the deep learning 
based on SISR techniques/models. 

Some of the publicly available image datasets utilized 
for the training or testing of SISR applications are described 
below. Berkeley Segmentation datasets, such as BSDS300 and 
BSDS500, and other datasets, such as Set 5, Set 14, and Urban 
100, contain images of animals, buildings, food, landscapes, 
human beings, plants, etc.14. Even though the datasets 
mentioned above are used for SR training and evaluation, they 
are not specifically designed for the SISR applications and 
hence do not include any annotation regarding the orientation 
with respect to the camera, distance from the camera, etc. 
Agustsson, et al. presented a DIV2K dataset with 1000 RGB 
images manually crawled from the Internet to be used for SISR 
model training and testing14. The above-mentioned datasets 
include the HR images, and their corresponding LR images 
are to be created by degrading the HR images using image 
processing techniques (such as subsampling or introducing 
noise, etc.). To our knowledge, the Drone Super Resolution 
(DSR) dataset is the only dataset publicly available for super-
resolution of images captured from drones15. DSR dataset 
provides images from various heights and  orientations. In the 
DSR dataset, the high-resolution and low-resolution images 
are generated using two different cameras (a high and a low-
resolution camera) placed at the same height. Also, the process 
of generation of dataset using drones is not elaborated in 
literature. From the literature, the following gaps in research 
work were observed.

Most of the datasets used for image SR applications 
generate the LR images by degrading the captured HR image 
using image processing techniques. Thus, the generated LR 
images doesn’t necessarily represent the real-world scenario. 
Some works have utilized LR and HR cameras to generate LR-
HR pairs. Both these methods are not ideal for dataset creation 
using small/micro/nano category drones.

It was also observed that a specific methodology or 
operating principle is not yet publicly available to create 
drone-based image datasets to train or test SISR-based deep 
learning models.

3. PROBLEM DEFINITION AND PROPOSED 
SOLUTION
Obtaining the LR and the HR image pairs captured from 
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drones is a major challenge for training machine learning-
based super-resolution techniques. Drone Super Resolution 
(DSR) dataset is a dataset specifically made available for 
studies on super-resolution of images captured from drones. 
This dataset provides images of targets from various heights 
and orientations. In this dataset, the high-resolution and low-
resolution images are generated using two different cameras (a 
high and a low-resolution camera) placed at the same height. 
The DSR dataset consists of images captured using a 4/3 
inch CMOS L2D-20c Hasselblad camera (5280×3956 pixel 
resolution) with a focal length of 24 mm and a 1/2 inch CMOS 
tele-camera (4000 ×3000 pixel resolution) with a focal length 
of 162 mm onboard DJI Mavic 3 drone15. The images from 
the Hasselblad camera are considered as a high-resolution 
images and the images from the tele-camera are considered as 
low-resolution images. As discussed previously HR-LR pairs 
for training super-resolution models in the works presented in 
literature are generated using two different cameras (LR and 
HR cameras) or HR images are captured by the camera and 
LR images are generated by degrading the HR images. As both 
methods are not appropriate for small/micro/nano category 
drones, we propose a novel method based on Ground sampling 
distance (GSD) to capture the LR and HR images. 

GSD depicts the effective distance on the ground captured 
by an aerial camera from a particular height above ground 
level9. The expression to calculate GSD is given as follows:

  
Im

W
Sensor Height Flight Height
Focal Length ageWidth

GSD =
×
×                          

(1)
  

  
Im

h
Sensor Height Flight Height
Focal Length age Height

GSD =
×

×                        
(2)

 

                  
  
Focal Length =   Effective Focal Length(EFL)

Crop Factor(CF )                (3)  
           
GSD=maxiGSDx, GSD                                (4)           
 
As per Eqn. (1) and (2), GSD is directly proportional 

to the distance of the camera from the target and is inversely 
proportional to the focal length of the camera. GSD is 
generally expressed in centimeters per pixel. A lower value of 
GSD implies higher spatial resolution. As GSD increases, the 
capability to differentiate between finer features will reduce, 
and the clarity of the image will deteriorate. If the GSD value 
is less than the width of the smallest feature of interest in the 
image to be captured during photography, then the feature can 
be clearly identified.

The size of the smallest feature of interest in the image is 
decided based on the application for which the drone is being 
used. The height at which the GSD becomes comparable to 
the width of the feature of interest is considered as hGSD and 
five (less or more number of images can be captured) images 
are captured at graded heights for a given target. In our work, 
the image captured at hGSD-16 feet is considered as very high 
resolution, image captured at hGSD-8 feet is considered as high 
resolution, image captured at hGSD  is considered as borderline, 
and images captured at hGSD+8 feet are considered as low 

Table 1. Specifications of the drone and camera

Parameter Value/Range

Maximum  all-up weight 
including, fixed payload 
(gimbal, camera, and sensors)

Up to  500 grams

Maximum ascent speed 4 m/s 

Maximum descend speed 5m/s 

Maximum sealing above  
mean sea level 500 m 

Maximum horizontal speed 10 m/s 

Maximum endurance  
(with the wind) 30 min

Maximum range  
(with safety margin) 5 km

Operating temperature -5° to 50° centigrade

Operating Frequency 2.400-2.4835 GHz

Transmitter Power (EIRP) Less than 26 dBm

Satellite Systems GPS+GLONASS

Other LRUs required

Compass, IMU, internal 
memory to support 30 high-
resolution images and 10 
minutes video, Obstacle 
avoidance system.

Gimble mount 3-axis stable (tilt, roll, and pan)
Sensor 1/2” CMOS
Effective pixels 48 Megapixels
Field of view At least 80°
Equivalent focal Length 24 mm
ISO General range 100-3200 (Auto)
Maximum photo resolution 8000×6000 pixel
Photo format JPEG

resolution, and images captured  at hGSD+16 feet are considered 
as very low resolution. To visually evaluate the quality of the 
SR model, a unique target image was required. In our work, 
the target image is also proposed based on the GSD and the 
camera parameters as mentioned in Section 4. This serves as a 
method of visually evaluating the SISR model without relying 
only on PSNR and SSIM as the evaluation metric for SISR 
model training and testing. 

4. METHODOLOGY
In this section, the designed methodology to capture 

images suitable for the training and testing of deep learning 
models for SISR applications using a drone-mounted camera 
is explained.

4.1 Selection of Drone and Camera
A remotely piloted drone (DJI Mavic Air 2) belonging 

to the micro-category with a gimble-mounted camera was 
selected to capture stable, blur-free images at designated 

Image

Image

max(GSDw, GSDh)
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heights and orientations for the creation of the SISR dataset. 
The drone and camera specifications are provided in Table 1.

4.2 Design of Object for Imaging
To visually evaluate the quality of the SISR model, a 

unique target image was required. As indicated in Eqn. (1) - 
(4), the flight altitudes of the drone can be decided based on the 
ground details to be captured and the GSD of the camera. In 

our work, the target image is proposed based on the GSD and 
the camera parameters which can then be used for evaluation 
of the quality of the SISR model.

The unique features of the target created for imaging are:
• A conspicuous central point of the target (e.g., a red 

circle) to enable easy referencing for the calculation of the 
camera angle.

• An image with concentric circles of varying widths and 
distances between the concentric circles is proposed as a 
target image, as shown in the CAD view in Fig. 1.

• The target pattern can be used to visually infer the quality 
of any SISR model.
The width and distances between the concentric circles in 

the designed target are tabulated in Table 2. The rationale behind 
the target design and its suitability for the visual evaluation of 
the quality of the SR model is elaborated below. Based on Eqn. 
1-4, a GSD look-up table was tabulated, as shown in Table 3, 
for the selected camera for various drone altitudes.
• If the value of GSD at drone altitude h (altitude of the 

drone above ground level) is less than the width of white 
and black concentric circles of the landing target, the 
circles are easily distinguishable and can be considered as 
a high-resolution image. 

• As the value of GSD at drone altitude h1 ≥ h approaches 
the width of white and black concentric circles, the circles 
are not very easily distinguishable, and after reaching 
boundary values, i.e., GSD= width of the concentric 

 Table 2. Target image profile

Geometric shape        
No of 
similar 
figures

Position   
(from the 
boundary 
of the prior 
figure)

Diameter 
(D) or 
Width 
(W)

Solid red Circle
(at center) 1 At the center D:5 cms 

Alternating B&W circles 10 0.5 cm W: 0.5 cm

Alternating  B&W 
circles 10 1 cm W: 1 cm

Alternating  B&W 
circles 10 1.5 cm W: 1.5 cm

Alternating  B&W 
circles 10 2 cm W: 2 cm

Alternating  B&W 
circles 10 2.5 W: 2.5 cm

Alternating  B&W 
circles 5 3 cm W: 3 cm

Alternating  B&W 
circles 5 3.5 cm W: 3.5 cm

Alternating  B&W 
circles 5 4 cm W: 4 cm

Alternating  B&W 
circles 5 4.5 cm W: 4.5 cm

Alternating  B&W 
circles 5 5 cm W: 5 cm

Figure 1. AutoCAD generated target object.

Table 3. GSD look-up table

Height  
(AGL) 
in meters

GSD  
in cm/px Remarks

10 0.36 with a width of 0.5 cm are visible
15 0.54 with a width of 1 cm are visible
20 0.72  with a width of 1 cm are visible
25 0.90 with a width of 1 cm start to blur out
30 1.08 with a width of 1.5 cm are visible
35 1.26 with a width of 1.5 cm are visible
40 1.44 with a width of 2 cm are visible
45 1.63 with a width of 2 cm are visible
50 1.81 with a width of 2 cm start to blur out
55 1.99 with a width of 2.5 cm are visible
60 2.17 with a width of 2.5 cm are visible
65 2.35 with a width of 2.5 cm will blur out
70 2.53 with a width of 3 cm are visible
75 2.71 with a width of 3 cm are visible
80 2.89 with a width of 3 cm will blur out
85 3.07 with a width of 3.5 cm are visible
90 3.25 with a width of 3.5 cm start to blur out
95 3.43 with a width of 4 cm are visible
100 3.61 with a width of 4 cm are visible
105 3.79 with a width of 4.5 cm are visible
110 3.97 with a width of 4.5 cm are visible
115 4.15 with a width of 4.5 cm start to blur out
120 4.33 with a width of 5 cm are visible
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Table 4. Axis of photography and camera profile

Bearing w.r.t N-S 
direction
(β)

Camera angle (w.r.t. the 
center of the target)
(θ)

No waypoints 
to capture
images (at 
each camera 
angle)

0°- 180° at 
increments of 10°

10o, 20o, 30o, 40o, 50o ,60o, 
70o, 80o, 90o, 100o, 110o, 
120o, 130o, 140o, 150o, 
160o, 170o, 1800

5

Figure 2. Methodology for imaging.

circles, the image starts blurring out, rendering poor 
distinguishability of white and black circles.

• As the value of GSD at drone altitude h2 ≥ h1 is more 
than the width of white and black concentric circles.; the 
circles are not distinguishable, and the captured image 
can be considered as an LR image.
The target image is drawn using the Autodesk AutoCAD 

tool and printed on a 5x5 meter glazed paper for imaging by 
the drone in our work. The height at which the GSD becomes 
comparable to the dimension (width) of the feature of interest 
is considered as hGSD. Images captured at a height below hGSD 
are considered as high-resolution images and images captured 

at a height above hGSD can be considered as low-resolution 
images. The HR-LR image pairs created using the principle 
mentioned in Section 3 can be used train the SISR model 
(Note that images captured at hGSD - 8 feet and hGSD+8 feet form 
HR/LR pairs. Similarly, images captured at hGSD-16 feet and 
hGSD+16 feet form HR/LR pairs). To visually evaluate the SISR 
model, the target image presented in this section can be used. 
For example, to identify the concentric circles with a width of 
1 cm of the target, it can be found from Table 3 that the drone 
should be flown at a height (i.e., hGSD) of 25 mtr or below. The 
drone can be flown at a height of  hGSD+8 feet (to capture the LR 
image) and fed into the trained SISR model. The generated HR 
model by the SISR model can be  visually monitored to inspect 
if the concentric circles of width 1 cm are clearly visible. The 
same principle can be used to inspect each of the concentric 
circles in the target image. The methodology for imaging is 
explained in Section 4.3

4.3 Design of Methodology for Imaging
As mentioned in Section 4.2, we intend to capture 

images of a target from graded heights and also from various 
orientations of the camera towards the target (or point of 
interest) to obtain low-resolution and high-resolution images. 
The imaging is performed in an authorized zone of flying and 
which provides an uninterrupted and obstacle-free conspicuous 
view for the line-of-sight photography of the selected target of 
interest. The image of the target is also required to be captured 
from various orientations, and hence, the axis of photography 
has to be suitably selected. 

The overall procedure designed for photography is 
presented as a flowchart in Fig. 2 and further detailed here. At 
first, the target on the ground is placed at a location with known 
coordinates T(ϕ1, λ1, 0). The image capture profile is initially 
chosen in the form of a 180° axis with bearing ‘β’ radians 
wr.t. magnetic N-S at the location of photography as shown in  
Fig. 3 for a selected altitude/graded height. For a specific 
bearing, the photograph has to be taken from various camera 
angles as shown in Table 4. The profile is selected for various 
altitude levels (H ∈ {hGSD, hGSD ± 8 feet, hGSD ± 16 feet}). These 
profiles at various altitudes form virtual arcs, as shown in  

Figure 3. Side view of target photography using drone.
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Table 5. Performance summary

Level PSNR * SSIM*
Target detection 
(Center) confidence 
score (%)

10  m 32.36 0.92 100
20 m 31.25 0.88 100
30 m 31.22 0.82 100
40 m 29.48 0.80 100
50 m 25.01 0.72 98
60 m 22.86 0.66 98
70 m 19.76 0.61 96
80 m 16.21 0.58 92
90 m 11.11 0.41 86
100 m 9.81 0.26 86
110 m 6.21 0.22 75
120 m 5.02 0.11 68

Table 6. YOLOv3 configuration

Parameter Value

Classes 

• Centre of the target (C)
• Pot (P)
• Solar Panel(SP)
• Football Goal Post(GP) 

Batch 64
Subdivisions 2
width 416
height 416
channels 3
Momentum 0.9
decay 0.0005
angle 0
saturation 1.5
exposure 1.5
hue 1
learning_rate 0.001
max_batches 8000
steps 6400,7200
CUDA used CUDA 12.2 
GPU used MIG enabled A100-SXM4-80GB
cuDNN 8.9.3
compute_capability 800
OpenCV version 4.5.4
Pre YOLO Conv Filters 27

Fig. 4. The purpose of selecting the waypoints on the graded 
heights is to capture images at different clarity levels or 
resolution for the same camera angle from the center of the 
target. Waypoints are identified by latitude, longitude, and 
altitude.

The drone is initially flown to a height of ‘H’ directly 
above the target ‘T’. Let the first waypoint for photography is 
chosen as I(ϕ1, λ1, H) as marked in Fig. 3. Suppose the next 
waypoint for photography is ‘D’ lying on the profile arc with 
a bearing ′β’ radians wr.t. magnetic N-S, making a camera 
angle θ (as mentioned in Table 4) with the center of the target. 
To calculate the coordinates of D(ϕ2, λ2, H1), the following 

procedure is adopted. As shown in Fig. 3, let ‘θ’ be the camera 
angle.; ‘ϕ’ is latitude, ‘λ’ is longitude, ‘R’ is the earth’s radius. 
Then,

Sin( )H H θ= ×                                                                  (5)  
1 Cos( )H H θ= ×                                                               (6)  

We have used Haversine formula to find coordinates of 
unknown points lying on a spherical surface for short-distance 
navigation. The ‘ϕ2’ and ‘λ2’ of the waypoint ‘D’ can be 
calculated using the Haversine formula as follows16:

Bdbyr
Radius of Earth

=
                                                         (7)  

Sin 2 (sin( 1) cos( ) (cos( 1) sin( ) cos( ))Phi dbyr dbyrφ φ β= × + × ×
Sin 2 (sin( 1) cos( ) (cos( 1) sin( ) cos( ))Phi dbyr dbyrφ φ β= × + × ×                      (8)  

sin( ) sin( ) cos( 1)xt dbyrβ ϕ= × ×                                       (9)                                                                       

Cos( ) (sin( 1) sin( 2))yt dbyr Phiϕ= − ×                         (10)
12 sin (sin 2)Phiϕ −=                        (11)  

 
12 1 tan ( , )x yt tλ λ −= +                         (12)  

The steps, as mentioned in Eqn. (5)- Eqn. (12), are repeated 
to find all the waypoints lying on the arc with different values 
of  camera angle ‘θ’ for a given height ‘H’. After completion of 
axial photography along heights hGSD± 16, hGSD ± 8, and hGSD, 
along the selected axis, the next axis at an angular separation or 
bearing offset of 10° relative to the previous bearing is chosen 
to take photographs. The process is repeated again and again 
(in Fig. 2) till bearings of 180° around the target, as mentioned 
in Table 4, are covered.

5. MISSION PLANNING
Mission planning includes the procedure to plan and 

document the drone’s maneuvers and other planned actions, 
such as clicking the photographs. The mission planning 
involves
• Identification of the start point, hovering points, and stop 

points of the drones
• Identification of the drone profile and waypoints around 

the target
• Identifying the actions to be initiated at the waypoints

A mission plan can be made by using pen and paper or 
can also, be automated using mission planning software such 
as Ardupilot. We have used the ardupilot mission planner in 
our work. For automation of maneuvers through waypoints 
calculated in subsections 4.2 and 4.3, the waypoints represented 
through latitude, longitude, and altitude are inserted into 
the mission planner18. At each waypoint, the action points, 
including clicking the photograph and moving the drone to the 
next waypoint, are specified. 

The following information is fed into the mission planner 
as shown in Fig. 5:
• Initially, the home position with the target’s coordinates 

(with the object on the ground at the center of the target) 
is fed into the database, representing the center of the 

))+

H1
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Figure 4. Axial view along N-S aligned bearing.

Figure 5. Sample mission planning.

target as the arming and takeoff position of the UAV. This 
position is also set as the Return To Home (RTH) position 
in the drone so that in case of communication loss, the 
drone can automatically navigate to this RTH position via 
the shortest route.

• The waypoints are then entered one by one, as calculated 
in Sections 4.2 and 4.3. The same is then reflected in the 
GIS map of the Ardupilot mission planner, as shown in 
Fig. 5. A similar procedure is followed to insert waypoints 
along all the identified axes around the target.

• The drone is placed at the center of the target.
•  The drone is armed in autonomous mode to execute the 

planned maneuvers.
• Once all waypoints are inserted into the mission planner, 

the values are pushed to the mission plan to the EPROM 
of the UAV by clicking on the “write” button seen in  
Fig. 5.
Let ‘nθ’ be the number of the camera angles, let ‘nβ’  

be the number of bearing angles or the axes, let ‘nH’ be the 
number of graded heights in consideration, and let ‘nW’ be 
the number of images to be taken for the selected bearing, and 
camera angle.

The bearing angles and the camera angles are listed in 
Table 4. The number of images (N) that can be captured for a 
target or point of interest are given by

N nH n nWβ= × ×                                                     (13)
Some of the images from the dataset generated for varied 

bearing angles, camera angles, and altitudes using the proposed 
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Figure 6. Sample images in the dataset.

Figure 7. Images used for SSIM/PSNR evaluation.

methodology are represented in Fig. 6. The designed target 
image is also seen in Fig. 6. The proposed methodology can 
thus be used for the creation of a dataset using drone-mounted 
cameras covering a broad spectrum of views of the objects of 
interest for training and testing of the SISR models. 

6. PERFORMANCE ANALYSIS 
In our work, we propose to use the super-resolution 

technique for making real-time situation awareness decisions 
in applications such as such as the delivery of supplies, search 
and rescue, aerial surveillance, and so on. Detection and 
recognition of the point(s) of interest as early as possible is 
required to ensure sufficient response time for safe maneuvering. 
The super-resolution will hence target to generate the High-
resolution images from the low resolution images (captured at 
a higher height from the objects of interest).
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Figure 8. YOLOV3 output for image captured at 30 m altitude.

The high-resolution images generated by the SISR model 
should contain be able to depict the features captured by the 
camera at a lower height.  The HR-LR image pairs created 
using the principle mentioned in Section 3 can be used train 
the SISR model (Note that images captured at hGSD -8 feet and 
hGSD+8 feet form the HR/LR pairs. Similarly, images captured 
at hGSD-16 feet and hGSD+16 feet form HR/LR pairs). PSNR and 
SSIM are generally used as metrics to compare the quality of 
the two images10-11. PSNR is given by:

2

1010 log LPSNR
MSE

=
               (14)       

where, 
21 1 2( ( , ) ( , ))MN

M N
MSE I m n I m n= −∑∑

                          (15)                
where, ‘I1(m,n)’ and ‘I2(m,n)’ represents the two images (eg. 
high resolution image captured by the camera and the high-
resolution image generated by the SR technique) being 
compared and M and N are row and column index of the 
image. SISM indicates the amount of similarity between two 
images based on luminance, contrast and structure.

( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
x y xy

x y x y

C C
SSIM

C C

m m s

m m s s

+ +
=

+ + + +
                       (16)             

where, ‘x’ and ‘y’ represents the two images being compared, 
‘µ’ represents the mean, ‘s’ represents the variance and ‘σxy’ 
represents the covariance of the images  ‘x’ and ‘y’. The 
constants in Eqn. (16) are C1=(0.01L)2 and C2=(0.03L)2 
respectively. ‘ L’ in Eqn. (14) represent the dynamic range of the 
pixel values. To evaluate the techniques presented in Section 4 
and to analyze the suitability of the unique target designed for 
visual inspection, the drone was placed at heights directly over 
the designed target (as mentioned in Section 4.2). The target 
image taken at an altitude of 5m are selected as the reference 
image, and other images were cropped and resized using the 
non-destructive INTER_AREA interpolation technique of the 
OpenCV library, thus preserving the pixel density and aspect 
ratio of the images while reducing the size of the images at 
higher heights to cover the same field of view as that of the 
reference image21. The image captured at a height of 5 m was 
then center aligned and compared with the resized and cropped 
images captured at heights of 10 m to 100 m and PSNR & 

 Figure 9. YOLOV3 output for image captured at 70 m altitude.
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SSIM were calculated as shown tabulated in Table 5.  It can 
be observed from Table 5 that the PSNR and SSIM decrease 
with height indicating that the images at lower height can be 
considered as HR image and the images at greater heights 
(based on the feature of the interest) can be considered as low-
resolution image. 

Even though the works presented in the literature (on 
drone-based super-resolution or otherwise) have demonstrated 
an improvement in PSNR or SSIM, whether the achieved 
PSNR or SSIM is enough for a specific application is not 
addressed yet. To evaluate usability of the dataset for decision 
making in real-time situation awareness applications, a popular 
object detection technique YOLOv3 (You only Look Once) 
image classifier was applied on the images captured at various 
heights22. Set of images at various heights were chosen and 
annotated using an open source image annotator LabelImg23. 
Four classes of objects as mentioned in Table 6 were annotated 
in the images using rectangular bounding boxes in YOLO text 
formats. YOLOv3 configuration used in our work is presented 
in Table 6. YOLOv3 was trained on 150 images from the 
dataset. Testing was done on separate set of images at various 
heights. Sample output with the class specific confidence 
scores for two images captured at the altitude of 20 m and 70 
m are depicted in Fig. 8 and Fig. 9. The target is detected by 
YOLOv3 and the confidence score of the centre of the target 
can be observed in the YOLOv3 output. Table 5 also provides 
a summary of the confidence score for target (Centre of the 
target) prediction at varying heights. The higher confidence 
score for object detection achieved using the images captured 
at lower heights when compared to the images captured at 
higher heights indicates that those images can be considered 
as HR images. 

7. CONCLUSIONS
In this paper, a methodology for the creation of a dataset 

using drone-mounted cameras covering a broad spectrum of 
views of the target suitable for training and testing of the SISR 
models is presented based on the ground sampling distance. 
Both LR as well as HR images are captured in the dataset. 
Also, a methodology for the selection of an appropriate 
target for imaging to visually evaluate the performance of 
SISR techniques for drone-based applications is proposed. 
The mission planning technique utilized for the generation of 
the image dataset is also elaborated. Further, the method and 
operating principles of aerial photography are not just limited 
to the particular target type but can be used to capture images 
of objects and other ground-based artifacts to create a holistic 
dataset for SISR model training and testing. We believe that the 
proposed work accelerates the use of small/micro/nano drones 
with LR cameras for real-time decision-making and plan to 
use the technique for decision making in real-time situation 
applications.
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