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AbStrAct

This study addresses the challenge of accurately forecasting demand for maintenance-related spare parts of the 
K-X tank, influenced by high uncertainty and external factors. Deep learning models with RobustScaler demonstrate 
significant improvements, achieving an accuracy of 86.90% compared to previous methods. RobustScaler outperforms 
other scaling models, enhancing machine learning performance across time series and data mining. By collecting 
eight years’ worth of demand data and utilising various consumption data items, this study develops accurate 
forecasting models that contribute to the advancement of spare parts demand forecasting. The results highlight 
the effectiveness of the proposed approach, showcasing its superiority in accuracy, precision, recall, and F1-Score. 
RobustScaler particularly excels in time series analysis, further emphasizing its potential for enhancing machine 
learning performance on diverse datasets. This study provides innovative techniques and insights, demonstrating the 
effectiveness of deep learning and data scaling methodologies in improving forecasting accuracy for maintenance 
spare parts demand.

Keywords: Spare parts; Demand forecasting; Deep learning; Data scaling learning model; Military logistics

1. IntroDuctIon 
Demand forecasting is crucial in operations management, 

serving as the basis for inventory planning1. Accurate forecasts 
are vital for maintaining optimal inventory levels and 
avoiding negative outcomes like overstocking, understocking, 
obsolescence, rush orders, and inefficiencies2. In the military 
logistics sector, demand forecasting is even more critical, as 
inaccurate forecasts can have severe consequences, potentially 
leading to a national crisis. To enhance demand forecasting 
accuracy in military logistics, big data analysis technologies, 
including data mining, are being adopted. These approaches 
offer new possibilities for improving spare parts demand 
forecasting.

This study introduces a predictive model that improves 
spare parts demand forecasting in military logistics by 
incorporating exogenous variables, including text data. The 
objective is to develop a forecasting model that identifies critical 
factors influencing spare parts demand, enhances accuracy, and 
enables effective inventory management. The proposed model 
has implications beyond military logistics, benefiting sectors 
like supply chain management and retail. By leveraging big 
data analytics and incorporating exogenous variables, the model 
delivers accurate demand forecasts, mitigating forecasting 
risks. The study provides valuable insights into spare parts 
demand in military logistics, facilitating the development of 

predictive models that enhance accuracy. Military organizations 
can maintain optimal inventory levels and prepare for future 
demand using these models. The study’s findings contribute 
to the understanding of demand forecasting in various sectors, 
aiding in inventory management and preparedness.

The study follows a structured approach with a literature 
review in Section 2, providing a theoretical foundation and 
discussing forecasting approaches. Section 3 outlines the 
methodology, while Section 4 describes experimental studies. 
Section 5 concludes by presenting implications and future 
research directions, including deep learning techniques in 
spare parts demand forecasting.

2. LIterAture revIew 
2.1 time Series

Time series analysis involves studying data points 
arranged in chronological order. Typically, these data points are 
collected consecutively and at equal intervals. The underlying 
assumption in time series analysis is that past patterns tend to 
repeat in the future. This analytical approach is valuable for 
understanding natural processes, monitoring changes over 
time, and evaluating the effectiveness of planned or unplanned 
interventions3. In the context of demand forecasting, time series 
analysis is widely applied and provides a reliable quantitative 
method for predicting future patterns based on historical 
data4.

Researchers have utilised first- and second-order 
exponential smoothing techniques to estimate the number of 
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injuries and deaths resulting from road accidents in Jordan 
between 1981 and 2016. The accuracy of these results was 
compared to other methods based on mean absolute percent 
error, mean absolute deviation, and mean square deviation. The 
second-order exponential smoothing technique demonstrated 
notable effectiveness5. In the military domain, the demand 
forecasting model for repair units employs 5-8 time series 
techniques, with 3 techniques specifically utilised for the Army. 
South Korean troops, on the other hand, make use of 5-9 time 
series techniques. This approach involves comparing the actual 
demand in a given year (t) with the demand forecast from the 
previous year (t-1), employing a relatively straightforward 
demand forecasting technique as a baseline for comparison6-8.

2.2 Data Mining
Data mining is a sophisticated approach that employs 

statistical and machine learning methods to uncover valuable 
patterns and insights from extensive data sets. It involves 
tasks like sourcing relevant data, preparing it by cleaning and 
organizing, and using algorithms to unveil hidden relationships 
and trends. This process aims to inform business decisions, 
enhance processes, and drive innovation across various 
domains, including customer segmentation, fraud detection, 
market basket analysis, and predictive modeling.

Data mining has wide-ranging applications across various 
fields such as healthcare, finance, marketing, and social media 
analytics. It is a powerful and continuously evolving technology 
that aids in decision-making and prediction, contributing to 
advancements in multiple domains9. The process involves 
extracting valuable insights and uncovering relationships 
from extensive datasets through thorough investigation, 
analysis, and modeling10. Several commonly used data mining 
techniques include decision trees (DTs), Bayesian networks, 
and support vector machines (SVMs). Decision trees analyse 
information based on decision-making rules, organizing it 
into tree structures to classify relevant classes into multiple 
categories or predict results11.

2.3 Deep Learning
Deep learning refers to the use of deep neural networks, 

which are artificial neural networks with two or more hidden 
layers, along with algorithms designed for learning these 
networks. One such algorithm is the Gated Recurrent Unit 
(GRU), which addresses the issue of gradient vanishing while 
retaining the benefits of long short-term memory (lSTM)12. 
In a related study, weather data consisting of 12 variables, 
including hourly photovoltaic power, was obtained from the 
european medium-range weather forecast center for a specific 
time period13.

Deep learning utilises neural networks that mimic 
the structure of human neural networks and comprise 
interconnected layers14-15. A Multi-Layer Perceptron (MLP) 
is a type of artificial neural network that consists of multiple 
layers of single-layer perceptron networks. MLP overcomes the 
limitations of single-layer perceptrons, which can only handle 
linearly separable data16-17. To enhance the performance of MLP, 
recurrent neural networks (RNNs) with cyclic structures have 
been developed. These networks store and transmit information 

within memory blocks based on predefined schedules. Rnns 
are particularly suitable for processing sequential data such as 
text, speech, and time-series data18. By incorporating the LSTM 
algorithm, Rnns can effectively address the issue of long-
term dependencies and have found applications across various 
domains19. Recently, Méndez20, et al. reviews 155 scientific 
publications from 2011-2021 on Deep Learning models for 
air quality forecasting, covering geography, predicted values, 
predictor variables, evaluation metrics, and ML models. Also, 
Abbasimehr21, et al. proposes a demand forecasting method 
based on multi-layer LSTM networks to address the challenges 
of accurate prediction in competitive business environments. By 
conducting experiments and comparing with other methods, the 
results demonstrate the superior performance of the proposed 
method in capturing fluctuating demand data. Finally, Xie,  
et al.22 presents a decomposition-ensemble approach utilising 
empirical mode decomposition, data characteristic analysis, 
and Elman’s neural network model to enhance the accuracy 
of tourism demand forecasting in volatile regions like Hong 
Kong. Through empirical analysis using Hong Kong tourism 
demand data, the proposed model demonstrates superior 
performance in both point and interval forecasts for various 
prediction horizons, highlighting its effectiveness in predicting 
complex time series data. 

Deep learning methodologies have gained traction in 
demand forecasting, surpassing traditional time series analysis 
and data mining techniques. They excel in capturing complex 
non-linear relationships, handling sequential data, automating 
feature extraction, and effectively managing outliers. while 
demanding substantial data and computational resources and 
posing challenges in interpretability, deep learning exhibits 
promise in enhancing forecasting accuracy and addressing 
complex patterns.

3. ProPoSAL oF DeMAnD ForecAStIng 
MoDeL 
This study focuses on collecting operational data from the 

Defense Logistics Integrated Information System (DELIIS) of 
the Ministry of National Defense of the Republic of Korea. 
The target of the study is the maintenance data of K-X, an 
army tank crucial for battlefield operations. The objective is 
to enhance its superiority and operational potential in times of 
war. 

3.1 extraction of variables 
This research analyses transaction records to forecast 

spare parts demand. It categorises 18,476 identified items and 
extracts data such as consumption, procurement period, unit 
price, operating time, and maintenance comments. The study 
focuses on the annual demand data for the K-X tank system, 
obtained from military maintenance records. Derived variables 
totaling 32 factors are derived by summing categorical counts 
of spare parts used between 2010 and 2018. The objective 
variable is the occurrence of spare parts in 2018, with 9,527 
items. To ensure balance, 5,813 unused parts are randomly 
selected, and 7,428 items are used for experiments. The study 
compares the predictive performance of time series analysis, 
data mining, and deep learning techniques in forecasting spare 
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Figure 1. overview of demand forecasting mechanism based on the data scaling learning model.

table 1. variables descriptions

variables 
(number of the unit) Description

Number of 
Consumption (8)

Sum of spare parts consumed per item 
by year (2010 ~2018)

Order Time (8) Sum of spare parts order times per item 
by year (2010 ~2018)

Operating Time (8) Tank operating time

Operating Distance (8) Tank operating distance

parts usage based on the extracted variables. Table 1 presents 
an example of extracted data, while Annexure I shows the 
original data before extraction. In the future, when text mining 
techniques are organised and available, several potential 
external variables that can be used are presented.

of RNN, LSTM, GRU, and MLP. Our study employed various 
models for time series analysis, machine learning, and deep 
learning. Time series models (AM, SMA, WMA, LMA, LS) 
capture historical patterns, while machine learning models 
(DT, RF, nb, lR, SvM) handle complex relationships. Deep 
learning models (Rnn, lSTM, gRU, MlP) excel at sequential 
data and intricate dependencies. This approach ensures 
comprehensive analysis and accurate demand forecasting.

The GRU, a type of RNN, is designed for sequential 
data processing and shares similarities with LSTM networks. 
It incorporates two gates: the reset gate and the update gate, 
regulating information flow. The reset gate controls forgetting 
of the previous state, while the update gate determines how 
much new input is added. The output of the GRU is obtained 
by applying the hyperbolic tangent activation function to the 
linear combination of the new candidate state and the current 
input, weighted by the update gate. This mechanism is valuable 
for handling sequential data with long-term dependencies, 
allowing selective retention or omission of previous inputs 
based on current inputs. For a graphical representation, refer 
to Fig. 2.

It is important to note that the base-level learning module 
in our study did not include data scaling learning methods. 
However, by utilising the diverse range of models mentioned 
above, we aimed to explore and evaluate their performance 
in various domains of analysis, from time series to machine 
learning and deep learning.

3.2.2 Data Scaling Learning Module 
The data scaling method used in this study is an important 

preprocessing step in many machine learning algorithms. 
This means transforming the data so that all features have the 
same scale. This is important because some machine learning 
algorithms are sensitive to measures of input characteristics. 

3.2 Proposed Data Scaling Learning System 
The proposed data scaling learning system consists of a 

basic level learning module and a data scaling learning module. 
The base level learning module was applied to the unscaled 
dataset. 5-fold cross-validation was performed to prevent 
overfitting when constructing the dataset. Then, as shown in 
Fig. 1, the dataset was trained using the Data Scaling Train 
module to calculate the final result.

3.2.1 Base-Level Learning Module 
In our study, we employed various models for time series 

analysis, machine learning, and deep learning. The time series 
models used were Arithmetic Moving (AM), Simple Moving 
Average (SMA), Weighted Moving Average (WMA), Least 
Moving Average (LMA), and Least Square (LS). The machine 
learning models included DT, RF, naive bayes (nb), logistic 
Regression (LR), and SVM. The deep learning models consisted 
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Using out-of-scale data may result in less-than-optimal 
performance. In this paper, four data scaling methods are 
considered: StandardScaler, RobustScaler, MinMaxScaler and 
MaxAbsScaler23.

StandardScaler: This method scales the data so that it has • 
zero mean and unit variance. This means that each feature 
will have a mean of zero and a standard deviation of one. 
The formula for standardisation is (x-mean)/std. This is 
the most commonly used scaling method and works well 
when the data is normally distributed
RobustScaler: This method scales the data using the • 
interquartile range (IQR) instead of the mean and standard 
deviation. This makes it more robust to outliers in the data. 
The formula for RobustScaler is (x-mean)/IQR
MinMaxScaler: This method scales the data so that it • 
is between a specified minimum and maximum value, 
usually 0 and 1. The formula for MinMaxScaler is (x-min)/
(max-min)
MaxAbsScaler: This method scales the data so that the • 
absolute values of each feature are between 0 and 1. The 
formula for MaxAbsScaler is x/max(abs(x)).
Considering the distribution of data and the presence 

of outliers is important when selecting a scaling method. 
StandardScaler can be a suitable default choice, but RobustScaler 
might be more effective in the presence of outliers. 

4. ProPoSAL oF DeMAnD ForecAStIng 
MoDeL 

4.1 experiment Design 
To capture the time series pattern in the data, the study 

split the training data by year. Input variables from 2010 to 
2017 were used to train the model for forecasting spare 
parts demand in 2018. For evaluation, spare parts demand in 
2017 was predicted using input variables from 2011 to 2016. 
Performance assessment employed classification metrics like 
accuracy, precision, recall, and F1-score.

4.2 classification results of the base Model 
The study utilised a Base model that integrated time series, 

Figure 2. overview of gru mechanism.

table 2. Performance values of base models. 

original data
In 
per 
cent

In 
per 
cent

In per 
cent

Accuracy

AM 69.50 DT 82.00 MLP 84.30

SMA 68.60 RF 84.50 RNN 82.40

WMA 51.30 NB 65.80 LSTM 81.00

LMA 64.70 SVM 81.50 GRU 79.90

LS 52.30 LR 82.20

Precision

AM 97.00 DT 82.00 MLP 82.00

SMA 97.00 RF 80.00 RNN 73.00

WMA 99.00 NB 32.00 LSTM 68.00

LMA 96.00 SVM 90.00 GRU 65.00

LS 97.00 LR 68.00

Recall

AM 63.00 DT 82.00 MLP 86.00

SMA 62.00 RF 88.00 RNN 90.00

WMA 51.00 NB 99.00 LSTM 92.00

LMA 59.00 SVM 77.00 GRU 93.00

LS 51.00 LR 95.00

F1-Score

AM 76.00 DT 82.00 MLP 84.00

SMA 75.00 RF 84.00 RNN 81.00

WMA 67.00 NB 48.00 LSTM 78.00

LMA 73.00 SVM 83.00 GRU 76.00

LS 67.00 LR 79.00

machine learning, and deep learning techniques to develop a 
predictive model for spare parts demand forecasting. Historical 
data spanning six years was used, and a binary representation 
(0 or 1) was employed to indicate the occurrence or non-
occurrence of spare parts. cross-validation with five randomly 
classified folds was conducted to evaluate the model.
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table 3. Performance values of data scaling models  
(a)  result with time seires

MaxAbsScaler robustScaler MinMaxScaler StandardScaler
In per cent In per cent In per cent In per cent

Accuracy

AM 50.10 78.80 50.10 50.00
SMA 50.10 78.90 50.10 50.00
WMA 54.10 84.30 54.10 51.50
LMA 50.20 81.00 50.20 66.80
LS 50.00 49.90 50.00 50.00

Precision

AM 0.00 61.00 0.00 0.00
SMA 0.00 61.00 0.00 0.00
WMA 8.00 85.00 8.00 99.00
LMA 0.00 67.00 0.00 73.00
LS 100.00 99.00 100.00 100.00

Recall

AM 100.00 95.00 100.00 0.00
SMA 100.00 96.00 100.00 0.00
WMA 100.00 84.00 100.00 51.00
LMA 94.00 93.00 94.00 65.00
LS 50.00 50.00 50.00 50.00

F1-Score

AM 0.00 74.00 0.00 0.00
SMA 0.00 74.00 0.00 0.00
WMA 15.00 84.00 15.00 67.00
LMA 1.00 78.00 1.00 69.00
LS 67.00 66.00 67.00 67.00

(b)  result with data mining

MaxAbsScaler robustScaler MinMaxScaler StandardScaler
In per cent In per cent In per cent In per cent

Accuracy

DT 80.10 78.60 80.10 80.10
RF 84.00 82.60 84.00 84.00
NB 61.10 65.30 61.10 81.70
SVM 50.90 84.30 50.90 83.60
LR 58.50 82.10 58.50 83.00

Precision

DT 78.00 83.00 78.00 80.00
RF 79.00 84.00 79.00 79.00
NB 22.00 31.00 22.00 81.00
SVM 2.00 78.00 2.00 86.00
LR 17.00 68.00 17.00 87.00

Recall

DT 81.00 76.00 81.00 80.00
RF 88.00 82.00 88.00 88.00
NB 100.00 99.00 100.00 82.00
SVM 100.00 89.00 100.00 82.00
LR 100.00 95.00 100.00 81.00

F1-Score

DT 80.00 79.00 80.00 80.00
RF 83.00 83.00 83.00 83.00
NB 36.00 47.00 36.00 82.00
SVM 4.00 83.00 4.00 84.00
LR 29.00 79.00 29.00 84.00

The results presented in Table 2 showed that the machine 
learning-based model outperformed the traditional univariate 
time series model. Among the models, RF achieved the highest 
accuracy score of 84.5 per cent, closely followed by the MLP 
model at 84.3 per cent. Other models like DT and LR also 
performed well with accuracy scores of 82.0 per cent and 82.2 
per cent, respectively. On the other hand, the Worst Model 
(WM) had a poor accuracy score of 51.3 per cent.

In terms of precision, the WM model obtained the highest 
score of 99.0 per cent, while the NB model had the lowest score 
of 32.0 per cent. The RF and MlP models achieved precision 
scores of 80.0 per cent and 82.0 per cent, respectively. The 
RNN and GRU models displayed the lowest precision scores 
at 73.0 per cent and 65.0 per cent, respectively. For recall, the 
GRU model performed the best with a score of 93.0 per cent, 
followed by the LSTM model at 92.0 per cent, and the RNN 
model at 90.0 per cent.
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(c)  result with deep learning

MaxAbsScaler robustScaler MinMaxScaler StandardScaler
In per cent In per cent In per cent In per cent

Accuracy

MLP 84.70 83.40 84.30 81.60
RNN 82.10 84.60 82.10 83.20
LSTM 80.30 86.10 74.60 83.50
GRU 76.90 86.90 79.50 84.10

Precision

MLP 77.00 82.00 81.00 83.00
RNN 74.00 79.00 72.00 81.00
LSTM 48.00 83.00 51.00 79.00
GRU 61.00 83.00 64.00 84.00

Recall

MLP 90.00 84.00 86.00 81.00
RNN 89.00 89.00 90.00 85.00
LSTM 96.00 88.00 96.00 87.00
GRU 94.00 89.00 93.00 84.00

F1-Score

MLP 83.00 83.00 84.00 82.00
RNN 81.00 84.00 80.00 83.00
LSTM 64.00 86.00 67.00 83.00
GRU 74.00 86.00 76.00 84.00

table 3. Performance values of data scaling models

Regarding the F1-score metric, the RF and MlP models 
achieved the highest scores of 84.0 per cent and 84.00 per 
cent, respectively, while the NB model had the lowest score 
of 48.0 per cent. The LSTM, SVM, and GRU models achieved 
F1-scores of 78.0 per cent, 83.0 per cent, and 76.0 per cent, 
respectively.

overall, the RF and MlP models exhibited strong 
performance across multiple metrics, while the NB and WM 
models performed poorly. The GRU model showed high 
recall but lower precision and F1-score values. notably, the 
RF demonstrated favorable overall performance in terms of 
accuracy and F1-score.

4.3 classification results obtained using the Data 
Scaling Learning Model
The study employed various scaling techniques, 

including MaxAbsScaler, RobustScaler, MinMaxScaler, and 
StandardScaler, across three different types of models: time 
series, machine learning, and deep learning. Performance 
evaluation metrics such as accuracy, precision, recall, and F1-
score were utilized, and the results are presented in Table 3. 

RobustScaler emerged as the top-performing scaling 
model, consistently demonstrating strong performance across 
time series, data mining, and deep learning. In the realm of 
time series, RobustScaler outperformed other scaling models 
in terms of accuracy, precision, recall, and F1-score. notably, 
it achieved the highest accuracy in the WMA category and 
precision scores for the LS model consistently approached 99-
100 per cent. Additionally, RobustScaler, MaxAbsScaler, and 
MinMaxScaler achieved recall results ranging from 96 per cent 
to 100 per cent in the SM and AM categories. RobustScaler 
also delivered a satisfactory F1-score of 84 per cent in the 

wMA category. In data mining, the scaling models exhibited 
similar performance levels in terms of accuracy, precision, 
recall, and F1-score. RF and SvM consistently attained 
comparable accuracy scores across different scaling models. 
Precision scores for RF ranged from 79 per cent to 84 per cent, 
and MaxAbsScaler and MinMaxScaler yielded recall results of 
99 per cent to 100 per cent in various models. F1-score results 
were also consistent among RF, SvM, and lR, ranging from 
83 per cent to 84 per cent across multiple scaling models.

In the domain of deep learning, RobustScaler demonstrated 
superior performance compared to other scaling models 
across accuracy, precision, recall, and F1-score. The gRU 
model achieved the highest accuracy of 86.9 per cent when 
combined with RobustScaler. Precision results ranged from 83 
per cent to 84 per cent for GRU with both RobustScaler and 
StandardScaler. MaxAbsScaler and MinMaxScaler achieved a 
recall of 96 per cent in the lSTM model. The best F1-score of 
86 per cent was achieved by both RobustScaler and GRU.

The exceptional accuracy of RobustScaler can be 
attributed to its robustness to outliers. By using the median 
and interquartile range to scale each data point, RobustScaler 
ensures accurate scaling even in the presence of outliers. 
This characteristic makes RobustScaler highly valuable in 
datasets that contain outliers, ultimately enhancing model 
performance.

The results clearly indicate that in the context of military 
equipment, there are challenges such as missing data and 
imbalanced data distribution. To address these challenges and 
improve prediction accuracy, the use of data scaling models 
has been demonstrated in this study. Data scaling techniques, 
such as normalisation or standardisation, can help mitigate 
the impact of missing data and handle imbalanced datasets 
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effectively. by applying data scaling, the features in the dataset 
are transformed to a common scale, reducing the influence of 
missing values and enabling a more balanced representation 
of the data. This normalisation process ensures that each 
feature contributes equally to the prediction model, avoiding 
biases caused by imbalanced data. Additionally, data scaling 
can enhance the convergence speed and stability of machine 
learning algorithms, improving the overall performance of the 
prediction model. The incorporation of data scaling models 
in this study highlights their effectiveness in dealing with the 
unique challenges of military equipment data, leading to more 
reliable and accurate predictions. The findings suggest that 
utilising data scaling techniques can be a valuable approach 
in similar domains where missing data and imbalanced 
distributions are prevalent.

5. concLuSIonS 
This study addresses the challenge of demand forecasting 

for maintenance-related spare parts of the K-X tank, which 
poses high uncertainty due to their external nature. To improve 
accuracy in spare part demand forecasting, the study explores 
various analyses and modeling approaches. 

To develop an accurate forecasting model, the study 
collects eight years’ worth of demand data for K-X tank spare 
parts and extracts various consumption data items. Deep 
learning models with data scaling techniques are developed for 
solving demand forecasting problem. The best result is achieved 
using RobustScaler and the GRU model, with an accuracy of 
86.90 per cent. The base model demonstrates accuracies of 
84.5 per cent in data mining and 84.3 per cent in deep learning. 
When RobustScaler is applied, data mining maintains a similar 
accuracy to the base model (84.3 %), while deep learning 
shows a 2.6 per cent improvement, reaching an accuracy of 
86.9 per cent. RobustScaler outperforms other scaling models 
in terms of accuracy, precision, recall, and F1-Score across 
time series, data mining, and deep learning. Particularly in time 
series analysis, RobustScaler achieves the highest accuracy and 
recall results, while also demonstrating excellent accuracy and 
F1-Score in deep learning. RobustScaler can enhance machine 
learning performance on diverse datasets, including those 
containing outliers. Future research can focus on developing 
advanced scaling techniques to further improve performance 
on datasets with various types of outliers. 

The study highlights the potential for improved 
performance in the future, as evidenced by the M4 competition, 
where Convolutional Neural Network (CNN) models leveraging 
unstructured data showcased superior results. This emphasizes 
the growing trend of utilizing unstructured data for prediction 
and underscores the need for advanced model development.
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