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ABSTRACT

The launch and impact points of a flight trajectory are estimated using U-D Kalman filter
and Rauch-Tung-Striebel  (R-T-S) smoother. Algorithms are implemented in PC MATLAB and
validated using simulated data. The filter performance is evaluated in terms of state error,
innovation sequence, and autocorrelation of residuals along with their theoretical bounds. The
R-T-S smoother was found to generate accurate state estimates, which led to better launch point
estimation. Launch and impact point prediction from real data of a guided target in ballistic mode
is also evaluated.
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1. INTRODUCTION

Air defence applications like weapon delivery
systems require an accurate prediction of launch
and impact points of targets detected during a part
of their trajectory. The launch point information is
required to know from where the target was launched
and whether the target was from enemy territory
or friendly territory. The impact point information
is required to know where the target would impact,
in the ocean or in a major city, so that appropriate
action to destroy the target could be initiated.   Kalman
tracking filters have been used to predict such
trajectories. The advantage of Kalman filter is
that along with the position estimates, it gives estimates
of the accuracy of the predictions. If the sensors
observe the entire flight trajectory, then the estimation
of the launch and impact points is straightforward
and a Kalman filter could be used for the estimation.
However, there could be situations where the flight

trajectory is available only for a part of its flight.
The estimation of impact and lunch points in such
a situation would require an extrapolation of the
estimated trajectory backward in time to predict
the launch point and forward in time to predict the
impact point.

Estimation of the launch and impact points
have been carried out in two phases. In the first
phase where the moving object is observed by
sensors, its trajectory is estimated using point-mass
model and a Kalman filter1. Smoothing techniques
significantly improve the initial condition of the
state estimates2, this could be used to predict the
launch point accurately, and hence, smoothed state
estimates are obtained using Rauch-Tung-Striebel
(R-T-S) smoother during the first phase. In the
second phase where the target is unobservable by
sensors, the trajectory is estimated using point-mass
model and covariance propagation calculation by
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forward propagation to get information about the
impact point of the target3. The smoothed state
estimate at the start time of the data is used to
predict the launch point of the trajectory using
backward integration.

In this study, U-D factorised form of the Kalman
filter has been chosen as it has the advantage of
being numerically stable and computationally efficient.
U-D factorisation-based Kalman filter and forward
prediction were used to predict the impact point.
U-D factorisation-based Kalman filter and fixed-
interval Rauch-Tung-Streibal (R-T-S) smoother and
backward integration were used to predict the launch
point. The probable use of U-D filter is in its
application to real-time tracking4. Algorithms were
implemented in PC MATLAB and validated using
simulated data of a target moving with constant
velocity. The algorithms were also used to predict
launch and impact points from real data of a flight
trajectory for which these points were known by
considering certain segments of the data as being
observable by the sensors. Results have been presented
in terms of the accuracy of prediction of the launch
and impact points, time history comparisons,
autocorrelation of the residuals with bounds, innovation
sequence with the theoretical bounds5, and state
error with bounds for the simulated data.

2 . U-D FACTORISATION-BASED KALMAN
FILTER AND RTS SMOOTHER

The two phases involved in the estimation of
the launch and impact points have been illustrated
in Fig. 1. A typical trajectory of a target from A
to D is shown with A as the launch point and D
as the impact point. Assuming that measurements
are available only between points B to C where
sensors are tracking the target, it is proposed to
estimate the impact point D and launch point A.
In the first phase, data between B and C was used
to generate estimated states and covariances using
U-D filter. An R-T-S smoother working between
points B and C utilising the output of the Kalman
filter-generated smoothed states in a backward
pass (ie, going from C to B) operation. In the
second phase, point D was obtained using the forward
prediction of the U-D filter output at point C, and
point A was estimated by backward integration
starting with the smoother output at point B.

2.1 U-D Kalman Filter

The general form of the kinematic state model
of the tracked target is given by

x(k+1) = 

 

x(k) + Gw(k)  (1)

with discrete measurements
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Figure 1.   Typical target trajectory.
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)1()1()1( kvkxHkz

k = 0, 1, 2...N  (2)

where, x is the state vector, z is the measurement
vector, 

 
is the state transition matrix, G is the

process noise related matrix, H is the observation
matrix, 

 
is the measurement noise, w is the process

noise, and N is the number of measurements.

It was assumed that the noise sequences{w(k)
and (k)} are zero mean white Gaussian and are
mutually independent and have diagonal covariances
Q(= 2

w) and R( 2 ) respectively. The choice of
G assures that Q being diagonal is not a loss of
generality and by Cholesky decomposition whitening,
it can be assumed with no loss of generality that
R is diagonal4.

The term U-D covariance factorisation comes
from a property of non-negative definite symmetric
matrices, according to which covariance matrix P
can be factored into P = UDUT, where U is the
upper triangular matrix with unit elements on its
main diagonal and D is a diagonal matrix4. Covariance
and gain processing algorithms, operating on U
and D factors of state error covariance matrix P,
are a technique for implementing square root filtering
without requiring computation of square roots. The
U-D Kalman filtering algorithm is considered efficient,
stable, and accurate for real-time applications4.
The U-D factorisation-based Kalman filtering algorithm
is given in two parts namely time propagation and
measurement update algorithms.

2.2 U-D Factor Time Propagation Algorithm

State estimate extrapolation:

kkkk xx //1 ˆ~

     

(3)

Error covariance extrapolation:

TT
kkkk GQGPP //1

ˆ~

     

(4)

Given TUDUP ˆˆˆˆ

 

and Q as the process noise
covariance matrix, the time update factors U

~ and D
~

are obtained through modified weighted Gram-Schmidt

orthogonalisation process.  Defining ]|ˆ[ AGUW ,

],ˆ[ QDdiagD    with n
T wwwW ,...,, 21  , where

n is the number of states in state vector. P is
reformulated as TWDWP

~~~~ . The U and D factors
of  TWDW

~~~

 
may be computed as described below.

For 2,...,1, nnj , the following equations

are recursively evaluated:
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2.3 U-D Factor Measurement Update Algorithm

The measurement update in Kalman filtering
combines a priori estimate x~  and P

~  error covariance
with scalar observation vxaz T ; HaT

to construct an updated (filtered state) estimate
and covariance:

/
~

/1 aPK kk

)~)1((~ˆ /1/11/1 kk
T

kkkk xakzKxx

raPa kk
T

/1

~

kkkkkk PKaPP /1/11/1

~~ˆ

                

(6)

where CB NNk ,..., , TUDUP
~~~~ , a

 

is the
measurement vector, r is the measurement noise
covariance, z is the string of noisy measurements,
N B 

and N
C 

denote start and end of the data
measurements as available from the tracking sensors.

Kalman gain K and updated covariance factors

Û  and D̂ can be obtained from the following
equations:
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For j = 2, ......, n recursively, the following
equations are evaluated:

jjjj fv1 ;     jjjj dd /
~ˆ

1

 

jjjj kuu ~ˆ ; 1/ jjj f

 

jjjj uvKK ~
1

     

(8)

where ]ˆ,...,ˆ[ˆ],~,...,~[
~

11 nn uuUuuU

 

and Kalman
gain is given by nnKK /1

 

where d
~

 

is predicted
diagonal element and jd̂

 

is the updated diagonal
element of the D matrix.

2.4  R-T-S Smoother

Smoothing is a non-real time data processing
scheme that uses all measurements starting from
T to 0 to estimate the state of a system at a certain
time t, where Tt0 . The smoothing algorithm
implemented here is a backward-pass sequel to a
forward pass Kalman filter outputs (filter covariances,
Kalman gains, etc). The  R-T-S smoother formulation
is considered, because of the simplicity2,4. The
R-T-S recursions that generate smoothed estimates
and error covariances are:

)ˆ(ˆ /1
*

/1
*

/
*

/ kkNkkkkNk xxGxx (9)
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where

1
/1/

* ~ˆ
kk

T
kkkk PPG                (11)

The recursion is backward sweep from

BC NNk ),...,1( .The state estimates covariances

kkx /1
~ and kkP /1

~

 
are found using the U-D filter in

the forward pass.

2.5 Imapct-point Prediction

Forward prediction is used to predict the impact
point D (whose index is N)

kkkk xx //1 ˆ~

 

(12)

T
kkkk PP //1

ˆ~
,    NNk C ,...,

 

(13)

The initial value of kkx /ˆ is the output of the U-

D filter at point C.

2.6 Launch Point Prediction

Backward integration was carried out to predict
the launch point.

*
/1

*
/ NkNk xx

 

(14)

1*
/1

1*
/ )( T

NkNk PP , 1),...,1( BNk    (15)

The initial value of *
/1 kkx

 

is the smoother output
at point B or U-D filter output at point B.

2.7 Filter-performance Evaluation

The filter performance is ascertained by checking
(i) the estimated states and the bounds for convergence,
(ii) residuals and their bounds for convergence,
and (iii) the autocorrelation of the residuals for
whiteness. The performance of U-D Kalman filter
has been evaluated by checking whether

• The state error  ( xx ˆ ) falls within the theoretical

bound of ),(̂2 kkP , where TUDUP ˆˆˆˆ

(for simulated data only)

• The innovation xHz ~

 

falls within the
theoretical bound of ),(2 kkS , where

RHPHS T~
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• The autocorrelation of residuals fall within the
theoretical bound of N/96.1 , where N is
the number of samples.

3 . RESULTS & DISCUSSION

The U-D factorised Kalman filter and R-T-S
smoother techniques are implemented in PC MATLAB.
The performance of the algorithm has been evaluated
using simulated data of a target moving with constant
velocity. It is then applied to real data for extrapolating
the estimated/smoothed trajectory during a segment
of the flight trajectory.

3.1 Validation Using Simulated Data

For generating the simulated data, the following
state variables of the target are considered:
x-position, x-velocity, y-position, and y-velocity,

ie. the state vector is represented by ],,,[ yyxx .
Equations (1) and (2) give the model of the system
considered. Sampling time T = 0.1 s is used to
simulate data for 50 s., resulting in a total of 500
data points. The transition matrix and the other
related matrices are given by:

1000

100

0010

001

T

T 

T

T

T

T

G

0

02/

0

02/

2

2

2

2

0

0

y

x

r

r
R

0100

0001
H 2

2

0

0

y

x

q

q
Q (16)

The initial state vector xo 
= [1200, 8.3, 3000,

10.6]. Measurements of x-position and y-position
are generated using Eqn (2) by adding random
noise with variance of rx

 = 1 and r
y
 = 100, respectively.

The process noise variance used in the simulation
is q

x 
= q

y 
= 0.01. The results of estimation are the

average of 10 Monte Carlo simulations. Figure 2
shows the x and y position state estimates using
the data between the points B and C (in the left-
half of the figure) assuming that measured data is
available between 10 s and 40 s. The state estimates
with prediction of launch point (of point A) using
the smoother output as well as the filter output and

Figure 2.   Estimated states of both filter and smoother for simulated data.
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impact point (point D) using the filter output are
compared with the true states in the right-half of
the Fig. 2.

It is clear from the figure that the launch-point
prediction using U-D Kalman filter is away from
the true value. However, the smoother gives an
accurate launch-point prediction. The innovations
state errors and autocorrelation of residuals with
bounds are shown in Fig. 3. The innovations, residuals,
and autocorrelation function fall within the theoretical

bounds, which indicate satisfactory filter performance.
The results of impact-point prediction using the U-D
Kalman filter output at point C is shown in Table 1.
A number of cases are presented where it is assumed
that measured data is available for different time
segments (indicated by points B and C in the Tables).

Results are presented in terms of the impact
point prediction error, the standard deviation of the
impact-point prediction, the mean of the residuals
and the fit error. It is clear that even with only 10

Table 1.  Impact point prediction using UD filter – simulated data 
(POINT-D (x-TRUE=1613.77, Y-TRUE=3528.77), AT 50 s) 

Case Time at B

 

(s) 
Time at C

 

(s) 
x-pre x-std % x err

 

y-pre y-std

 

% y err mx my PFE x PFE y 

1 0.0 50 1613.8 0.20 -0.002

 

3528.6 1.19 0.006 0.0019 -0.13 0.068 0.298 

2 0.5 49.5 1613.7 0.23 0.005

 

3528.4 1.23 0.01 -0.006 -0.375 0.069 0.299 

3 2.5 47.5 1613.8 0.34 -6E-04

 

3528.4 1.41 0.009 0.0307 0.762 0.068 0.299 

4 5.0 45 1613.5 0.50 0.019

 

3529.1 1.67 -0.01 0.0395 0.391 0.068 0.295 

5 10 40 1613.5 0.82 0.017

 

3530.0 2.28 -0.035 0.0652 1.036 0.068 0.291 

6 20 30 1613.5 0.82 0.015

 

3531.6 2.73 -0.08 0.1044 0.454 0.064 0.277 

x, y-pre = predicted x, y-position, x, y-std = standard deviation of x, y-position prediction,  

x, y-err = x, y-position error =((x, y-true) – (x, y-pre)), % x, yerr = (x, y-err * 100)/(x, y-true),  

mx, my = mean of x, y residuals, PFE x, y = Percentage fit error in x, y-position. 

Figure 3. Innovation, state error and autocorrelation with respective bounds.
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s of data (case 6), the impact-point prediction is
accurate, thereby proving that when the model of
the target and the noise statistics are known accurately,
the prediction of the impact point using U-D Kalman
filtered output is accurate.

The results of launch-point prediction using
the U-D Kalman filter state estimate at point B
and the smoother output at point B are presented
in Table 2. It is clear that in all the cases, the use
of the R-T-S smoother results in prediction with
better accuracy than using the filter alone. Also,
it is clear from Table 2 that the launch-point prediction
accuracy degrades considerably when smaller segments
of data are observed by the sensors. However, use
of U-D Kalman filter with smoother is able to
overcome this problem in launch-point prediction
accuracy, which is clear from Table 3. The results
in all cases are presented in bar graph form in Figs
4(a), 4(b) and 4(c) respectively. The simulated
data of a target moving with constant velocity was

chosen for validation of the technique/algorithm.
The application of this technique to real data could
involve nonlinear state equations and manoeuvering
targets. This problem would require an extensive
modelling effect.

3.2 Application to Real Data

The U-D Kalman filter and smoothing algorithms
are used to predict the launch and impact points
of a guided target trajectory in ballistic mode. The
launch point and impact point for this data are
known. To evaluate the accuracy of predictions,
when only a part of the trajectory is tracked by
the sensors, a number of segments of the data are
considered. The trajectory data is measured in
terms of x, y, and z positions in Cartesian frame
of reference. The state variables of the start vehicle
are X coordinate position (x), velocity (x ), and
acceleration )(x , Y coordinate position (y), velocity ( y ),
and acceleration ( y ), Z coordinate position (z), velocity

    

U-D filter Smoother 

Case

 

Time at B

 

(s) 
Time at C

 

(s) 
x-pre x-std % x err

 

y-pre y-std % y err

 

x-pre x-std % x err

 

y-pre y-std % y err

 

1 0 50.0 1200.4

 

1 0.03 2998 9.0 0.09 1199.9 0.2 0.08 2999.1 1.2 0.01 

2 0.5 49.5 1200.3

 

2.6 0.04 2966.6

 

34.5 1.15 1199.9 0.2 0.01 2999.2 1.2 0.06 

3 2.5 47.5 1238.4

 

16.2 -3.13 3186 103.4 -6.16 1200.4 0.3 0.04 3001.3 0.7 -0.01 

4 5.0 45.0 1313.3

 

43.9 -9.36 3092 306 -3.03 1200.6 0.5 0.02 3000.2 1.6 0.03 

5 10.0 40.0 1258.7

 

62.9 -4.82 4381.5

 

1049 -45.9 1199.8 0.8 0.08 3000.8 2.3 0.01 

6 20.0 30.0 1357.1

 

104 -13 1569.7

 

1085 47.7 1200.6 1.4 0.02 2996.7 4.1 0.12 

Table 2. Launch point prediction using UD filter & using smoother - simulated data

( Point-A (x-true=1200.83, y-true=3001.06) at 0 s)

x, y-pre = predicted x, y-position, x, y-std = standard deviation of x, y-position prediction,
x, y-err = x, y-position error =((x, y-true) - (x, y-pre)), % x, y err = (x, y err * 100)/(x, y-true),
mx, my = mean of x, y residuals, PFE x, y = Percentage fit error in x, y-position.

    

U-D filter Smoother 

Case Time at B

 

(s) 
Time at C

 

(s) 
x-std PFEx y-std PFEy z-std PFEz x-std y-std z-std 

1 0 125 31.3 0.05 31.31 0.03 31.3 0.27 21.12 21.12 21.12 

2 2.5 122.5 102.7 0.22 102.7 0.21 102.7 0.91 72.76 72.76 72.76 

3 5 120 232.9 0.15 232.9 0.25 232.9 0.48 174.9 174.9 174.9 

4 10 115 673.1 0.24 673.1 0.22 673.1 0.66 534.1 534.1 534.1 

x, y-pre = predicted x, y-position, x, y-std = standard deviation of x, y-position prediction,
x, y-err = x, y-position error =((x, y-true) - (x, y-pre)), % x, y err = (x, y err * 100)/(x, y-true),
mx, my = mean of x, y residuals, PFE x, y = Percentage fit error in x, y-position.

Table 3. Prediction of impact point using UD filter  & launch point using smoother - real data
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IMPACT POINT (X-POSITION)

1600
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CASE NO.

X
-P

O
SI

T
IO

N

x-ori 1613.77 1613.77 1613.77 1613.77 1613.77 1613.77

x-pre 1613.8 1613.69 1613.78 1613.46 1613.49 1613.52

1 2 3 4 5 6

IMPACT POINT (Y-POSITION)

3510

3515

3520

3525

3530

3535

CASE NO. 

Y
-P

O
SI

T
IO

N

y-ori 3528.8 3528.8 3528.8 3528.8 3528.8 3528.8

y-pre 3528.6 3528.4 3528.4 3529.1 3530 3531.6

1 2 3 4 5 6

IMPACT POINT (x-POSITION)
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1240

1290

1340

CASE NO.

x-
PO

SI
T

IO
N

   
   

x-ori 1200.83 1200.83 1200.83 1200.83 1200.83 1200.83

x-pre 1199.9 1203.273 1221.686 1243.043 1283.414 1365.739

1 2 3 4 5 6

IMPACT POINT (Y-POSITION)
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Y
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O
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T
IO

N

y-ori 3001.06 3001.06 3001.06 3001.06 3001.06 3001.06

y-pre 2994.09 2992.13 3027.22 3060.72 3128.34 3205.88

1 2 3 4 5 6
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X
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O
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T
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CASE NO.

Y
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O
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T
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N

y-ori 3001.1 3001.1 3001.1 3001.1 3001.1 3001.1

y-pre 2999.1 2999.2 3001.3 3000.2 3000.8 2996.7

1 2 3 4 5 6

Figure 4(a).  Impact point prediction using UD filter output.

Figure 4(b). Launch point prediction using UD filter output.

Figure 4(c). Launch point prediction using smoother.
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( )z , and acceleration ( )z  resulting in the 9 state vector

zzzyyyxxx ,,,,,,,, . The model of the system is
given by the Eqns (1) and (2). The transition matrix
and the observation matrix are given by:

100000000

10000000
2

1000000

000100000

00010000

000
2

1000

000000100

00000010

000000
2

1

2

2

2

T

T
T

T

T
T

T

T
T

001000000

000001000

000000001

H
(17)

The measurement noise covariance matrix R
and process noise covariance matrix Q are estimated
adaptively6 using the following relations:

2)*( aR

                          
(18)

where a

 
is the angular accuracy of the radar and

 
is the estimated range and is given by

)ˆˆˆ( 222
kkk zyxsqrt , CB NNk ,...,

 

(19)

and zyx ˆandˆ,ˆ are the estimated positions.

2**
1 )*)(*( 2 TkkeRsqrtkQ

CB NNk ,...,

    

(20)

where the proportionality factors k
1 

and k
2 

are
chosen based on trial and error using post-flight
measurement data.

Figure 5 shows the x, y and z-position state
estimations using the data between the points B
and C (in left-half of the figure) assuming that the

Figure 5.   x, y and z-position state estimations.
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Figure 6.  Innovation with bounds.

Figure 7. Autocorrelation with bounds.

measured data is available between 10 s and 110 s.
The state estimates with prediction of launch point
(point A) using the smoother output and impact
point (point D) using the filter output are compared
with the true states in the right-half of the Fig. 5.

Table 3 gives the quantitative results of launch
point and impact point estimation. Figs 6 and 7
show the innovations with 2  bounds and autocorrelation
of residuals with bounds. Percentage innovation
out of bounds (PIOB), percentage autocorrelation
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out of bounds (PAOB) are close to the acceptable
theoretical limit of 5 per cent, except for PAOB
in z-position. This could be because of the manoueuvre
observed in the z-position.

The autocorrelation function is well within the
theoretical bounds. However, it also indicates that
the measurement noise statistics may not be white,

and hence, inclusion of a model for this may improve
the results. This is being investigated. The quantitative
results of launch-point and impact-point estimations
are shown in bar graph form in Figs 8(a) and 8(b).
For this set of real data, it was observed that when
the measurement data length observed by the sensors
was < 115 s, the launch-point estimation led to
unacceptable results. The results indicate higher

IMPACT POINT (X-POSITION)

1 2 3 4
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X
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O
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T
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N
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1 2 3 4
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Y
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O
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T
IO

N y-ori
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1 2 3 4
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Z
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N
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1 2 3 4
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Z
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N
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Figure 8(a). Impact point estimation for real data. Figure 8(b). Launch point estimation for real data.



462

DEF SCI J, VOL. 56, NO. 4, OCTOBER 2006

errors in impact-point prediction in the z-direction
because of the manoueuvre in that axis, and if the
measurements are missing during this portion, the
prediction accuracy degrades considerably. Also,
the launch point error is higher than the impact-
point error.

The results for real data are for the case when
the target is in the ballistic mode.  In general when
any target is launched, it is not in the ballistic mode
and certain other factors like thrust and drag must
be considered to get accurate estimates of both
launch and impact points. Thus estimation of start
point would require further study including these
effects.

4 . CONCLUSIONS 

The U-D factorised Kalman filter and R-T-S
smoother were implemented in PC MATLAB and
their performance studied using simulated data.
The R-T-S smoother was found to generate accurate
state estimates, which lead to better launch-point
prediction accuracies. Impact point and launch-
point prediction from real data of a guided target
in ballistic mode was also evaluated. For real data,
the inaccuracies in both launch-point and impact-
point predictions can be reduced using improved
models that account for drag and atmospheric effects.
This requires further study. It will be worthwhile
to explore the application of the presented approach
to the cases where the state equations are highly
nonlinear and the data spans are shorter.
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