
119

Defence Science Journal, Vol. 74, No. 1, January 2024, pp. 119-126, DOI : 10.14429/dsj.74.18954 
 2024, DESIDOC

Received : 14 March 2023, Revised : 25 September 2023 
Accepted : 03 October 2023, Online published : 12 January 2024

 A Comparative Investigation of Random Forest Regression and Artificial Neural 
Networks for Predicting Crack Growth Life of a Fighter Aircraft Wing Joint Under 

Spectrum Loading

Zafar Yuce#, Pasa Yayla#,* and Alev Taskin$

#Marmara University Engineering, Faculty Mechanical Engineering Department, Maltepe, Istanbul - 34840, Turkey 
$Yildiz Technical University, Industrial Engineering Department, Besiktas, Istanbul - 34349, Turkey  

*E-mail: pasa.yayla@marmara.edu.tr

ABSTRACT

Estimating fatigue life is challenging due to the input parameters’ statistical natures, such as the manufacturing 
process, scatter of service loads, microstructure, etc. Regarding fatigue life calculation in the aerospace industry, 
the importance of an accurate estimation becomes more critical due to strict safety, certification, service costs, 
and competitiveness regulations. The ability of soft computing methods to reveal complex relationships between 
multiple parameters and their computational speed could help predict fatigue life, especially in the service. This 
study compares random forest regression and artificial neural network methods to estimate the crack growth life of 
a fighter jet aircraft wing joint in terms of their computational time and accuracy. In addition, permutation feature 
importance and hyper parameter optimisation studies are conducted to extract essential features, investigate their 
effects on estimation performance, and fine-tune model parameters. The analysed joint is made of 7050-T7451 
aluminium, widely used as a structural element in the aerospace industry. Since a hole is one of the major sources of 
stress concentration, and there may be many holes involved in any engineering structure, it is reasonable to assume 
that fatigue cracks may initiate at some of these holes during the service life of engineering structures. The crack 
type considered is a thru-crack around a hole, which is more severe than a corner crack. Load spectra are derived 
using the Fighter Aircraft Loading Standard for Fatigue (FALSTAFF) to calculate crack growth life. Considering 
particular service load conditions, ninety different spectra are developed, and the crack growth life of the joint is 
calculated based on linear elastic fracture mechanics correspondingly. Also, to simulate the worst-case scenario, 
friction between members and the retardation effect of load spectra are not considered when calculating crack growth 
life. Python’s Tensor Flow and Scikit-learn libraries are utilised to build machine learning models. Then, ninety 
different load spectra are input for the thru-crack configuration to predict the crack propagation life. Eventually, the 
crack propagation life predictions of random forest regression and artificial neural network models are compared. 
The findings indicate that permutation feature importance and hyperparameter-optimisation significantly affect the 
model’s accuracy and processing time performance.
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NomeNCLAtURe
V : Load of fastener
C : Fastener flexibility
P : Applied load
t : Sheet metal’s thickness
d : Fastener hole diameter
E  : Elasticity modulus
w : Sheet metal’s width
σ : Stress
f : Sheet metal flexibility
z1 : Upper surface
z2 : Lower surface
Br : Bearing
K : Stress intensity factor 
Y : Geometric factor

1. INtRoDUCtIoN
Machine learning (ML) methods provide a wide scope 

for dealing with problems consisting of multiple variables and 
nonlinearity. Each aircraft has a unique load history and its 
own fatigue life. Scheduling the planned maintenance based on 
a generic spectrum for all the fleets may result in catastrophic 
failure and financial loss. Instead of using a single spectrum 
for the fleet, with the assistance of ML algorithms, it may be 
possible to estimate the fatigue life for each aircraft using flight 
data recordings in a short time. 

Abdalla and Hawileh1 set out a study to predict the 
endurance of steel bars with the aid of an Artificial Neural 
Network (ANN) for different strain amplitudes and load ratios. 
Maximum axial strain and load amplitude are utilised as inputs 
for the model. The authors conclude that the prediction results 
of ANN comply with test results with a correlation coefficient 
of 0.98. Pujol and Pinto2utilise ANN to obtain a probability 
function to estimate endurance. Findings indicate that an ANN-
based model has better accuracy than standard models. Twala3 
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investigates space system software fault prediction using 
ML techniques. Bhekisipho points out that among proximity, 
decision tree, and hyperplane-based alternatives, the naive 
bayes classifier has higher accuracy3. 

Mohanty, et al.4 compared ANN, adaptive neuro-
fuzzy inference system (ANFIS), and exponential models in 
predicting the crack growth life of 7020 aluminium alloy for 
constant amplitude loading with different load ratios. According 
to the findings, the estimation of the ANN and ANFIS models 
was less conservative than the exponential model. Moreover, 
the performance of the exponential model outperformed that 
of ANN and ANFIS4. Mishra, et al.5 studied ANN to predict 
the endurance in the low-cycle region of Al-Si-Mg alloy based 
on parameters such as the percentage of alloy elements, heat 
treatment, and strain amplitude. Mishra, et al.5 suggest utilising 
ANN to estimate endurance in low-cycle regions. 

Mohanty6 studied to estimate the crack growth life of 
6061 aluminium using the input parameters of load ratio, 
stress intensity range, and maximum Stress Intensity Factor 
(SIF) by an ANFIS model. The ANFIS model’s prediction 
performance is acceptable based on the results. Durodola, et 
al.7 investigate ANN for time domain and frequency domain 
fatigue life prediction regarding random fatigue loading. The 
results indicate that the accuracy of ANN with time domain 
methods is greater than ANN with frequency domain methods7. 
Verma & Peyada8 compare extreme ML with classical methods 
to predict the parameters of an unstable aircraft. They propose 
extreme ML in combination with the Gauss-Newton method 
instead of classical alternatives. 

Durodola, et al.9 investigate ANN in the frequency domain 
with mean stress to estimate fatigue life for metallic materials. 
Spectral moments and material parameters such as fatigue 
strength, fatigue exponent, and ultimate tensile stress values 
are used as inputs. Durodola, et al.9 suggest that ANN performs 
promisingly compared to current time domain approaches. 
Sanwale and Sing10 work on predicting aerodynamic 
parameters. They conclude that radial basis function neural 
networks converge better than multi-layer perceptron. Ganesh 
kumar, et al.11 compared random forest regression (RFR), 
k-nearest neighbour (k-NN) and support vector regression 
(SVR) in terms of estimating tool wear. The findings show that 
RFR has almost 92 per cent accuracy in predicting tool wear. 
Wang, et al.12 examined knowledge-based ANN with a radial 
basis function, a support vector machine (SVM) and back 
propagation neural network to predict the surface roughness 
of ball-end milling. Outcomes indicate that knowledge-based 
ANN with radial basis function outperformed others. Kong, 
et al.13 examined ANN for predicting the endurance of coil 
springs using vertical acceleration and resonance frequency as 
input. The Morrow, Coffin-Manson, and Smith Watson Topper 

methods are considered to make a prediction. The findings 
show that the Morrow method with three hidden layers of 
ANN gives the minimum mean squared error13. 

Liu, et al.14 compare SVM and ANN in predicting fatigue 
life for vibration isolation rubber based on strain, temperature, 
hardness and rubber compound. To optimise the parameters 
of SVM, modified gravity search algorithm (MGSA), 
genetic algorithm (GA), particle swarm optimisation (PSO), 
and simulated annealing (SA) algorithms are compared. 
It is concluded in the paper that SVM outperforms ANN, 
and MGSA shows better performance compared to other 
methods14. Jimenez-Martinez and Alfaro-Ponce15compared 
Miner’s damage rule and ANN to estimate the endurance of 
S420MC as a chassis component. Several load sequences and 
different temperature values, such as 23, 35, and 45 oC, are 
considered. According to the findings, the ANN model makes 
better predictions than Miner’s damage rule15. 

Ramachandra, et al.16 compared ANN with experimental 
results regarding fatigue life for Manten and RQC-100 
materials using stress histories developed by the Society 
of Automotive Engineers for brackets, transmissions, and 
suspensions. According to the findings, the ANN method 
correlates well with experimental results. Voet, et al.17 worked 
on estimating solder joint failure using ANN. They build two 
sub-models to estimate if a joint failed or not and predict crack 
length if it failed. Results indicate that the performance of the 
classification part has a huge effect on the model’s overall 
performance. When estimating the crack growth life of corner 
crack types, Yüce, et al.18 compared RFR and k-NN regression. 
According to the findings, the predictions from RFR have 
higher accuracy than k-NN regression.

This study aims to assess RFR and ANN to estimate 
the crack propagation life of an aircraft wing joint. RFR 
from machine learning algorithms is preferred here as a very 
successful bagging method, and backpropagation (multi-layer 
perceptron) from ANN is a high-performance algorithm. This 
paper presents a methodology for fatigue loading spectra, 
analysis of load, an ML model, an investigation of features, 
and hyper parameter optimisation. This is the first study that 
explores and compares the benefits of ML algorithms in 
predicting the crack growth life of a fighter aircraft wing joint 
in a thru-crack configuration. The importance and originality 
of this study are that it investigates the effects of outliers 
and feature selection by employing the permutation feature 
importance (PFI) technique and hyperparameter optimisation.

2. metHoDoLoGY
Ninety load spectra are generated using FALSTAFF for 

various load levels to determine the crack development life. 
Then, these load spectra are used to calculate the crack growth 

Figure 1. Geometry of thru-crack.
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lives of a wing joint for a thru-crack configuration, which is 
more severe than a corner crack since the load-carrying section 
is smaller. Figure 1 illustrates the geometry of a thru-crack.

After that, crack growth calculations are performed 
using Air Force Grow (AFGROW) software developed by 
the Air Force Research Laboratory. Later on, based on the 
rain flow cycle counting technique, the cycles in the spectrum 
are calculated, and then these rain flow histograms are fed to 
RFR and ANN models for training and prediction. After all, a 
hyperparameter optimisation study is performed to fine-tune 
the model parameters.

2.1 Load Spectra
FALSTAFF is a load spectrum for the wing root region 

and was developed for fighter aircrafts in 1976. Load data 
from four different types of aircraft operated in the air forces 
of three different countries is used during the development 
process. Three others are used during the development process. 
The block length of the spectra is considered to be 200 flights, 
which are categorised into three levels based on severity and 
repetitiveness. Some missions that FALSTAFF covers can be 
listed as high/low navigation, instrument flying, combat patrol, 
etc. FALSTAFF consists of thirty-two discrete load levels, and 
level zero was set to 7.5219.

This study considers a splice joint located under the wing 
of a fighter jet designed to operate for10,000 flight hours (FH). 
Accordingly, to derive load spectra for this study, load levels 
of FALSTAFF are scaled to the envelope of -3g to 9g. Finally, 
with the aid of the FALSTAFF, ninety fatigue load spectra are 
derived for exceptional load levels to be used for the crack 
growth life calculation.

2.2 Assessment of the Joint
2.2.1 Calculation of Fastener Loads

This study focuses on a single lap shear joint of 7050-
T7451 aluminium with three steel fasteners. The thickness 
of the aluminium sheets is 1 mm, and the width is 32 mm. 
The relationship between fasteners is established based on 
compatibility conditions. Compatibility suggests that the 
deflection of the plates between two fasteners equals the 
displacement of counterpoints20. Secondary bending is not 
considered in this study. Even though friction between sheet 
metals helps reduce the load on the fasteners, pretension loads 
are not considered when analysing the worst-case scenario. 
Also, stiffness is assumed to remain the same under deflection. 
Figure 2 demonstrates the load transfer among sheets.

Fastener loads are calculated with the aid of compatibility. 
Eqns. (1-2) present the Eqns. to calculate fastener loads.
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where, C is the bolt flexibility constant calculated using the 
Huth Eqn., V is the load on the fastener, P is the load on the 
sheet, and f is the flexibility if the sheet is idealised as a bar in 
this study.

The Huth method was employed to obtain fastener 
flexibility21. Eqn. (3) shows the Huth method’s mathematical 
expression.
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         (3)
where, d is the bolt shank diameter, t is the thickness of the 
sheet, E is the modulus of elasticity of the sheets and fasteners, 
and n is the number of shear surfaces, which is one in this 
study. Besides, the constants a, b, and n are driven by material, 
type of fastener, and several shear surfaces.

2.2.2 Calculation of Crack Propagation Life
Tensor directions determine the path crack path. The 

maximum principal stress tensor estimates the crack path near 
the most critical hole. The crack is assumed to propagate from 
the hole edge to the sheet metal edge based on the first principal 
stress tensor directions. The directions of the principal stress 
tensors are presented in Fig. 3.

Based on this assumption, a crack growth scenario is 
established with a linear elastic fracture mechanics approach. 
Bearing stress, thru stress, and bending stress values are needed 
to calculate crack growth life. For gross stress, Eqn. (4) is used. 
P is the applied load on the sheet, w is the sheet’s width, and 
t is the sheet’s thickness. Bearing stress is calculated using  
Eqn. (5). P is the fastener load, d is the hole’s diameter, and 
t is the sheet’s thickness. Thru stress is calculated based on  
Eqn. (6), and bending stress is calculated using Eqn (7).
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For each of the ninety unique load spectra, the crack 
growth life of the joint is calculated using the values and the 
fraction of stress components. To conduct a damage tolerance 
evaluation, it is assumed that the most critical hole already has 
a crack at its start. According to the Joint Service Specification 
Guide, the initial crack size is 1.27 mm, corresponding to a 

Figure 2. Load transfer among sheets.
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thru-crack for a 1 mm sheet component22. Later on, AFGROW 
software is employed to calculate crack growth lives.

2.2.2.1 Stress Intensity Factor Approach
Depending on the loading condition, crack propagation 

can be classified into mode-I, mode-II, and mode-III. Due to 
the formation of tensile stress, mode-I can be accepted as the 
most critical scenario. Also, mode-I creates more damage and 
has a higher occurrence than others. In this study, the mode-I 
crack propagation scenario is considered. Griffith observed 
that stresses near the crack tip are proportional to the 
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. The 
Eqn. for the SIF is presented in Eqn. (8)23.
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Y is a geometric constant, σ is stress, and a is half of the 

crack length. Because of the material yield, excessive stresses 
will not occur near the crack tip due to the redistribution of 
the stresses. This region is called the crack tip plastic zone 
(CTPZ). Since the CTPZ of the plane stress condition is higher 
than the plane strain condition, the fracture toughness value of 
the plane strain is less than the plane stress fracture toughness 
value. During hand calculation, plane strain fracture toughness 
value can be preferred to stay conservative. However, most 
recent software can dynamically evaluate the stress state 
based on material thickness and yield stress. High loads on the 
fatigue spectra may help to increase the plastic region near the 
crack, and then the crack propagation speed reduces23. This 
phenomenon is called the retardation effect. In this paper, the 
retardation effect is not considered to simulate the worst-case 
scenario.

2.2.2.2. Fatigue Life Calculation with Fracture 
Mechanics

The first systematic study in the fatigue field was published 
in 1837 by Wilhelm Albert about conveyor chains. Then, 
August Wöhler proposed a fatigue limit concept for railway 
vehicle axles. After that, many publications have been made to 
develop stress and the number of cycle curves for materials. At 
the end of these studies, it has been found that fatigue is built 
upon both initiation and propagation processes23.

In the case of fatigue crack, the SIF at the crack tip alters. 
This change can be calculated using Eqn. (9)23.
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To calculate maximum and minimum SIF, Eqns. (10-11) 

can be utilised.
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In the case of damage tolerance investigation, crack 

propagation speed can be calculated by Eqn. (12), known as 
the Paris-Erdoğan law23.
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where, C and m are material constants and 
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is the rate of 

crack propagation23.
If the change in the SIF is below the limit value, the crack 

is expected to not propagate23.

2.3 machine Learning model
The cycle counting of the load spectrums is made using 

the rain flow cycle counting method24. Flattened histograms 
of the rain flow method composed of the highest value, the 
lowest value, and several cycles are utilised for training the ML 
model, with the aid of average value, standard deviation, and 
maximum and minimum values of the load spectra. Twenty 
per cent of the data set is used as test data, and 80 per cent is 
utilised for model training purposes.

Two datasets are produced, one with all the data and the 
other without outliers, to examine the effects of the outliers on 
prediction performance. The threshold for filtering outliers is 
determined as a scatter factor of four. Therefore, values above 
40,000 flight hours are considered outliers.

2.3.1 Random Forest Regression Model
Breiman25 developed the random forest method for 

classification and regression, combining the output of numerous 
decision trees to calculate the result.

The initial run of this study is made with a hundred 
estimators, which correspond to the total number of decision 
trees in the random forest algorithm. Later, a hyperparameter 

Figure 3. Directions of principle stress tensors.
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optimisation study is performed to fine-tune the model 
parameters to improve model accuracy.

2.3.2 Artificial Neural Network Model
The origin of neural networks lies in the working principle 

of the human brain in terms of biological signal transfer among 
neurons. ANNs consist of bunches of nodes, or in other words, 
artificial neurons, which receive input from a previous neuron 
and then process it with weight and transfer functions. The 
output of an individual node is evaluated based on its threshold 
value to decide whether to transfer the data to the next node. 
In this study, a dropout layer is utilised to prevent overfitting. 
The ANN model is also trained using two data sets: one with 
the entire dataset and one without outliers. Then, using PFI, the 
features with the highest impact on results were determined. 
Finally, a hyperparameter optimisation study is conducted to 
fine-tune the model parameters.

The architecture of the ANN model used in this study is 
built upon one input layer, one output, and two hidden layers.

2.3.3 Permutation Feature Importance
The PFI algorithm investigates the effects of individual 

features in terms of overall model performance. The algorithm 
shuffles the features and compares the model’s performance with 
the shuffled features and the original setup. If feature shuffling 
reduces the model’s accuracy, the corresponding feature is 
assumed to be an essential feature for the model and suggested 
to be kept during prediction. On the other hand, if shuffling a 
feature increases the model’s accuracy, then that feature can be 
assumed as not essential for the model. Employing PFI enables 
boiling down the model to a more refined version.

With PFI, it is ensured that features that do not have a 
high impact on the output are eliminated before the analyses 
begin, thus enabling the analyses to be carried out faster and 
more focused.

2.3.4 Hyperparameter Optimisation
Hyperparameter optimisation is used to fine-tune the 

parameters of ML models. For instance, finding the optimum 

number of estimators in the RFR model or the neuron’s number 
in the ANN’s hidden layer can be investigated by designing 
experiments. The best number of estimators or neurons can be 
calculated according to the objective function, which is our 
study’s minimum mean absolute error. Also, the assessment of 
multiple parameters at the same time is possible. To prevent 
overfitting, a cross-validation technique may be used. The cross-
validation divides the input data into pieces, whose number 
is determined by the user, instead of using the entire input 
dataset as it shuffles the pieces while training the model. For n 
number of cross-validation requests, n number of error metrics 
is calculated. An average of n number of errors is calculated 
for each grid to determine the best-performing model. This 
study uses the number of estimators and maximum feature 
parameters to fine-tune the RFR model. Other parameters of 
the RFR model are kept as defaults. Regarding the artificial 
neural network model, the number of neurons in the hidden 
layer and dropout rate values are used to optimise the model.

With the hyperparameter optimisation, while the 
algorithms are running, it is tried to determine the combination 
of the most suitable values of the critical hyperparameters. 
While this is a factor that can increase CPU time, it has the 
effect of improving the performance of algorithms. The load 
spectrum should be provided as an attachment.

2.3.5 Model Evaluation
The mean absolute error (MAE) metric is utilised to 

measure model performance. The mathematical expression of 
the MAE is shown in Eqn. (13)26.
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where, n is the number of evaluation instances, xi is the 
estimated value, and x is the actual value.

3. ReSULtS
As explained in the introduction and model evaluation 

sections, this study compares RFR and ANN models based 
on the MAE metric to predict crack growth life based on pre-
generated crack growth life data using FALSTAFF.

Figure 4. Actual and predicted life of hyperparameter optimised RFR model.
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3.1 Random Forest Regression model
The initial RFR model is configured with a hundred 

predictors. The initial model’s MAE is calculated to be 4,326 
flight hrs. The MAE of the model without outliers is calculated 
as 246 flight hours. Later on, a PFI study is performed on 
the model without outliers, and predictions are made by just 
keeping the essential features of the model. Then, the effect 
of the input variables on prediction performance is calculated 
using the PFI technique. According to the results, eight out of 
twenty-nine features are selected based on their contribution 
to model performance. The MAE of the model with essential 
features is calculated as 216 flight hrs.

Finally, a hyperparameter optimisation study is conducted 
with the model and its essential features. Figure 4 depicts 
the actual crack growth life and predicted crack growth life 
of the hyperparameter-optimised RFR model. MAE of the 
hyperparameter optimised model is calculated as 184 flight 
hrs.

Regarding computational cost, the initial model, the 
model without outliers, the model with essential features, and 
the hyperparameter-optimised model took 78.1 ms, 62.5 ms, 
46.9 ms, and 188 ms, respectively.

3.2 Artificial Neural Networks model
The initial ANN model is built with twenty-nine neurons 

in hidden layers. The initial ANN model’s MAE is calculated 
to be 37,289 flight hours. Then, the data without outliers is 
input to estimate crack growth life for the initial model. The 
MAE of the model without outliers is calculated as 6,374 flight 
hrs. Later on,a PFI study is conducted on the ANN model. Ten 
out of twenty-nine features are selected based on contributions 
to overall model performance. The learning rate is determined 
to be 0.5. The MAE of the model with essential features is 
calculated as 5483 flight hours. After all, the hyperparameter-
optimised model had an MAE of 5344 flight hours. Figure 5 
depicts the actual crack growth life and predicted crack growth 
life of the hyperparameter-optimised ANN model.

The CPU time of the initial model, the model 
without outliers, the model with essential features, and the 
hyperparameter-optimised model are calculated to be 25,600 
ms, 4,380 ms, 5,660 ms, and 5910 ms, respectively.

3.3 DISCUSSIoN
The calculated lives of ninety load spectra range from 

4,525 to 496,256 flight hrs. Furthermore, with the aid of the 
PFI study, the most contributing parameters for the RFR and 
ANN models are determined. The model with essential features 
yields an approximately 12 per cent increase in inaccuracy 
for the RFR model and a 14 per cent increase for the ANN 
model. Therefore, keeping all input parameters without any 
investigation of their importance may create disturbances in 
the prediction performance. Moreover, hyperparameter tuning 
based on the grid search algorithm improved the accuracy 
of ANN and RFR by almost 3 per cent and 15 per cent, 
respectively. In terms of accuracy, one intriguing finding of 
this study is that the MAE of the ANN model is calculated to 
be 53 per cent of the design life, whereas the MAE of the RFR 
model is calculated to be 1.8 per cent of the design life.

The initial RFR model requires 99.7 per cent less CPU 
time than the ANN model regarding computational cost. 
Also, regarding calculation time, the RFR model without 
outliers performed 98 per cent better than the ANN without 
outliers. Later on, after the PFI study, the computational cost 
of RFR is calculated to be 99 per cent cheaper than the ANN 
model. Finally, the hyperparameter-optimised RFR model 
outperformed the hyperparameter-optimised ANN model by 
almost 97 per cent.

A closer inspection of the computational cost shows that 
outliers, PFI, and hyperparameter tuning affect CPU times for 
ANN and RFR models.

In general, the RFR model outperforms the ANN in terms 
of accuracy and computational cost when predicting the crack 
growth life of the wing splice joint. It should be noted that the 
ANN model’s success depends on various factors, including its 

Figure 5. Actual and predicted life of hyperparameter optimised ANN model.
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architecture and the neuron’s number. It might be possible to 
improve ANN models’ accuracy by altering the hidden layer’s 
number and other factors. However, the random forest model’s 
accuracy was better than the current ANN model.

4. CoNCLUSIoN
Using a single load spectrum to calculate the fatigue life of 

an entire product range may lead to catastrophic failures, over-
engineered designs, and inaccurate inspection plans. Therefore, 
calculating fatigue life under a unique load history is crucial for 
conducting tailor-made operations and reducing service costs. 
Conventional approaches, such as the finite element method, 
may take a long time to calculate each component’s fatigue life 
dynamically. Accordingly, computational intelligence methods 
may be utilised to overcome the time cost of conventional 
techniques. This paper critically examines the performance of 
ANN and RFR in predicting crack growth life for the thru-
crack case of an aircraft wing joint under spectrum loading. 
The calculated lives of ninety load spectra range from 4,525 to 
496,256 flight hrs. 

The current study finds that filtering the data for outliers 
increases accuracy for ANN and RFR methods. When the 
data is cleaned of outliers, the MAE error of the ANN model 
is dropped by almost 83 per cent, and the MAE of the RFR 
is reduced by nearly 94 per cent. The most prominent finding 
to emerge from this analysis is that mild spectrums without 
extreme loads tend to yield highly high crack growth lives, and 
these values may create noise for prediction algorithms. Also, 
these extreme crack growths do not contribute to scheduled 
inspections or maintenance. It is suggested that input data be 
processed before utilising it and that the effect of the outliers 
be investigated. 

The present study raises the possibility that the crack 
growth life of individual aircraft for thru-crack configuration 
can be calculated with approximately 1 per cent deviation 
from design life. Therefore, the accumulated damage of each 
jet in the fleet can be predicted using ML algorithms. With ML 
methods, predictive maintenance programs can be planned 
precisely and quickly. This work has provided a deeper 
insight into the prediction of fatigue life with the aid of soft 
computing methods and their promising potential in accuracy 
and computational cost. This potential may be helpful in 
in-situ calculations and innovative material development 
studies. The present study provides the first comprehensive 
assessment of outliers and their effects on crack growth life 
prediction. Moreover, the study contributes to understanding 
feature assessment in predicting crack growth life. There is 
ample room for further progress in determining the effects of 
secondary bending, considering contact nonlinearity between 
sheet metals and ANN architecture in predicting crack growth 
life.
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