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ABStrACt

The fusion of thermal and visible images acts as an important device for target detection. The quality of the 
spectral content of the fused image improves with wavelet-based image fusion. However, compared to PCA-based 
fusion, most wavelet-based methods provide results with a lower spatial resolution. The outcome gets better when 
the two approaches are combined, but they may still be refined. Compared to wavelets, the curvelet transforms more 
accurately depict the edges in the image. Enhancing the edges is a smart way to improve spatial resolution and 
the edges are crucial for interpreting the images. The fusion technique that utilizes curvelets enables the provision 
of additional data in both spectral and spatial areas concurrently. In this paper, we employ an amalgamation of 
Curvelet Transform and a Bounded PCA (CTBPCA) method to fuse thermal and visible images. To evidence the 
enhanced efficiency of our proposed technique, multiple evaluation metrics and comparisons with existing image 
merging methods are employed. Our approach outperforms others in both qualitative and quantitative analysis, 
except for runtime performance. Future Enhancement-The study will be based on using the fused image for target 
recognition. Future work should also focus on this method’s continued improvement and optimization for real-time 
video processing.
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1. INtrODUCtION
The problems like target detection1, medical imaging2-4, 

remote sensing5, and surveillance6 employ image fusion, to 
merge images from several sensors into a single, rich fused 
image. In a low-light or dark environment, the target is visible 
in the thermal image because they capture the thermal radiation 
of the scene. However, the thermal images have poor imaging 
capability, low contrast, and smaller resolution. The target, 
on the other hand, might be undetectable and get distorted 
by smoke, bad weather, and other variables, in the visible 
images, yet they may provide a good degree of detail. For 
accurate target detection and to overcome the limited imaging 
capabilities of thermal and visible sensors, the fusion of the 
thermal and visible images is useful.

The fusion techniques can be grouped into two sub-types: 
transform-domain fusion7 and spatial-domain fusion8. Common 
spatial domain fusion techniques include the Select Maximum 
method, Averaging approach, Select Minimum method, and 
Principal Component Analysis method. The fused image of the 
spatial-domain approaches, however, exhibits spatial distortion. 
When the fused image is used for additional processing, like 
classification, the spatial distortion acts as a drawback. The 
development of spectral-domain fusion techniques helped to 

solve this problem. Pyramid-based techniques and Wavelet-
based methods9 are examples of spectral-domain approaches.

In this paper, for image fusion, a combination of the fast 
discrete curvelet transform11 and the proposed bounded PCA is 
applied. The objective of this study is to generate a final fused 
image from a pair of thermal-visible images by extracting the 
corresponding features using a curvelet transform on a single-
channel grayscale thermal image and the color channels of the 
visible image, respectively, which are then combined using 
a bounded PCA method. The use of the curvelet transform 
increases the amount of information available in the spectral 
and spatial domains by providing us with detailed features of 
an image49. The weightage of each coefficient of the thermal 
image and its corresponding coefficient of the visible image 
(color channels) is determined using the bounded PCA 
approach for fusing the coefficients.

This paper is structured as follows. The theoretical 
foundation of the discrete curvelet feature extraction and 
bounded PCA technique is described in Section 2. The proposed 
discrete Curvelet Transform and Bounded PCA-Combined 
Image Fusion method (CTBPCA), for thermal and visible 
images, is introduced in Section 3. The results and analysis 
of our experiments are described in Section 4. The proposed 
method is also contrasted with other approaches for image 
fusion, including the wavelet approach and the anisotropic 
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diffusion approach in Section 4. In Section 5, we wrap up the 
paper with a summary and future scope of work.

2. thEOrEtICAl FOUNDAtION
Feature extraction is one of the most important elements 

in object detection and recognition. The two most often used 
methods in the field of feature extraction in image fusion are 
the curvelet transform and PCA. In this paper, the fast discrete 
curvelet transform is used for feature extraction purposes.

2.1 Fast Discrete Curvelet Transform-Based Feature 
Extraction
Curvelet transform was invented by Candes and Donoho10 

as a result of the necessity for image analysis10. The highly 
redundant dictionary of the curvelet transform can offer a sparse 
representation of signals with edges along regular curves. 
The original curvelet structure was eventually revised and re-
introduced as the Fast digital Curvelet transform (FdCT)11. 
The goal of the second-generation curvelet transform is to 
make it easier to comprehend and use. The curvelet transform 
is also defined in the continuous and digital domains, as well 
as for higher dimensions. The curvelet transform is a unique 
member of the family of multiscale geometric transforms. The 
curvelet transform is conceptually represented as a multiscale 
pyramid with several orientations and locations at each length 
scale and needle-shaped parts at tiny scales. In that they have 
useful geometric properties, curvelets do set themselves apart 
from wavelets and other items. For instance, curvelets follow 
a parabolic scaling relation, which states that at scale 2-j, each 
element has an envelope that is positioned along a “ridge” that 
is 2-j/2 in length and 2-j in width.

First, a 2d Fast Fourier Transform (FFT) of the image 
is acquired to apply the curvelet transform. Then wedges are 
formed in the 2d Fourier frequency plane (like the darkened 
region in Fig. 1). When the Fourier plane is divided into radial 
and angular divisions, wedges take on a parabolic appearance. 
The breakdown of an image into several scales (used for 
band-passing the image at various scales) is accomplished by 
concentric circles, while the angular divisions divide the band-
passed image into various angles or orientations. So, to deal 
with a specific wedge, we must define its scale (j) and angle 

(q). let us now examine the situation in the spatial domain 
(Fig. 1(b)). Here, each wedge corresponds to a certain curvelet 
(shown by an ellipse) at a specific scale and angle. This means 
that if the inverse FFT of a certain wedge is performed, the 
curvelet coefficients for that scale and angle will be obtained. 
The implementation of the curvelet transform is based mostly 
on this notion. In a spatial Cartesian grid, curvelets with a 
certain size and angle are depicted in Fig. 1(b). The wrapping-
based fast discrete curvelet transforms11 are used in the present 
paper.

2.2 Proposed Bounded PCA
Principal Component Analysis (PCA) is a statistical 

method for reducing the dimensions of the data. To enhance 
the variance and decrease the covariance, it essentially projects 
data from its original space to its eigenspace, keeping the 
components that correspond to the biggest eigenvalues and 
rejecting the others. To improve the signal-to-noise ratio, PCA 
helps to eliminate redundant information and highlight the 
factors that have the most impact.

A fusion algorithm based on PCA and the Finite ridgelet 
Transform (FrIT) was proposed by Miao and Wang13. The 
image is split into low and high-frequency components using 
FrIT. The low-frequency coefficients are fused with the PCA 
technique. Eqn. 1 is used to get the weight values.
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here, (x, y)T is a vector containing eigenvectors of images IA 
and IB. ωA and ωB represent the weight values of the respective 
images. The fused image IF is obtained by the weighted average 
as given in Eqn. 2.
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                                                             (2)
This PCA fusion method does, however, occasionally 

provide weight values that are either negative or more than 1. 
This happens as the eigenvectors are not normalised, which can 
change the image. The pixels with a negative value are trimmed 
to 0 for images with negative weightage and if normalised, the 
image appears to be inverted. The pixels with values greater 
than 1 are trimmed to 1 for images with weights larger than 1. 
This can lead to weird artifacts in the image. Now, the sum of 
the weight values ωA and ωB must always be 1.

Figure 1. Curvelets in fourier frequency as (a) and spatial domain (b) (Courtesy: Candes11 et al.)

(a) (b)
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(Proof: As 
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)

To acquire weight values between [0,1], the method must 
be modified keeping the sum of the weight values fixed at 1. 
In this paper, we used a bounded PCA approach to resolve this 
issue. A covariance matrix C is first generated from the images 
IA and IB as:
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In Eqn. (3), 
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 denotes 
the variance of image IB and σAB  denotes the covariance of 
images IA and IB. let d be the matrix containing the eigenvalues 
of C and V be the matrix with the corresponding eigenvectors 
of C. d is a 2-element matrix where each element is an 
eigenvalue of C. V is a 2×2 matrix, where each column is a 2×1 
eigenvector of each eigenvalue in d. We take the eigenvector 
corresponding to the maximum eigenvalue as the principal 
eigenvector. x and y denote the 2 elements of the principal 
eigenvector, while ωA and ωB represent the weight values of 
the respective images IA and IB. ωA and ωB are calculated using 
Eqn. 1. For weight values going beyond the range [0,1], we 
use 0 as the demarcation point to calculate new weights. ωA 
becomes 
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.
If ωA ˂ 0 and ωB > 1and, the new weight values are found 

according to Eqn. 4.
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(4)

Else, if ωB ˂ 0 and ωA > 1, the new weight values are 
found by Eqn. 5.
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                                                            (6)
Since ωA + ωB =1, it is evident that ωA ˂ 0  and ωB ˂ 0  will 

not occur concurrently. The fusion is then carried out with the 
new weight values by Eqn. (2). 

For the sake of simplicity, we used the bounded PCA 
approach and the PCA approach proposed by Miao and 
Wang on a single pair of thermal-visible images and applied 
the fusion logic directly to the images themselves. We have 
substituted the bounded PCA approach as fusion logic for the 
specific curvelet coefficients later in this study. 

Figure 2(a) and Fig. 2(b) are the original thermal and 
visible images, respectively and it has been noted that the 
scene coverage of the area thermal sensor is more than that 
of the visible sensor (R-band). By using the thermal image as 
the reference image, Fig. 2(c) represents the registered visible 
image. The thermal image is multiplied by its calculated PCA 
weight value of -0.312716, where pixels with values lower 
than 0 are clipped to 0 and the resultant image is completely 
dark (see Fig. 2(d)). Figure 2(e) shows the inverted thermal 
image after being multiplied by the appropriate PCA weight 
value and then normalized. Figure 2(f) depicts the visible 
image multiplied by its appropriate PCA weight value of 
1.312716, making the image look whiter as the pixels with 
values larger than 1 are clipped to 1. The normalized visible 
image is displayed in Fig. 2(g) after being multiplied by the 
corresponding PCA weight value. A thermal image that has 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 2. Effect of PCA weight values and bounded PCA weight values on both visual and thermal images.
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been multiplied by the relevant bounded PCA weight value 
of 0.19239 is clip-free as shown in Fig. 2(h). The results are 
better than Fig. 2(d) and 2(e). There is absolutely no clipping 
in Fig. 2(i), which displays the visible image multiplied by its 
matching bounded PCA weight value of 0.80761. The outcome 
is superior to Fig. 2(g). This makes the recommended bounded 
PCA technique effective and eliminates the need for any extra 
computing for normalisation.

3. MEthODOlOgy
Many industries, including the military, remote-sensing, 

security, surveillance, etc., have made extensive use of the 
fusion of infrared (IR) and visible video sequences. Infrared 
and visible video sequences can be combined to produce good 
Ir target characteristics and a clear visible backdrop since 
infrared sensors can recognise thermal targets and visible 
sensors can offer details of the scene. For thermal and visual 
images, the suggested discrete curvelet transform and bounded 
PCA-combined image fusion (CTBPCA) approach is described 
below. The diagram depicting the methodology being put forth 
can be observed in Fig. 3.

Step 3: • Next, the mean of the approximate coefficients 
from each color channel and the single-channel grayscale 
thermal image are used as the approximate coefficients 
of each fused color channel. The detailed coefficients 
are then combined using the bounded PCA approach  
(Eqn. (2)).
Step 4: • Then, we apply adaptive histogram equalisation to 
create an image with a fused color image for each channel 
using the inverse curvelet transform on the combined 
coefficients.
Step 5: • Ultimately, the fused and enhanced channels are 
joined to provide the final fused image.

4. ExPErIMENtAl rESUltS AND 
DISCUSSION
A total of 24 thermal-visible image pairs are used in 

our investigations. This section presents the results of the 
experiment. All investigations were conducted on a mobile 
dell Precision 3561 workstation with an i7-11800H CPu. 
All other algorithms’ source codes, aside from the proposed 
approach and a wavelet-based image fusion technique, were 
taken from the code library provided by VIFB. For the deep 
learning-based methods in our investigation, we exploited 
the pre-trained models that their authors provided rather than 
retraining them.

4.1 Baseline Algorithms
The VIFB benchmark includes 20 recently released 

visible-infrared image fusion methods. Many of these 
algorithms were developed to combine grayscale images. The 
creators of VIFB have modified them to fuse color images by 
merging each RgB channel with the corresponding infrared 
image. Their code library was used to conduct a comparative 
analysis of our suggested approach. We used wavelet-based 
fusion together with 16 of the 20 methods in our comparisons. 
For further details on these algorithms, see Table 1.

4.2 Dataset 
Although research into the combination of thermal and 

visual images has been ongoing for some time, the industry has 
not yet developed a dataset that is widely acknowledged and 
used in the open. While OTB27-28, and VOT29 are well-known 
benchmarks, the visual tracking community has created and 
regularly uses many more. This makes an objective comparison 
challenging as various image pairings are frequently used in 
the research on the fusion of visual and thermal images. A 
couple of the visible and infrared image fusion datasets that 
are already available are the OSU Color- Thermal Databasea 
(Davis and Sharma30), TNO Image fusion datasetb (Toet31), and 
VlIrVdIFc (Ellmauthaler32).

 The fusion tracking dataset and various other images 
from the internetd were used by the authors of VIFB to obtain 
21 image pairings for their dataset30, 33, 34. These image pairs 
were used in this paper. 

These images show a variety of places and working 
circumstances. Resolutions for the images in the collection 
range from 320×240 to 630×460, or 512×184 to 452×332 for 
the VIFB dataset. Additionally, we have experimented with the 

Figure 3. The flowchart of the proposed method.

Algorithm: CTBPCA
Step 1: • At first, the red, green, and blue color channels are 
extracted from the visible image, and the corresponding 
thermal image is transformed into a single-channel 
grayscale image.
Step 2:•  The thermal image and each color channel of the 
visible image of the provided image pair are then subjected 
to the curvelet transforms to produce the approximation 
coefficient and detailed coefficients from all images.
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Table 1. Image fusion techniques used for visible and infrared images

Method Full form of the methods Category

AdF (Bavirisetti and dhuli35, 2016) Application development Framework

Multi-scale

CBF (Shreyamsha36, 2015) Cross Bilateral Filter

gFCE (Zhou39 et al., 2016) guided Filter-based Context Enhancement

gFF (li et al., 2013) gated Fully Fusion

MgFF (Bavirisetti44 et al.,2019) Multi-scale guided Fast Fusion

MSVD (Naidu46 et al., 2011) Multi-resolution Singular Value Decomposition

Wavelet (Chipman9 et al.,1995) Wavelet Transform

CNN (liu37 et al., 2018) Convolution Neural Network dl-based

FPdE (Bavirisetti38 et al., 2017) Fourth-order Partial differential Eqn.s Subspace-based

gTF (Ma41 et al., 2016) gradient Transfer Fusion
Other

IFEVIP (Zhang42 et al., 2017) Infrared Feature Extraction and Visual Information Preservation

latlrr (li and Wu43, 2022) latent low-rank representation
Saliency-based

TIF (Bavirisetti and dhuli47, 2016) Temporal Image Fusion

MST Sr (liu45 et al., 2015) Multi-Scale Transformation and Sparse Representation

Hybrid
NSCT Sr (liu45 et al., 2015) Non-Subsampled Contourlet Transform and Sparse Representation

rP Sr (liu45 et al., 2015) Ration-of-low-pass Pyramid and Sparse Representation

VSMWlS (Ma48 et al., 2017) Visual Saliency Map and Weighted least Square

Figure 4.  The visible and infrared test set. 24 pairs of visible and infrared images are included in the collection. RGB images are 
shown in the first, third, and fifth rows, while the corresponding infrared images are shown in the second, fourth, and 
sixth rows.

AXIS Q8741-lE Bi-spectral PTZ Network Camerae to fuse 
three visual-thermal image pairs (1st and 2nd-row col 6th, 3rd and 
4th-row col 5th and 5th and 6th-row col 2nd). These three images 
each have a resolution of 800×600. To ensure that the image 

fusion can be completed properly, each pair of visible and 
infrared images has been pre-registered. In total, we employed 
24 image pairings for our research. Figure 4 displays a few 
illustrations of the images in the dataset.
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4.3 Methods for Image Fusion Quality Assessment
A particular image fusion technique may be evaluated in 

three different ways: visually, quantitatively, and in terms of 
runtime. In visible interpretation, the quality of the fused image 
is assessed by contrasting it with the input images and using 
various optical metrics, such as spatial features, geometric 
patterns, color, and so forth. Quantitative assessment evaluates 
the quality of the fused image by comparing the spectral and 
spatial similarities between the fused image and the raw input 
images using a set of predetermined quality criteria. Runtime 
is the amount of time it will take for an algorithm to complete 
its execution.

4.3.1 Visible Interpretation
One approach to evaluating the fused image is visible 

interpretation, sometimes referred to as qualitative analysis. 
Visible analysis has the advantage of being a simple, mild, and 
honest way to assess the quality of a fused image, but it also 
largely depends on the observers’ background and the viewing 
context. Applying qualitative assessment approaches that are 
founded on the human visual system is essential for effectively 
analysing the quality of fused images. If the observer is aware 

of the ground truth, (s)he may judge the quality of the fused 
image more accurately. Numerical models are not used in this 
method.

4.3.2 Quantitative Evaluation
The objective analysis method of quantitative evaluation, 

which is based on mathematical modeling, is well known. It 
determines the quality of the fused image by comparing the 
spectral and spatial similarities between the fused image and the 
raw input images using a set of pre-defined quality indicators. 
Many evaluation techniques have been proposed for thermal-
visible image fusion. To compare performance thoroughly 
and objectively, we employed 11 assessment metrics. The 
assessment measures that have been applied are listed in  
Table 2 along with the groups to which they belong. As can 
be seen, the adopted metrics offer information for all four 
categories as proposed by liu, et al. (2012).

4.3.3 Runtime Performance
Performance time is determined by how long it takes the 

image fusion algorithm to run. Performance time becomes a 
key consideration when evaluating an algorithm for real-time 

Table 2.  Following are the evaluation metrics implemented in this paper. A high value is denoted by “+,” while a low value is 
denoted by “-,” both of which imply strong performance. (Data from VIFB (Zhang16 et al.)

Category Name Meaning +/-

Information theory-based

CE (Bulanon,17 et al.) Cross entropy -

EN (Roberts,19 et al.) Entropy +

MI (Qu,21 et al.) Mutual Information +

PSNR (Jagalingam & Hegde23) Peak signal-to-noise ratio +

Structural similarity-based RMSE (Jagalingam & Hegde23) Root mean squared error -

Image feature-based

Ag (Cui,18 et al.) Average gradient +

EI (Rajalingam,20 et al.) Edge intensity +

SD (Rao22) Standard deviation +

SF (Eskicioglu & Fisher24) Spatial frequency +

Human perception inspired
Q CB (Chen & Blum25) Chen-Blum metric +

QCV (Chen & Varshney26) Chen-Varshney metric -

Figure 5. Curvelet coefficients in different scale factors of visible image red channel and corresponding grayscale thermal image.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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use cases and is influenced by both the algorithm and the 
platform on which it is run.

4.4 Results of the Proposed Method
Figure 5(a) shows the curvelet coefficients of the red 

channel of the visible image, separated into three scales:
Scale 1• : We get the approximation coefficient (marked in 
orange)
Scale 2• : (marked in green) is divided into 16 angular 
divisions. Each of the 16 divisions has a corresponding 
detail coefficient.
Scale 3• : (marked in blue) is made up of 32 angular 
divisions. Each of these divisions provides a unique detail 
coefficient.

Figure 5(b) shows the detail curvelet coefficient for the 
red channel of the visible image at scale 3 at the 4th angular 
division. The approximate curvelet coefficient of the visible 
image’s red channel at scale 1 is seen in Fig. 5(c). Figure 5(d) 
shows the detail curvelet coefficient for the red channel of the 
visible image at scale 2 at the 2nd angular division. Figure 5(e) 

demonstrates the curvelet coefficients of a thermal image in 
grayscale separated into three scales:

The approximation coefficient is provided by scale 1 • 
(marked in orange)
Each of the 16 angular divisions that make up Scale • 
2 (marked in green) contains a corresponding detail 
coefficient
Each of the 32 angular divisions making up Scale 3 • 
(marked in blue) provides a unique detail coefficient.

detail curvelet coefficient of a corresponding thermal 
image in grayscale at scale 3 at angular division 4 is shown 
in Fig. 5(f). Figure 5(g) displays the approximate curvelet 
coefficient of a corresponding thermal image in grayscale, at 
Scale 1.

detail curvelet coefficient of a corresponding thermal 
image in grayscale at the 2nd angular division of Scale 2 is 
shown in Fig. 5(h).

The five key steps of the recommended method for fusing 
two thermal-visible images are: curvelet transform, mean of 
approximation curvelet coefficient, bounded PCA on detailed 

(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 6. Stepwise results of the proposed algorithm for the red channel of the visible image and corresponding thermal image.
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(a) (b)

(c)

(e)

(d)

(f)

(g)
Figure 7. Channel-wise fusion images with the final fused image.
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(t)

(p)(n) (o)

(r)(q) (s)

(m)

Figure 8.  A qualitative assessment of 18 techniques using an image pair from the dataset in Figure 4: (a) Original visual image, (b) 
Original thermal image, (c) NSCT SR output image, (d) RP SR output image, (e) CBF output image, (f) IFEVIP output 
image, (g) MST SR output image, (h) ADF output image, (i) CNN output image, (j) GTF output image, (k) LatLRR output 
image, (l) MSVD output image, (m) MGFF output image, (n) TIF output image, (o) VSMWLS output image, (p) Wavelet 
output image, (q) FPDE output image, (r) GFCE output image, (s) GFF output image, and (t) Proposed output image.

(l)(j) (k)(i)

(h)(f) (g)(e)

(d)(b) (c)(a)

coefficients, inverse curvelet transform, and adaptive histogram 
equalisation. The stepwise results of the proposed fusion 
method are shown in Fig. 6. The original images considered 
for this purpose are shown in Fig. 4. The visual image is in  
Fig. 4 (row 1 column 6) and its corresponding thermal image is 
in Fig. 4 (row 2 column 6).

For the fusion process of the curvelet coefficients, 
averaging method is used for approximate coefficients while 
detail coefficients are fused by the proposed bounded PCA 
method.

The approximate curvelet coefficient of the red channel of 
the visible image [Avis] is shown in Fig. 6(a). Figure 6(b) shows 
the approximate curvelet coefficient of the corresponding 
thermal image  [Atherm]. The approximate coefficient of the fused 

image, calculated by averaging method
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shown in Fig. 6(c). The detailed curvelet coefficients of the red 
channel of the visible image
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and the fused image calculated by the bounded PCA method 
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at scale 2 and angle 2 are 

shown in Fig. 6(d), 6(e) and 6(f), respectively.
Figure 6(g) shows the fused image red channel obtained 

by applying inverse curvelet transform on the fused curvelet 
coefficients and finally, the fused red channel obtained by 
further applying adaptive histogram equalization is shown in 
Fig. 6(h).

We also took into consideration the thermal and visual 
images displayed from the VIFB dataset in Fig. 4 (row 1 
column 5) and (row 2 column 5), respectively. Here, we have 
combined a thermal image with images from the red, green, 
and blue channels. The end product of the proposed algorithm’s 
fusion of the red channel and thermal image is depicted in 
Fig. 7(b), which shows the results of adaptive histogram 
equalization applied to the red channel fused image in  
Fig. 7(a). Similar results can be seen in Figs. 7(c) and 7(d) and in 
Figs. 7(e) and 7(f), which show the fused green channel image 
after applying the inverse curvelet transform and adaptive 
histogram equalisation, and the fused blue channel image 
after applying the inverse curvelet transform and adaptive 
histogram equalisation, respectively. Figure 7(g) displays the 
final integrated fused image, which is the final product of the 
proposed algorithm. As can be observed, the finished product 
provides more information than both the thermal and visual 
images.

 
4.5 Qualitative Performance Comparison

In this part, we have contrasted the proposed method’s 
qualitative performance with that of alternative approaches. 
Figure 8 compares the proposed method’s qualitative 
performance on a pair of images to that of 18 previous fusion 
approaches. In this image pair, there are several people visible 

Table 3.  On 24 image pairings, the average assessment metrics for all procedures. The top three values for each statistic are indicated 
by the colors green, blue, and red, respectively.

Method Ag CE EI EN MI PSNr QCB QCV rMSE SF SD
AdF 4.975 1.59 49.969 6.817 2.304 59.594 0.476 716.95 0.098 15.328 36.26
CBF 7.48 1.075 77.256 7.307 2.559 58.814 0.528 1426.48 0.119 21.305 47.78
CNN 6.252 0.967 64.167 7.315 2.888 59.101 0.613 463.62 0.112 19.821 59.563
Proposed(CTBPCA) 11.055 1.381 113.217 7.617 1.125 57.166 0.461 889.3 0.134 31.56 53.912
FPdE 4.934 1.425 49.79 6.798 2.263 59.259 0.463 717.99 0.098 14.351 36.037
gFCE 7.784 2.12 79.928 7.276 1.876 56.384 0.526 813.95 0.162 23.15 52.682
gFF 5.848 1.402 59.912 7.219 2.646 58.243 0.603 822.37 0.108 18.524 49.023
gTF 4.692 1.439 47.082 6.586 1.978 58.017 0.398 1948.54 0.113 15.795 36.325
IFEVIP 5.641 1.406 57.885 6.956 2.291 57.423 0.457 539.6 0.131 17.290 48.513
latlrr 10.114 1.713 103.634 6.915 1.659 56.399 0.484 652.17 0.161 31.339 57.119
MgFF 6.251 1.448 64.261 7.124 1.75 58.377 0.526 626.31 0.105 18.892 44.638
MST SR 6.305 1.062 64.835 7.367 2.676 58.077 0.621 490.1 0.113 19.826 56.933
MSVD 3.97 1.746 39.768 6.729 1.954 58.574 0.417 758.98 0.1 13.723 35.080
NSCT SR 6.898 1.031 71.419 7.37 3.039 57.626 0.596 1316.83 0.126 20.428 51.276
RP SR 6.814 1.123 69.248 7.376 2.249 57.921 0.585 812.05 0.117 22.235 55.56
TIF 5.954 1.559 61.478 7.086 1.749 58.389 0.531 562.73 0.104 18.596 43.053
VSMWlS 6.026 1.696 60.842 7.032 2 58.364 0.484 697.18 0.105 18.612 46.021
Wavelet 3.579 1.835 36.377 6.702 2.045 58.608 0.403 716.32 0.099 11.272 34.689

in the infrared image but invisible in the visual image because 
they are obscured by a car’s shadow. These people are virtually 
always discernible in fused images, as can be shown in  
Fig. 8. Multiple algorithms produce composite images with 
flaws. These techniques comprise the NSCT Sr, rP Sr, CBF, 
IFEVIP, and MST Sr approaches. Moreover, the combined 
visuals generated by utilizing various techniques such as AdF, 
CNN, gTF, latlrr, and MSVd do not sufficiently conserve 
the intricate particulars presented in the observable imagery. 
According to Fig. 8, the fused images, created by the MgFF, 
TIF, VSMWlS, wavelet approach, FPdE, gFCE, and gFF as 
well as the proposed CTBPCA method (Fig. 8(t)), are more 
accurate for human sensibility and retain more data.

4.6 Quantitative Performance Comparison
Table 3 displays the average values for 11 assessment 

measures on 24 visual-thermal image pairs from the dataset 
in Fig. 4 for all methods. The suggested CTBPCA technique, 
with its four best values, offers the best overall quantitative 
performance, as can be seen. The CNN approach yields the 
second-best performance with 2 best and 2 second-best results. 
CBF, gTF, MgFF, MSVd, TIF, or VSMWlS did not produce 
any best, second-best, or third-best values. Table 3, however, 
makes it abundantly clear that there isn’t a single fusion 
technique that can outperform competing ones in all or the 
majority of evaluation metrics.

4.7 runtime Comparison
The runtimes for each algorithm are listed in Table 4. The 

runtimes of various image fusion algorithms vary greatly. This 
holds even for techniques falling under the same category. 
Multi-scale approaches like AdF, CBF, and MSVd exist, 
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Table 4.  Execution times for all algorithms (in sec.). The shortest and longest average times taken are shown in green and red, 
respectively

Method Avg. time (s) Total time (s) Method Avg. time (s) Total time (s)

AdF 0.85938 20.625 latlrr 241.9932 5807.836
CBF 14.7503 354.008 MgFF 0.98625 23.67
CNN 29.5178 708.428 MSTSR 0.84771 20.345
Proposed 1.06 25.4407 MSVD 0.81396 19.535
FPdE 2.3215 55.715 NSCTSR 105.2959 2527.101
gFCE 1.8518 44.443 RPSR 0.89125 21.39
gFF 0.33971 8.153 TIF 0.12171 2.921
gTF 4.8922 117.413 VSMWlS 3.1725 76.139
IFEVIP 0.13762 3.303 Wavelet 0.25397 6.0953

although CBF has a runtime that is roughly 17 times longer 
than AdF’s and about 18 times longer than MSVd’s. The 
quickest method for fusing images was by using TIF.

5. Summary and Future Scope of the Study
The usefulness of thermal imaging in many applications 

has increased significantly, yet there are still some situations in 
which they fall short. Combining the unique characteristics of 
thermal images with visual sensor images is more appropriate 
to deal with such a circumstance. In this regard, the current 
paper suggested a quick discrete curvelet transform for feature 
extraction and a bounded PCA methodology for the fusing of 
a thermal-visible image’s detailed coefficients. The viability 
of the suggested technique was evaluated by conducting tests 
on thermal-visible image pairs acquired from both our images 
shot with AXIS Q8741-lE Bi-spectral PTZ Network Camera 
and the publicly available VIFB dataset. The suggested 
methodology and the already used image fusion techniques 
have been compared, along with several evaluation indicators. 
It has been found that the suggested strategy produces superior 
results concerning various measurements.

Our future study will be based on using the fused image 
for target recognition. Future work should also focus on this 
method’s continued improvement and optimization for real-
time video processing.
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