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AbstrACt

This paper presents a novel iterative algorithm incorporated in a user-friendly GUI for modeling the kinematics 
of multiple looped N-bar closed-loop mechanisms. Past research works have used custom coding or expensive 
commercial software to analyze the mechanisms of specific applications. The proposed algorithm focuses on kinematics 
and offers a quick, easy-to-use, cost-effective solution to analyze a wide range of generic mechanisms, reducing 
the need for custom coding and lowering computational costs. The algorithm employs algebraic equations, such as 
solving complex closed-loop vector equations using the Euler form of complex numbers, to simulate and derive 
the unknowns necessary to characterise any generic closed-loop mechanism. The Python code implemented in the 
algorithm adapts to various scenarios by utilising available information on the position, velocity, and acceleration 
variables of the mechanisms. The simulation tool can display real-time color contour plots (RGB color scale) for 
linear and angular velocities and accelerations, simulate mechanisms with multiple loops and switch configurations, 
and find inverse mechanisms. The approach for solving multiple loop problems and the algorithm utilized to solve 
the configurations, methods, equations used and GUI features implementation are all described in this study. The 
case study considered for a four-bar mechanism indicates a strong agreement between the results obtained from the 
proposed kinematics-based simulator and ANSYS software. These results demonstrate the simulator’s effectiveness 
in providing low-cost and user-friendly simulation results for various generic mechanisms involving multiple 
interconnected loops.
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NoMENCLAturE
r (m) Length of link
q (rad)             The angle of the link from horizontal
w (rad / s)         Angular velocity of link       
a (rad / s2)             Angular acceleration of link
n (m / s)           Velocity of link
a (m/s2)            Acceleration of link
N                     Number of links

1. INtroDuCtIoN
Simulation of kinematic mechanisms is an essential 

aspect of modern engineering practices that enables designers 
to analyse and evaluate complex motion characteristics of 
various mechanisms. It involves the use of simulation tools 
and modeling techniques that have proven to be highly 
beneficial in better understanding the kinematic behavior 
of these mechanisms. The four-bar mechanism is a prime 
example of a mechanism that benefits from such analysis, and 
it finds extensive application in the automotive industry such as 
windshield wiper mechanisms1. Simulation tools and modeling 
techniques are crucial in designing efficient mechanisms, 
and they play a critical role in the decision-making process. 

Kinematics concepts such as velocity, acceleration, and 
position analysis are essential for designing these mechanisms, 
and simulators can be used to verify the design decisions based 
on these concepts2. The use of simulation tools and modeling 
techniques has revolutionised the design process, making it 
more efficient and reliable. These tools enable designers to 
visualise and analyse the motion characteristics of mechanisms, 
which helps them to make proper design decisions. They allow 
for the testing of different design concepts, making it possible 
to evaluate the performance of the mechanism under different 
conditions. Furthermore, simulation tools can also help 
designers identify potential problems and provide solutions to 
overcome them, leading to better and more robust designs. 

Research projects focusing on inverse kinematics utilised 
different modeling and simulation techniques. Marques, et al.  
proposed a method for modeling and simulating closed-loop 
kinematic chains3, while Ding, et al. used genetic algorithms to 
improve a five-bar mechanism4. Müller focused on removing 
unnecessary constraints in loop closure5, and Han6, et al. 
presented a systematic modeling and analysis approach for 
wheeled mobile robots6. Sünkün7, et al. developed a toolbox 
for simulating and analysing the toe trajectory of legged 
robots7. Adorno and Marinho employed robotic controlled 
and modeling libraries using dual quaternion algebra8. Dang9, 
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et al. developed a kinematic simulation model based on 
SimMechanics and Adams for a specific mechanism9, while 
Wang10, et al. developed a 5-dof parallel mechanism10. Wang11, 
et al. examined the shield machine’s thrust mechanism11, while 
Yamamoto12, et al. suggested performing a kinematic analysis 
of a closed-loop mechanism using an automatic procedure 
extraction algorithm12. Bai13, et al. carried out thorough 
kinematic modeling for parallel hexapod robot applications13, 
and Bieze14, et al. presented a finite element modeling 
approach using closed-loop kinematics for soft manipulators14. 
Bhattacherjee and Saha developed an accurate six-degree-of-
freedom simulation model for homing missiles incorporating 
detailed servo-system modeling15. Additionally, Virtual 
Labs has developed simulators that simplify the calculation 
of position, speed, and acceleration variables for various 
mechanisms16.

Some research works conducted have also used 
simulation software tools to analyse and optimise mechanisms 
with adjustable parameters. Programming languages such as 
Simulink, MATLAB, and Python were utilized to provide 
visual and interactive representations of the system’s behavior 
and assist designers and engineers in creating accurate and 
efficient mechanism designs17-20. Kinematics and mechanism 
design principles, including the analysis of linkages, inverse and 
forward kinematics, and the D-H method, were also studied21-

25. These concepts were found to be crucial in designing and 
building various mechanical systems, including robots and 
power transmission mechanisms. Python and MATLAB 
were commonly used programming languages to analyze and 
design kinematic and mechanism systems. Several research 
works also explored the practical application of mechanism  
design26-28. These applications include predicting ground 
workpiece surface roughness, power transmission, and 
mechanical stability on different terrains and planning in high-
speed press lines. The surveys emphasised the importance of 
accurately designing and analysing mechanisms for optimal 
performance and efficiency in various applications, including 
manufacturing and robotics.

Prior studies on mechanism design, synthesis, and 
experimental verification have primarily focused on specific 
mechanisms, utilising simulation tools and algorithm codes 
with limited built-in mechanisms. The analysis of complex 
mechanisms featuring multiple loops and links necessitated 
costly commercial software and high computational power. 
Furthermore, developing codes for detailed modeling such 
mechanisms for in-depth analysis was time-intensive. To address 
these issues, this study proposes an iterative algorithm to solve 
any generic feasible kinematic closed-loop mechanisms using 
Euler form complex numbers calculations which is cost and 
computationally effective. The methodology allows for easy 
data input for closed-loop mechanisms having n loops and m 
links, which the algorithm can solve effortlessly. Any open-loop 
mechanisms can be converted into closed-loop mechanisms by 
adding a stationary ground link, enabling the simulation to run. 
To visualize output results, the study developed a GUI capable 
of plotting color contour and displaying running time data. The 
simulation results are compared with commercially available 
softwares as they are widely used for academic research 

purposes29-30 like ANSYS31. The proposed algorithm simplifies 
developing codes for analyzing custom mechanisms, providing 
an accurate and effective solution.

2. tHEorEtICAL bACKGrouND
The closed-loop vector loop equations solved for various 

cases considered are briefly discussed in this section and 
implemented in code to model the kinematics of closed-loop 
linkages. The fundamental equation of close loop linkage 
formation could be written as a set of vectors in the Euler form, 
as shown in Eqn (1). Where, kr  
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 is the vector making an angle 
q with the positive x-axis, kr  
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 is the actual length of the link. 
Subscript k indicates it is the Kth linkage member. Since all 
the linkages in a closed loop are arranged head-to-tail, their 
summation should become a null vector.

            
(1)
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concerning time, it yields a 
velocity vector of the Kth linkage having the Euler form,
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(5)

The three summation equations of a loop requiring 
summation must be solved and equated to zero to determine 
the closed-loop kinematics of any linkage configuration. If 
there are multiple loops, each loop is solved separately. These 
solutions are used to compute the unknown data for the next 
loop. Any loop that can be solved proceeds in steps, first 
solving equations to get length and angle, then velocity, and 
finally acceleration. In further sections, the specifics of the 
equations implemented are described.

2.1  Concepts and Equations
This work utilised the concept of mechanisms2 to resolve 

all 4 cases for each of the three sets of unknowns (position, 
velocity, and acceleration), forming 12 cases as described in 
this section. These cases are obtained by assuming a maximum 
of 2 unknown variables for each set of unknowns for a given 
loop. They are as follows (where subscript p and q denote pth 
and qth link’s variables).

Position variables include a combination of unknown 
parameters (Fig. 1), such as:

 r• p and qp
 r• p and qq
 r• p and rq
 • qp and qq

Similarly, velocity variables include:
 v• p and wp
 v• p and wq
 v• p and vq
 • wp and wq
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Further, acceleration variables include:
 a• p and ap
 a• p and aq
 a• p and aq
 • ap and aq

The fundamental solution concept involved constructing 
equations by considering a single closed loop that could have 
a maximum of two unknowns for each position, velocity, and 
acceleration per loop. This assumption enabled simulation 
and coverage of all potential problem-solving scenarios. The 
equation was rearranged to place unknown vector values at 
the first two links, but its vector addition features allowed 
the unknown values to exist anywhere between the links of 
a closed loop, greatly simplifying the coding process. The 
program used subscript p or q to indicate unknown values for 
the first or second linkages and computed all position variables 
before determining acceleration and speed variables using input 
values. The modified algebraic equations for each position, 
velocity, and acceleration are described as follows.

2.2  Position
The solution found in the position part can fully define 

the mechanism in terms of length and orientation of links. As 
a result, if there is any discrepancy in finding the solution to 
either length or angle for any link, it implies that the mechanism 
cannot be solved for the given set of data values, and the 

mechanism is unlikely to be feasible. The closed loop vector 
equation in Euler form for N-links can be written as shown in 
Eqn. (1), and a resultant of the vector addition of fully defined 
links can be written as Eqn. (6),
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where, r and q are the length and angle measured from the 
positive x-axis, respectively. The LHS of Eqn. (6) represents 
the resultant of all the link vectors fully defined in terms of r 
and q. If the resultant vector 
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 is null, the known data values 
form a closed loop altogether, and no unknown variable can be 
solved in the current loop chosen.The closed loop equation can 
only have a maximum of two unknowns per loop between r 
and q because there are two equations for each loop (obtained 
by separating the real and imaginary parts). All four scenarios 
for solving position variables are considered (because finding 
one unknown is a subset of finding two unknowns per loop). 
These four scenarios are:

Case-1 (rp and qp are unknowns)
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Case-2 (rp and qq are unknowns)
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Figure 1. Four cases for solving position variables taking the 4-bar mechanism as an example.
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Case-3 (rp and rq are unknowns)
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Case-4 (qp and qq are unknowns)
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After completing this process, all position variables are 

clearly defined in the array of unknowns. It should be noted 
that the given condition might have various solutions because 
there are numerous possible angles (by solving inverse-
trigonometric equations), and each corresponds to a different 
configuration. The proposed simulator can cover all these 
scenarios by switching between several configurations based 
on user input which is an important feature.

2.3 Velocity
The velocity part of the equation is to find 
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. This equation is obtained by differentiating any 
general jth position vector with respect to time.
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Similar to position equations, v, and ω can only have a 
combined total of 2 unknowns per loop. All four potential 
scenarios for obtaining velocity variables are considered 
because finding a single unknown is a subset of finding two 
unknowns per loop. They are:
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Case-2 (vp and wq are unknowns)
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Case-3 (vp and vq are unknowns)
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Case-4 (wp and wq are unknowns)
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(24)

These are the main equations and the four possible 
scenarios to calculate the velocity unknowns for each loop. All 
velocity-related variables for every link in the loops are clearly 
defined after this process.

2.4 Acceleration
The acceleration part is to solve the acceleration equations 
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. This equation is obtained by 
differentiating any general jth velocity vector with respect to 
time.
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Like position and velocity equations, the number of 
unknowns per loop can be a maximum of 2 among a and α. All 
the possible 4 cases for finding acceleration variables are,

Case-1 (ap and ap are unknowns)
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Case-2 (ap and ap are unknowns)
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Case-3 (ap and aq are unknowns)
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(31)

Case-4 (ap and aq are unknowns)
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Figure 2. Algorithm flow-chart.
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These are the general equation formulations for four 
scenarios for solving each loop’s unknown accelerations. Once 
complete, each link in the loop is fully defined.

3. MEtHoDoLoGY
The primary focus of this part is on the fundamental 

requirements that the loops must satisfy, along with a few 
default presumptions in the code that are used to assist the user 
when the simulator first launches. Further, this section focuses 
on implementing multi-loop mechanism, color contour, inverse 
mechanisms, multiple configurations, and problem-solving 
algorithms. All of the algorithms were programmed in Python, 
which was also used to create interactive user interfaces for 
displaying data and a sketching interface. Additionally, the 
process of identifying solutions is broken down into many 
functions, each dependent on the results of the others. The 
algorithm solves all necessary configurations and displays only 
the configuration required by the user.

3.1  solution Method for Multi-Loop Mechanisms
This section describes the criteria the loop must meet 

for the simulator to solve the entire configuration, including 
position, velocity, and acceleration. The solution method for 
multi-loop mechanisms is also discussed, a notable feature 
of the proposed simulator. Additionally, default assumptions 
made in the simulator and a case study simulation of the crank-
rocker mechanism using the proposed simulator and Ansys are 
presented.

3.1.1 Criteria to be Satisfied by the Loop
Loop represents a series of links where the magnitude of 

the assumed vectors is equal to the length of the links, and the 
direction forms an angle theta with the horizontal axis. When 
connected from head to tail, these vectors create a closed loop. 
The code used to build the simulator can solve any configuration 
with any number of links as long as the configuration satisfies 
certain assumptions, such as:

It does not contain any open loops • 
Each loop may contain an N-number of links, but each • 
loop should have no more than two unknowns for length 
and angle
The unknowns may pertain to the same or separate links • 
within the loop
For the configuration to be solvable, the loop should be • 
similar to the solvable loop in Fig. 3(b).

The velocity and acceleration calculations are also 
subjected to the same restrictions, with a maximum of two 
unknowns (for velocity and acceleration), either for the same 
link or different links in the same loop. As the requirements are 

satisfied, the algorithm solves the complete configuration, from 
position to acceleration. An alert stating ‘configuration cannot 
be solved’ is notified if the abovementioned requirements 
are not satisfied during simulation since no combination of 
length and theta of each link can form a closed loop. Further, 
the values of the variables for subsequent simulation are 
modified by incrementing the angle of driving links depending 
on the angular velocity and acceleration at that instant. The 
mechanisms depicted in Fig. 3(b) illustrate the configurations 
that are solvable and non-solvable. 

3.1.2 Default Assumptions Made in the Simulator
Certain assumptions were made while developing the 

algorithms for the simulator to simplify user input. By default, 
the simulator displays a four-bar system, and users can create 
their configurations by typing values. However, if a drawing 
interface gives the input, the code automatically changes all 
links except the last two to driver links. Additionally, the 
simulator ensures that closed loops have at least n-2 degrees 
of freedom among n links. Users can vary the initial angular 
acceleration and velocity of all driving links. If a three-link 
system is used, one of the links is variable in length, and the 
length input should be left blank for the code to determine its 
value.

3.1.3 Solution Algorithm
The algorithm for solving the equations described in 

section 2 is divided into three sections: position(), velocity(), 
and acceleration(). It checks the problem’s feasibility and solves 
it accordingly. If there is only one loop, the algorithm runs 
only once. However, if there are multiple loops, the algorithm 
examines each loop until it finds one that meets the number of 
unknown variables requirements. It then solves the loop and 
saves the values in an array before locating the next solvable 
loop. Loops with feasible unknowns that share a common link 
with the solved loop are considered the following loop for 
solving. The algorithm continues until all loops are fully solved, 
and the array of unknowns is fully defined. If the criteria for 
the closed loop are not satisfied or any other rule is violated, 
an error is thrown back, warning that the problem cannot be 
solved. The process stops if any discrepancies exist. The flow 
chart in Fig. 2(a) and Fig. 2(b) illustrates this process.

3.1.4 Color Contours
In simulation visualization, the color contours feature 

played a crucial role in displaying the relative values of different 
parameters for each link. This feature is demonstrated in  
Fig. 3(a), which displays the color bands for four parameters: 
ω, α, a, and v, ranging from red (highest value) to blue (lowest 
value). The color contours were assigned to the links based on 
their parameter value ratio, with red denoting the most valued 
link and blue denoting the least valued link. For example, based 
on the difference values (4,8,7), the links (ground, 2, 3, 4) 
were assigned the colors (0-red, 3-orange, 10-green, 16-blue). 
The color contour feature was instrumental in visualizing the 
simulation data for different parameters and links, providing 
valuable insights into the simulation results. 
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(a)

(b)

(c)

(d)
Figure 3. Features of simulator GuI, (a) Color contours with data values, (b) solvable, non-solvable loop and multiple-loops, (c) 

Mechanism inversions, and (d) Multiple configurations.
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(a) (b)

(c)
Figure 4. Case study validation: (a) Case study geometry, (b) Isometric view of the four bar assembly, and (c) simulator GuI.

table 1. Ansys simulation settings

step Controls

Number of steps 1

Current step number 1
Step end time 200 s

Auto time stepping On

Initial time step 10-2 s

Minimum time step 10-7 s
Maximum time step 0.05 s

3.1.5 Multiple Loops
The solution method for multi-loop mechanisms is also 

addressed in this work, which is one of the highlighting features. 
Multiple loops are created when at least one link connects two 
loops, as demonstrated in Fig. 3(b). If a loop (say L1) has 
more unknowns than the algorithm can solve, the attached 
solvable loops (say L2, L3, and more) are solved first, based on 
specific criteria discussed in the section 3.1.1. These solvable 
loops provide information about undefined links in the loop 
(L1). The number of unknowns decreases upon solving other 
loops, enabling the present loop, which previously had many 
unknowns, to be solved using the known values from other 
solved loops. As shown in Fig. 3(b), when two loops share a 
common link, it becomes fully defined upon solving the loop 
with more known values (assuming it is the bottom loop). The 
top loop can now be fully resolved using this common link, 
provided all requirements are met.

3.1.6 Inverse Mechanisms 
Different inverse mechanisms could be obtained by 

selecting various links as ground links based on their link 
number and subtracting their angle from each link in the 
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(a)

(b)
Figure 5.  Ansys v/s simulator results comparison for connector angular velocity, rocker angular velocity, connector angular acceleration 

and rocker angular acceleration: (a) ANSYS v/s simulations results for two different time stamps, and (b) ANSYS v/s 
simulation data value plots as a function of time.
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configuration. Further, the link was moved to the screen’s 
center to simulate its inverse mechanism. Different links were 
grounded to show different inverse mechanisms, and the typical 
simulation was repeated concerning the newly grounded link’s 
altered frame of reference. An nth loop link can be grounded by 
considering its angle about the x-axis and the coordinate of its 
base point. The complete mechanism was rotated and shifted to 
the new base point. Figure 3(c) depicts an example of a 4-bar 
mechanism in which the new inversion was created by shifting 
and rotating the links of the original/base configuration being 
inverted by link 3. 

3.1.7 Multiple Configurations
In some cases, multiple configurations can be achieved for 

various unknowns. One way to achieve multiple configurations 
is to include the angle as an unknown. This can be done using 
inverse trigonometric relations, producing many angles for 
unknown values. These extra configurations can be helpful in 
certain situations, such as when the mechanism must adapt to 
different operating conditions. 

The second configuration in Fig. 3(d), which results from 
the connector and rocker links’ undetermined angles (q3 and q4), 
is an example of how multiple configurations can be achieved. 
In this case, the mechanism can have different connector 
and rocker link arrangements that result in different motion 
characteristics. Understanding these different configurations 
can be necessary for designing and analysing mechanisms to 
ensure they can perform their intended functions effectively.

3.2  simulation and Comparison of a Crank-rocker 
Mechanism using the Proposed simulator and 
Ansys
A case study simulation of the crank-rocker mechanism 

using the proposed simulator and Ansys is presented in this 
study. The mechanism’s dimensions used in the study are 
shown in Fig. 4(a). The primary objective was to look at the 
patterns in the plots for the rocker and connector links’ angular 
velocity and acceleration. Results of the proposed simulator 
and Ansys simulation were compared to ensure the accuracy 
of the algorithm.

Figure 4(a) illustrates the lengths of the links and their 
angles from the positive x-axis. The mechanism’s response is 
examined by studying the trends of the plots for the rocker and 
connector links. The study employs the simulator GUI with a 
default 4-bar (along with its color contour of angular velocity) 
mechanism shown in Fig. 4(c), which can be modeled and 
refined by entering accurate values into user-provided fields. 
The simulation’s accuracy is validated by comparing it with 
Ansys simulation results, using a 4-bar setup to model the 
crank-rocker mechanism, as shown in Fig. 4(b), with identical 
linkage dimensions and revolute joint constraints. The Ansys 
simulation measures rotational velocity and acceleration 
through probes during runtime.

4. rEsuLts AND DIsCussIoN
The current section deals with the results of the case 

study described in section 3.2, followed by the highlighting 
features of this work, such as the simulation of multiple loops, 
displaying the geometry, multiple configurations, and inverse 
mechanism along with angular position plots of links to show 
the behavior of the multi-loop mechanism.

4.1 Case study result Comparison
The geometric statistics of the ansys model include a 

total of 3 bodies, of which three are active hence containing 
three nodes and elements. Based on the step controls shown in  
Table 1, a rotational velocity of magnitude 0.04 rad/s was 
applied for simulation purposes for 200 sec. time stamps. 
The data values of velocity and acceleration variables at two 
particular time stamps having 23° and 40° crank angles are 
compared in the simulator and ANSYS software, as shown in 
Fig. 5(a).

The solver controls had program-controlled time 
integration types using position and velocity correction 
features of a pure kinematic kind. The assembly was done 
with the inertia matrix with a dropoff tolerance of 10-6, along 
with relative assembly tolerance. The Non-linear controls had 
program control energy accuracy tolerance while storing the 
data values at all times under Output controls. The values 
for ten data samples are shown in the subsequent Tables.  
Table 2 shows ANSYS values, Table 3 shows simulator values 

table 2. ANsYs simulation data

rocker-angular velocity (Z) 
(rad/s)

rocker-angular acceleration (Z) 
(rad/s²)

Connector-angular velocity (Z) 
(rad/s)

Connector-angular 
acceleration (Z) (rad/s²)

0.8364 1.8473 0.6235 -0.4807

0.8547 1.8173 0.6186 -0.4984

0.8791 1.7757 0.6117 -0.5213

0.9099 1.7204 0.6022 -0.5490

0.9466 1.6497 0.5900 -0.5806

0.9881 1.5621 0.5745 -0.6147

1.0331 1.4558 0.5556 -0.6503

1.0810 1.3285 0.5331 -0.6866
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and Table 4 shows error percentages between both values. The 
final data values produced by the simulator and the ANSYS 
simulation following the above case study showed good 
agreement with each other for the variables,

Angular velocity of the connector link• 
Angular velocity of rocker link• 
Angular acceleration of connector link• 
Angular acceleration of rocker link• 

As shown in Fig. 5(b). The plot shows apparent data 
overlapping, ensuring the simulator results are highly 
accurate. 

The results provided by the simulator proposed are 
accurate and reliable enough since the solution process is 
purely analytical and doesn’t involve any approximation. As 
seen from Table 5, there are a few variations between the two 
values that errors in the rounding of the values and matching of 
time stamps may cause. Thus, this simulator offers quick and 
straightforward visualizations for the specified configuration.

4.2  simulation of Multiple Loops 
Simulation of multiple loop mechanisms can be beneficial 

in developing Remote Centre Mechanisms (RCM)32, a minor-
mobility mechanism involving a rotating part around a fixed 

table 3. Algorithm simulation data

rocker-angular velocity  
(Z) [rad/s]

rocker-angular acceleration  
(Z) [rad/s²]

Connector-angular velocity  
(Z) [rad/s]

Connector-angular 
acceleration (Z) [rad/s²]

0.8362 1.8472 0.6237 -0.4805

0.8549 1.8168 0.6186 -0.4981

0.8791 1.7754 0.6115 -0.5211

0.9095 1.7213 0.6023 -0.5494

0.9467 1.6500 0.5900 -0.5803

0.9884 1.5630 0.5745 -0.6145

1.0332 1.4559 0.5555 -0.6501

1.0800 1.3284 0.5330 -0.6866

table 4. Error percentage

rocker-angular velocity (Z) 
(rad/s)
(%)

rocker-angular acceleration (Z) 
(rad/s²)
(%)

Connector-angular velocity (Z) 
(rad/s)
(%)

Connector-angular 
acceleration (Z) (rad/s²)
(%)

0.0203 0.0081 0.0337 0.0562 

0.0246 0.0303 0.0065 0.0542 

0.0011 0.0163 0.0262 0.0365 

0.0418 0.0529 0.0116 0.0601 

0.0180 0.0176 0.0017 0.0603 

0.0364 0.0551 0.0035 0.0423 

0.0116 0.0089 0.0180 0.0323 

0.0009 0.0090 0.0113 0.0058 

table 5. Angular position of links in multiple loop mechanism

Iterations q2 (Deg) q7 (Deg) q8 (Deg)

1 98.34 1.92 342.37
2 89.74 8.84 331.64
3 81.15 12.86 325.25
4 72.55 15.72 320.74
5 63.96 17.84 317.47
6 55.37 19.37 315.19
7 46.77 20.34 313.76
8 38.18 20.79 313.12
9 29.58 20.70 313.24
10 20.99 20.10 314.11

point located distally from it. Due to its unique mechanical 
characteristics, this special mechanism finds its application in 
various fields. In surgery, the RCM mechanism is beneficial 
for minimally invasive procedures, where it is used as a wrist 
for surgical robots. Another implementation of the multi-loop 
mechanism described by Mohamed & Duffy33 focused on a 
planar multi-loop mechanism while describing the first-order 
geometric influence coefficients in their work. 
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(a)

(b) (c)
Figure 6.  Multi-loop mechanism simulation: (a) Multi-loop mechanism with its second configuration and inverse mechanism,  

(b) Angular positions of link-7 (q7) vs iterations, and (c) Angular positions of link-8 (q8) vs iterations.

The planar multi-loop mechanism was reconstructed with 
custom dimensional values (that satisfy close loop property) for 
demonstration purposes in the current study, which is shown in 
Fig. 6(a) (link-1=314.4m, link-2=71.8m, link-3=179.2m, link-
4=181.5m, link-5=154.1m, link-6=140m, link-7=184.1m, link-

8=133.9m, link-9=317.1m) along with its other configuration 
and inverse mechanism generated by the simulator. Here links 
1 and 9 are fixed. Link 2 is the driving link, and links 3, 4, 
5, 6, 7, and 8 are driven. Since links 7 and 8 are the farthest 
from the driving link, their angle positions as a function of the 
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number of iterations are plotted in Fig. 6(b) and 6(c), and data 
values for ten iterations are shown in Table 5 to understand 
their behavior as solved from the simulator developed in 
this study. The results show that links 7 and 8 are in a rocker 
motion. Based on this analysis and simulation, the user can get 
various insights into the mechanism of interest, thereby aiding 
in making crucial design decisions. 

5.  CoNCLusIoN
In conclusion, this paper presents a novel approach for 

analyzing the kinematics of multiple looped N-bar closed-loop 
mechanisms using an iterative algorithm and a user-friendly 
GUI. The proposed methodology provides a cost-effective 
and efficient solution for modeling a wide range of generic 
mechanisms that require multiple interconnected loops. The 
algorithm utilises algebraic equations, such as the Euler form 
of complex numbers, to simulate and derive the unknowns 
necessary to characterise any closed-loop mechanism. The 
Python code implementation adapts to various scenarios by 
utilizing information on the mechanism’s position, velocity, 
and acceleration variables. The simulation tool can display 
real-time color contour plots for linear and angular velocities 
and accelerations, simulate mechanisms with multiple loops 
and switch configurations, and find inverse mechanisms. 
Previous studies on mechanism design and synthesis were 
limited to specific mechanisms, and simulation tools and 
algorithm codes had limited built-in mechanisms, necessitating 
costly commercial software and high computational power. 
This study’s proposed algorithm simplifies developing codes 
for analysing custom mechanisms, providing an accurate and 
effective solution. The case study conducted on a four-bar 
mechanism demonstrates the effectiveness of the simulator 
which can provide low-cost and user-friendly simulation results 
for a wide range of generic mechanisms involving multiple 
interconnected loops. Overall, the proposed methodology 
provides a cost-effective and efficient solution for analysing the 
kinematics of closed-loop mechanisms, enabling researchers 
to focus on designing and optimizing custom mechanisms.
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