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AbStrACt 

This article presents the effect of gyroscopic couples on the shimmy response of landing gear. The gyroscopic 
effect between the rotational motions of the aircraft’s longitudinal and vertical axes may be one of the causes of 
shimmy. The vertical load acting on the wheel axle plays a significant role in a tire’s dynamic characteristics, which 
may influence shimmy oscillation. So, vertical dynamics also need to be considered for shimmy analysis along with 
lateral and torsional modes. Suitable mathematical models are required to study the system’s shimmy oscillation 
and stability nature. The mathematical model was developed by introducing a gyroscopic couple with 5 degrees 
of freedom (DOF). A numeric analysis was made to investigate the influence of gyroscopic couples on the landing 
gear model. The simulation results of the model with and without gyroscopic couple are compared and the effect 
of each parameter on shimmy is studied.
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1. IntroduCtIon
Shimmy is a complex self-excited oscillation experienced 

by nose wheel landing gears of aircraft. Shimmy excitation 
may result in a severe reduction of the landing gear life, 
failure of fittings or loss of aircraft stability. The prediction 
and evaluation of shimmy are more difficult due to nonlinear 
parameters influencing the behavior of landing gears of aircraft. 
Many researchers studied shimmy oscillation by numerical 
techniques using various mathematical models. The models of 
shimmy excitation mainly differ by several DOF considered, 
analysis methods and tire models chosen. The stability of the 
shimmy system is evaluated based on bifurcation theory and 
the system’s dynamic response exposed to road roughness 
excitation is investigated1. Harmonic Balance based method 
used in2 to determine critical velocity region where shimmy 
occurs. Previously developed theories are confirmed by series 
of experimental investigation such as full scale test with 
automobile on road , full scale tire on drum test stand and 
experiment with mechanical model capable of representing 
wheel shimmy phenomenon  is presented3. The coupling 
effects of the vehicle body are incorporated in shimmy 
model as illustrated4. Shimmy analysis with different tire 
models is presented5. By varying design parameters, landing 
gear shimmy vibration was investigated6. The gyroscopic 
effect on the dual-wheel nose gear model is investigated7. 
The influence of the gyroscope couple on the MLG system8. 
Various stages of Damping of the shimmy vibrations are 
presented9. The vibration of the landing gear about the fuselage 
was investigated with two degrees of freedom mathematical 
model10. Previously published theories on shimmy, oscillation 

is listed, discussed, and compared11. The gyroscopic couple 
and the distance between the two wheels influence dual-
wheel nose landing gear shimmy oscillations are described 
in12 using bifurcation theory. The effect of mass and runway 
irregularities on shimmy amplitude was investigated13. From a 
simple trailing wheel model to a complex model is considered 
for shimmy analysis are illustrated14. In15 it is presented that 
landing gear stability depends on 15 parameters as predicted 
by theory and substantiated by experiment, the quantitative 
effect of each parameter. 

As a summary, in most of previous studies only lateral and 
torsional mode considered for shimmy analysis. The novelty of 
this work is to develop 5DOF non-linear mathematical model of 
generic nose wheel landing gear to analyze effect of  gyroscopic 
couple on the shimmy oscillation with consideration of  axial 
displacement of sprung mass xs, axial displacement of unsprung 
mass xt along with strut yaw angle ψ, strut lateral bending 
angle δ, and tire slip angle α. By using developed model effect 
of gyroscopic couples  on shimmy oscillation of landing gear 
and the effect of other parameters, such as the vehicle’s mass, 
wheel inertia, aircraft’s forward velocity, landing gear length 
are studied. The Dynamics equations of the model are derived 
using second Lagrange’s equation.

2. dynAmIC modEL
In Fig. 1 mathematical model of single-wheel landing 

gear is shown. 20 per cent of the maximum take-off weight 
of aircraft is assumed as vertical force acts on this model can 
be represented as sprung mass ms, a mass of wheel assembly 
mentioned as mu, and aircraft velocity specified as v. The 
model has 5 dof such as the rotation of landing gear about 
strut axis described as shimmy angle ψ, lateral bending of gear 
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about longitudinal axis denoted as bending angle δ, coupling 
of torsion and bending through tire ground interaction denoted 
by tire lateral deflection λ, the vertical displacement of the strut 
denoted as zt and the vertical displacement of tire represented 
as zs. The torsional, bending, axial stiffness and damping 
coefficients of the strut is represented as Kψ, Kδ, Ks, Cψ, Cδ, and 
Cs. The damping and stiffness coefficient of the tire is denoted 
as Ct and Kt repectively.

3.1 Gyroscopic moment
Generalised forces and moments in the equations of 

motion are due to tire lateral forces, a vertical force of the 
wheel center, and due to gyroscopic couple. Various gyroscopic 
couple experienced by rolling wheel is caused by tilting of the 
wheel, swivelling of a wheel and vertical deformation of a 
tire. eqns. (5-7) represents equations corresponding to various 
gyroscopic couples as described in reference 11. 

3.1.1 Due to Tilting of Wheel

If the entire wheel assembly tilts at an angular velocity 
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(5)

Where, v is rolling speed of wheel, r is radius of the wheel, Ipw 
is polar moment of inertia of wheel.

3.1.2 Due to Swivelling of Wheel
If the entire wheel assembly swivels at an angular velocity 

, 1,2,3,.i
i

i
i

i

d U

dz d

dT dT dD Q i
z

dt dz z

   
                 

   

 1 

t s[ψ,δ, z , , λ]z  

2 2 2 21 1 1 1
2 2 2 2z x s s u tT I I z zM M       2 

 22 2 21 1 1 1 ( )
2 2 2 2s s t t t gU K K K z K z zz         3 

2 2 2 21 1 1 1( ) ( )
2 2 2 2 gs s t t tD C C C z z C z z         4 

z pw
vM I
R    5 

z pw
vM I
R    6 

zt

pt
z t

IvM z
R B

   7 

  0pt
z t pw R v

I v vI C K z I F R n F A
B R R               8 

  3
1 2 3α c αR zo zF c c F F       9 

  3
1 2 3R tF K K A x q K          

, ,1 1 2 2 2 3 3K c c F K c K K czo t      10 

 

 gyroscopic couple of magnitude given as:

, 1,2,3,.i
i

i
i

i

d U

dz d

dT dT dD Q i
z

dt dz z

   
                 

   

 1 

t s[ψ,δ, z , , λ]z  

2 2 2 21 1 1 1
2 2 2 2z x s s u tT I I z zM M       2 

 22 2 21 1 1 1 ( )
2 2 2 2s s t t t gU K K K z K z zz         3 

2 2 2 21 1 1 1( ) ( )
2 2 2 2 gs s t t tD C C C z z C z z         4 

z pw
vM I
R    5 

z pw
vM I
R    6 

zt

pt
z t

IvM z
R B

   7 

  0pt
z t pw R v

I v vI C K z I F R n F A
B R R               8 

  3
1 2 3α c αR zo zF c c F F       9 

  3
1 2 3R tF K K A x q K          

, ,1 1 2 2 2 3 3K c c F K c K K czo t      10 

 

                 
(6)

3.1.3 Due to Vertical Deformation of Tire
Gyroscopic couple due to rolling of a wheel with vertical 

deformation of the tire at the ground is expressed as:
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(7)

where, v is rolling speed of wheel, R is radius of the wheel, B 
is vertical length from the wheel center to the strut attachment, 
Ipt is polar moment of inertia of tire.

3.2 torsional dynamics 
Dynamic equations of the mathematical model are derived 

using the second Lagrange equation. By summing the moments 
about the vertical axis, the equation of motion corresponding to 
torsional mode is expressed by the eqn. (8).
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(8)

where, A is lateral length from wheel center to strut attachment, 
τ is rake angle, FR is tire lateral force as given in eqn. (9) and 
(10).  FV is the vertical resultant force acts at wheel center as 
expressed in eqn. (11). equations  corresponding  to lateral tire 
force and  vertical resultant force are referred from1:
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c1 - c3 are tire coefficients, α is slip angle of the tire, Fzo is the 
nominal load of the tire,

Fv = Fz + Fs
Vertical force component due to runway roughness 
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Vertical force component due to suspension 
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Figure 1. dynamic model of landing gear.

3. EquAtIon oF motIon
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Dynamic equations derived using the second Lagrange 
equation as expressed in eqn (1). Where T represents kinetic 
energy, U denotes potential energy, D is the dissipative 
potential function, Qi is the generalized force, and zi represents 
the generalized coordinate of the system, which is expressed 
[z1, z2, z3, z4, z5] as [y, d, zt, zs, l]

expressions for T, U, and D are given in eqns. (2-4), 
respectively.
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Total vertical force expressed as eqn (11).
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In eqn. (8), the first term corresponds to inertia, second and 
third terms belong to torsional damping and torsional stiffness, 
respectively. The fourth term is gyroscopic couple due to tire 
deflection as given in1. The fifth term is gyroscopic couple due 
to wheel bending as presented in12, the sixth term represents 
moment due to the tire’s lateral force, and the seventh term is 
due to vertical force from the airframe.

3.3 Lateral dynamics 
Similarly, by summing the moments about the longitudinal 

axis of the airplane, the equation of motion for lateral bending 
mode is expressed as in eqn. 12.
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where, θ is swivel angle, τ is rake angle, lg is the length of 
landing gear, eeff  is effective caster length as described in12 is 
expressed in eqn. (13).

 z t g tF K z A z    

 s s s t s s tF C z z K z z
 

     
 

 

   v t g t s s t s s tF K z A z C z z K z z
 

        
 

  11 

   
Ix d


+ Cd d


+ Kdd −

I pt
B

v
R

zt


−

v
R

I pwy


− Fveeff sinθ + lg FR cosθ cosτ = 0  12 

 cos sin taneffe e R e      13 

cos    

    ( ) 0pw pw
u t s s t t t s s t t t t

I Iv vM C C q K z K z q K A
B R

z z z z
R B

z   
   

                 
   

 14 

  0s s s s t s s tM Kz z zzC z
 

      
 

 15 

- 0g
v v a l    


      16 




   17 

0ga lv v    
   

        18 

 

         (13)

 z t g tF K z A z    

 s s s t s s tF C z z K z z
 

     
 

 

   v t g t s s t s s tF K z A z C z z K z z
 

        
 

  11 

   
Ix d


+ Cd d


+ Kdd −

I pt
B

v
R

zt


−

v
R

I pwy


− Fveeff sinθ + lg FR cosθ cosτ = 0  12 

 cos sin taneffe e R e      13 

cos    

    ( ) 0pw pw
u t s s t t t s s t t t t

I Iv vM C C q K z K z q K A
B R

z z z z
R B

z   
   

                 
   

 14 

  0s s s s t s s tM Kz z zzC z
 

      
 

 15 

- 0g
v v a l    


      16 




   17 

0ga lv v    
   

        18 

 

In eqn. (12) first term corresponds to inertia, the second 
and third terms belong to torsional damping and torsional 
stiffness moment, respectively, the fourth term is gyroscopic 
couple due to tire deflection as discussed in1, the fifth term is 
gyroscopic couple due to wheel lateral tilting as presented in12, 
the sixth term represents moment due to vertical force and the 
seventh term due to lateral force of tire.

3.4 Vertical dynamics of tire 
Tire vertical dynamics due to unsprung mass can be 

expressed as eqn. (14), 
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3.5 Vertical dynamics of Strut 
Landing gear strut vertical dynamics due to sprung mass 

can be expressed as eqn. (15), 
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3.6 Elastic tire deformation 
When the vehicle taxiing, the tire starts rolling along with 

lateral and yaw motions. The lateral deformation l of the tire 
as presented in5 is expressed as in eqn. (16),
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where, a is contact patch length, lg length of landing gear, σ is 
relaxation length. 

From λ, an equivalent deformation angle α is obtained 
using the eqn. (17),
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 eqn. (18) represents the deformation angle which depends 
on lateral angular velocity 
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, shimmy angle 
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 and shimmy 
angular velocity 
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 can be expressed as:
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4. numErICAL AnALySIS
The landing gear and tire parameters relevant for analysis 

are taken from Table 1, as given in13. Formulated dynamic 
equations solved in MATLAB. The disturbance of the yaw 
angle is given as ψ = 0.001 radians. The effect of runway 
roughness excitation is neglected by assuming aircraft ride over 
the smooth runway. In this work, two simulations were carried 
out. First simulation studies the model behavior by introducing 
the gyroscope effect. Next simulation deals with the effect of 
gyroscope couple parameters on shimmy oscillations.

5. rESuLtS And dISCuSSIon
The response of the model depends on velocity, vertical 

load, system parameters, and gyroscopic couple. The influence 
of any particular combination of landing gear parameters and 
velocity on vehicle shimmy is studied to check whether the 
system is stable or unstable. Influence of gyroscopic moment 
and vehicle parameters on stable and unstable velocity range 
presented.

5.1 Effect of Gyroscope Couple on Shimmy
In Fig. 2(a), it can be observed that by excluding the 

gyroscopic couple on the model, the amplitude of shimmy 
oscillation is hardly velocity dependent and gives infinite 
critical velocity similar to discussion given in14. If a gyroscopic 
couple is introduced in the model, the onset of instability is 
observed at critical velocity. Figure 2(a) shows that the 
critical velocity is 61 km/h for chosen landing gear and tire 
parameters. Increasing aircraft forward velocity above critical 
velocity increases shimmy amplitude dramatically and the 
system loses its stability. results are compared to the studies 
in the literature14 as reported that at higher velocity system is 
unstable.

5.2 Effect of Aircraft mass
It can be noted from Fig. 2(b) that the occurrence of 

shimmy for low mass configuration is delayed than higher mass 
as presented in13. Increasing mass leads to increase of vertical 
load which in turn reduces critical velocity for occurrence of 
shimmy.

5.3 Effect of Velocity on Vehicle Shimmy
The influence of forward aircraft velocity due to the 

contribution of gyroscopes will become more dominant on 
shimmy amplitude. Figures 3(a) and 3(b) compare the model’s 
time history with and without gyroscopic effects at stable and 
unstable velocity regions. It can be noted from Fig. 3a that 
torsional angle decays and exhibits a similar trend at lower 
velocity irrespective of whether the model is with or without 
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gyroscopic effect. But in Fig. 3(b), it can be observed that 
at higher velocity (above critical velocity) torsional angle 
diverging with time. It shows that the system exhibits severe 
unstableness at higher speeds due to the gyroscopic effect.

5.4 Effect of Wheel Inertia
At higher velocities, tire inertia changes tire stiffness, so 

gyroscopic couples are introduced into the model to predict 
shimmy oscillation accurately. From Fig. 4(a), it can be noted 

that by reducing wheel inertia, shimmy amplitude decays and 
exhibits stable nature. Obtained results validated with literature 
studies depicted in15,12.

5.5 Effect of Gear Length 
Simulations were carried out for two different landing 

gear lengths with initial disturbance of shimmy excitation with 
0.001 rad on landing gear and the forward aircraft velocity 
of 30 m/s. Figure 4(b) shows that increasing landing gear 

Figure 2. (a) Effect of velocity, and (b) Effect of mass.

(a) (b)

(a) At velocity 30 Km/h

(b) At velocity 100 Km/h

Figure 3. Effect of gyroscopic couple on shimmy oscillation at stable and unstable velocities.
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length shimmy oscillation can be reduced by keeping all other 
parameters fixed.

6. ConCLuSIon 
A mathematical model of the landing gear with 5dof has 

been developed to investigate the combined effects of the 
gyroscopic couple and rolling velocity on vehicle shimmy. The 
simulation results of the model demonstrate that:

If the gyroscopic couple is excluded, the shimmy response • 
is hardly velocity dependent and theoretically value of 
critical velocity is infinite.
If the gyroscopic couple is introduced into the model, • 
the shimmy response is velocity dependent and critical 
velocity is determined as 60 Km/h. 
Increasing aircraft forward velocity above critical velocity • 
increases shimmy response dramatically and the system 
loses its stability.
The occurrence of shimmy for low mass configuration is • 
delayed than higher mass.
Shimmy oscillation increases as aircraft mass and wheel • 
inertia increases.
Shimmy oscillation decreases as landing gear length • 
increases. 
Future work to study the effect of other landing gear • 
parameters on aircraft shimmy and to perform stability 
analysis.
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