
389

NOMENCLATURE
RL : Reinforcement learning
DRL : Deep reinforcement learning
t : Time steps, t=0,1,2, ...
S : A set of states
A : A set of actions
P : A transition probability
R : Reward
γ	 :	Discount	factor
G	 :	Expected	cumulative	reward
π	 :	Policy
n() : Value	function
q()	 :	State-value	function
a : Learning rate
w : Weights
q	 :	Policy’s	parameter	vector
DQN : Deep Q-networks
PG : Policy gradient
PPO : Proximal policy optimization
TRPO	 :	Trust	region	policy	optimization
BDA : Battle damage assessment

1. INTRODUCTION
In	recent	years,	Multi-Domain	Operations	(MDO)	has	be-

come	a	critical	operational	concept	since	the	multiple	domains	
can	be	threatened	by	adversarial	states	or	non-state	actors,	and	
the	holistic	control	of	the	domains	is	essential	for	military	vic-

tory.	Under	MDO,	a	higher-level	Command	and	Control	(C2)	
is	 required	 to	 coordinate	 various	 resources	 across	 land,	 air,	
maritime,	 space,	 and	 cyberspace,	 and	Artificial	 Intelligence	
(AI)	has	been	recognized	as	the	core	component	to	support	and	
guide	 the	C2	in	 the	process	of	OODA	(Observe,	Orient,	De-
cide, Act) Loop1,2.

AI	techniques	(or	machine	learning)	are	generally	catego-
rized	as	supervised,	unsupervised,	and	Reinforcement	Learn-
ing	 (RL).	 Supervised	 learning	 maps	 labeled	 data	 to	 labeled	
categories	(classification)	or	known	outputs	(regression).	Un-
supervised	 learning	discovers	 a	 pattern	 from	unlabeled	data.	
Both	categories	have	shown	various	potential	military	applica-
tions	such	as	image,	speech	and	pattern	recognition,	cyberse-
curity	and	threat	intelligence,	military	personnel	management,	
etc.3

Unlike	supervised	and	unsupervised	 learning,	RL	 is	dy-
namic	in	nature,	so	it	has	the	benefit	of	dealing	with	complex	
and	dynamic	environments	such	as	multi-domains.	The	well-
known	application	of	RL	 is	a	strategic	game	such	as	ATARI	
game agent4, AlphaGo5, and AlphaStar6. Recently, researchers
tried to apply RL to military wargames7-9	and	strategic	maneu-
ver	scenarios2.	However,	RL	has	some	limitations	for	military	
applications. First, RL was combined with deep learning (deep
RL	or	DRL)	to	deal	with	a	complex	input	and	output	structure.	
As a characteristic of deep learning, DRL is a black box mod-
el.	Moreover,	 simulation	environments	 such	as	AFSIM	 (Ad-
vanced	 Framework	 for	 Simulation,	 Integration,	 and	 Model-
ing)7 and OpSim10 in military applications can add complexity
and	make	it	difficult	to	understand	the	results.	Second,	while	

Defence	Science	Journal,	Vol.	74,	No.	3,	May	2024,	pp.	389-398,	DOI	:	10.14429/dsj.74.18864
 2024,	DESIDOC

Received	:	09	February	2023,	Revised	:	16	February	2023	
Accepted	:	23	January	2024,	Online	published	:	10	May	2024

Military Decision Support with Actor and Critic Reinforcement Learning Agents

Jungmok	Ma
Department of National Defense Science, Korea National Defense University, Nonsan, Republic of Korea

E-mail: jxm1023@gmail.com

ABSTRACT

While	the	recent	advanced	military	operational	concept	requires	intelligent	support	of	command	and	control,	
Reinforcement	Learning	 (RL)	 has	 not	 been	 actively	 studied	 in	 the	military	 domain.	This	 study	 points	 out	 the	
limitations	of	RL	for	military	applications	from	a	 literature	review	and	aims	 to	 improve	 the	understanding	of	RL	
for	military	decision	support	under	 these	 limitations.	Most	of	all,	 the	black	box	characteristic	of	Deep	RL	makes	
the	internal	process	difficult	to	understand,	in	addition	to	the	complex	simulation	tools.	A	scalable	weapon	selection	
RL	framework	is	built,	which	can	be	solved	either	by	a	tabular	form	or	a	neural	network	form.	The	transition	of	the	
Deep	Q-Network	(DQN)	solution	to	the	tabular	form	allows	for	effective	comparison	of	the	results	to	the	Q-learning	
solution.	Furthermore,	rather	than	using	one	or	two	RL	models	selectively	as	before,	RL	models	are	divided	into	an	
actor and a critic, and systematically compared. A random agent, Q-learning and DQN agents as critics, a Policy
Gradient	(PG)	agent	as	an	actor,	Trust	Region	Policy	Optimization	(TRPO)	and	Proximal	Policy	Optimization	(PPO)	
agents	as	an	actor-critic	approach	are	designed,	trained,	and	tested.	The	performance	results	show	that	the	trained	
DQN	and	PPO	agents	are	the	best	decision	support	candidates	for	the	weapon	selection	RL	framework.

Keywords: Reinforcement	learning;	Military	decision	support;	Actor	and	critic;	Weapon	selection;	Battle	damage	
assessment

DEF. SCI. J., VOL. 74, NO. 3, MAY 2024

390

RL	can	solve	diverse	problems,	it	can	be	slow	and	require	lots	
of training data11.	Third,	though	there	are	many	RL	algorithms,	
researchers	have	applied	one	or	 two	of	 them	selectively	and	
subjectively.

With	 these	challenges,	 this	 study	aims	at	 improving	 the	
understanding	of	RL	for	military	decision	support.	A	scalable	
weapon	 selection	 RL	 framework	 will	 be	 built,	 which	 is	 a	
simulation	model	and	can	be	solved	either	by	a	tabular	form	or	
a	neural	network	form.	The	tabular	form	can	help	understand	
the	neural	network	 form.	Also,	 rather	 than	using	one	or	 two	
RL	models	 selectively,	RL	models	will	 be	 divided	 as	 actors	
and critics, and systematically compared. Finally, important
studies	of	RL	for	military	decision	support	will	be	reviewed.

2. REINFORCEMENT LEARNING AND MILITARY
APPLICATIONS

2.1 Key Concepts of RL
RL	is	learning	“how	to	map	situations	to	actions”	through	

trial	and	error	 in	order	to	maximize	the	cumulative	reward12.
In	 other	 words,	 a	 learning	 agent	 or	 decision	 maker	 should	
observe	 states	 (St) to gather information while interacting
with	its	environment	and	take	actions	(At)	to	achieve	a	goal	or	
maximum	cumulative	reward	at	each	time	steps,	t=0, 1, 2, ...

	RL	can	be	formalized	using	the	Markov	Decision	Process	
(MDP).	MDP	consists	of	a	5-tuple	(S, A, P, R, g) where, S is
a	 set	of	 states	with	 a	 current	 state	 sϵS, A is a set of actions,

(|)aP s s′ is a transition probability from the state s to a new
state s′ by selecting an action aϵA, (,)R s s′ is a reward for the
action, and gϵ[0,1]	is	a	discount	factor	that	adjusts	the	weights	
of	rewards	in	the	future13.

The	 expected	 cumulative	 reward	 or	 return	 with	 the	
discount	factor	can	be	defined	as

2
1 2 3 10

k
t t t t t kk

G R R R Rg g g∞

+ + + + +=
= + + + = ∑ (1)

A policy p	 that	 an	agent	 follows	 is	 a	mapping	 function	
from states to probabilities of choosing actions, which is
defined	as

(|) [|]t ta s P A a S sp = = = (2)
Then,	the	value	function	np(s)	and	the	state-value	function	

qp(s,a)	under	a	policy	p can	be	defined	as	the	expected	returns
() [|]t tv s E G S sp p= = (3)
(,) [| ,]t t tq s a E G S s A ap p= = = (4)

The optimal policy p*	 gives	 the	 highest	 value	 function	
np(s)	or	the	highest	state-value	function	qp(s,a).

There	are	a	couple	of	ways	to	classify	RL	algorithms.	The	
first	 one	 is	model-based	 and	model-free.	 For	 the	model-free	
method, a transition probability P and a reward R	in	the	5-tuple	
of	MDP	are	not	given	to	an	agent.	This	paper	only	deals	with	the	
model-free	method.	The	second	one	is	value-based	and	policy-
based.	While	valued-based	methods	(critic	agents)	construct	a	
value	function	and	derive	the	optimal	policy	implicitly,	policy-
based	methods	(actor	agents)	find	the	optimal	policy	function	
directly that maps states to actions. Actor-critic methods
attempt	 to	 use	 both	 value-based	 and	 policy-based	 methods.	
The	third	one	is	on-policy	and	off-policy.	On-policy	methods	
learn a policy from the data generated by the agent’s actions,

whereas	off-policy	methods	learn	a	policy	separately	from	the	
agent’s actions.

2.2 RL in Military Applications
In	 this	 section,	RL	studies	 for	military	decision	 support	

are	reviewed.	Military	decision	support	is	defined	as	assisting	
the combat and mission planning from controlling a single
asset	(physical	asset	(solider,	weapon,	unmanned	system,	etc.)	
and	 non-physical	 asset	 (software,	 network,	 frequency	 band,	
etc.))	to	coordinating	multiple	assets	for	achieving	the	military	
objective.

Unmanned	Aerial	Vehicles	(UAVs)	are	the	most	popularly	
used	unmanned	systems	for	both	civilian	and	military	purposes.	
There	were	many	RL	studies	for	UAVs,	even	though	they	were	
not for direct military applications14.	 The	 studies	 could	 be	
divided	into	two	areas:	control	and	path	planning/navigation.	
The	 RL	 studies	 of	 UAV	 control	 included	 longitudinal	 and	
lateral control15,	 attitude	control16, and swarm control17. Path
planning/navigation	 consisted	 of	 finding	 an	 optimal	 path18,19
and	 avoiding	 obstacles20-23.	RL	was	 used	 for	 not	 only	UAVs	
but	also	other	unmanned	platforms	such	as	Unmanned	Ground	
Vehicles (UGVs)24,25 and Unmanned Underwater Vehicles
(UUVs)26.

Furthermore,	RL	was	popularly	used	for	cybersecurity27,28
in	 an	 adversarial	 environment.	 UAV	 networks29,30, home
networks31, and wideband controller32	were	used	as	RL	agents	
for	intrusion	detection	and	prevention.	A	gateway33, attacker34,
mobile	device35,	underwater	sensor36	were	used	as	RL	agents	
for identity and access management.

For	 more	 military-specific	 studies,	 Yan,, et al. (2020)
proposed Deep Q-Networks (DQN)-based UAV path planning
in	 dynamic	 environments	 with	 potential	 threats37. An UAV
survival	 probability	 was	 considered	 under	 radar	 detection	
and missile attack, which was implemented on the STAGE
simulation	 tool.	 You, et al. (2019) proposed to train the
maneuvering	 strategies	 of	 Unmanned	 Combat	 Air	 Vehicles	
(UCAVs)	 using	 the	 Deep	 Deterministic	 Policy	 Gradient	
(DDPG)38.	 A	 3-D	 space	 game	 environment	 was	 built	 to	
simulate	a	UCAV	and	an	electronic	attacker	with	radars.	Wang,
et al.	(2020)	developed	a	middleware	based	on	commercial	air	
combat	 simulation	 software	 and	 trained	 a	fighter	 aircraft	 for	
the	maneuvering	 strategy	 of	 1	 vs.	 1	 air	 combat39. DQN was
used	for	the	aircraft	RL	agent	in	the	proposed	alternate	freeze	
game, which allows that one agent to act while the other is
frozen	for	a	better	understanding	of	the	learning	process.

Zhang, et al.	 (2020)	 investigated	 the	 potential	 of	 AI-
assisted	 planning	 for	 the	 US	 defence	 community7. As a
simulation	 environment,	 OpenAI’s	 Gym	RL	 framework	 and	
AFSIM	were	 integrated	 as	 a	 low-fidelity	version	of	AFSIM.	
Two	problem	scenarios	were	formulated	as	follows:	The	first	
scenario	was	1-D	with	 three	 components:	Blue	fighter,	Blue	
jammer,	 and	 Red	 Surface-to-Air	 Missile	 (SAM).	 The	 goal	
was	 to	 learn	what	 times	 and	 distances	 to	 deploy	 the	 fighter	
and	jammer	to	destroy	the	SAM,	i.e.,	go	or	stop	the	problem.	
A	 planner	 agent	 was	 trained	 using	 Generative	 Adversarial	
Networks (GAN) and Q-learning. The second scenario was
2-D	with	three	components:	Blue	UAVs,	Red	SAM,	and	Red	
air	target	that	could	attack	the	Blue	UAVs.	A	planner	agent	was	

MA: MILITARY DECISION SUPPORT WITH ACTOR AND CRITIC REINFORCEMENT LEARNING AGENTS

391

trained	using	Asynchronous	Advantage	Actor-Critic	(A3C)	and	
Proximal Policy Optimization (PPO). Soleyman and Khosla
(2020)	proposed	multi-agent	mission	planning	in	the	AFSIM	
environment8.	Up	 to	6	vs.	 6	Blue	 and	Red	fighters	 could	be	
simulated	and	trained	using	A3C	in	their	framework.

Boron	 and	 Darken	 (2020)	 tried	 to	 validate	 the	 tactical	
principles	of	mass	and	economy	using	RL9.	For	a	simulation	
environment,	a	discretized	10-by-10	map	grid	of	squares	was	
created with deterministic and stochastic Lanchester’s modern
combat	 equations.	 Platoon	 entities	 conducting	 offensive	
operations	were	trained	using	Vanilla	Policy	Gradient	(VPG),	
PPO,	and	Trust	Region	Policy	Optimization	(TRPO)	in	three	
different	force	configurations:	2	vs.	1,	2	vs.	2,	3	vs.	2	scenarios.	
Fu, et al.	 (2020)	 built	 a	 digital	 battlefield	 for	 air-to-ground	
operations	using	Unreal	Engine	4,	and	a	neural	network	(Alpha	
C2)	 was	 trained	 using	 PPO40. Two training scenarios were
designed,	and	the	performance	was	compared	with	Expert	C2	
(an	expert	system	designed	by	known	rules).

Goecks, et al.	(2021)	focused	on	the	connection	between	
games and military applications10.	 First,	 the	 StarCraft	 Ⅱ	
Learning	 Environment	 was	 used	 as	 an	 environment	 to	
implement	 a	 brigade-scale	 offensive	 scenario.	 StarCraft	 Ⅱ	
units	were	mapped	 to	military	 units	 and	 trained	 using	A3C.	
Second,	the	OpSim	simulator	with	the	OpenAI	Gym	was	used	
to	implement	the	same	offensive	scenario.	The	military	units	
were	trained	by	Advantage	Actor-Critic	(A2C)	and	compared	
with	 an	 expert	 system	 designed	 by	 military	 doctrinal	 rules.	
Zhang, et al.	(2022)	built	a	multiple	domain	cyberspace	attack	
and	defence	game	with	two	agents	using	Python,	which	aimed	
at maximizing the defender’s total reward41. The defender
was	 trained	 using	 DQN,	 DDPG,	 and	 DDPG	 with	 reward	
randomization, and the performance was compared.

One	distinct	sub-problem	of	military	planning	is	weapon	
target	 assignment	 (WTA).	 WTA	 is	 a	 process	 of	 evaluating	
threats or targets and allocating weapons. The WTA problem
was	 solved	 by	 traditional	 optimization	 techniques	 and	
intelligent	algorithms	such	as	game	theory,	genetic	algorithm,	

particle swarm algorithm, etc.42	Wu, et al.	 (2022)	 built	 the	
problem	of	multi-warhead	penetration	and	striking	multi-target	
using	 Python42.	The	 defence	 strategy	was	 trained	 using	 Soft	
Actor-Critic	(SAC)	and	compared	with	the	optimal	rule	model.	
Mouton, et al.	(2011)	built	a	simple	grid	world	to	simulate	an	
air defence operator who needed to assign weapon systems
to engage enemy aircraft43. The defence operator was trained
using	 the	 temporal-difference	 algorithm	 and	Q-learning,	 and	
their	 results	 were	 compared.	 Shin, et al.	 (2020)	 introduced	
the WTA problem with inference constraints, and DQN was
used	 to	 train	 the	 assignment	 strategy44.	 In	 order	 to	 reduce	
the	 computational	 complexity	of	multi-agent	RL,	mean	field	
Q-learning	 was	 applied,	 and	 the	 result	 was	 compared	 with	
traditional mixed integer linear programming.

3. SIMULATION MODEL AS ENVIRONMENT
Provide	As	 a	 learning	environment,	 a	 simulation	model	

was	built	that	requires	a	series	of	weapon	selections	with	Battle	
Damage	Assessment	(BDA)	when	a	target	is	given.	The	target	
can	 be	 acquired	 by	manned	 and	 unmanned	 systems	with	 its	
required	damage	between	10~50,	as	shown	in	Table	1.	There	
are	 seven	 weapons,	 from	 Weapon1	 to	 Weapon7,	 and	 each	
weapon	has	its	own	damage	profile	or	damage	distribution.	For	
example,	Weapon1	shows	the	discrete	distribution	of	damage	
depending	 on	 the	 battlefield	 condition.	 Once	 one	 weapon	

Table 1. Weapon selection RL framework

Required damage Integer between
10 and 50

Damage
distribution

Weapon1 1 1 1 1 2 2
Weapon2 3 3 3 3 4 5
Weapon3 4 4 4 6 6 7
Weapon4 8 8 8 9 9 10
Weapon5 10 10 10 20 20 20
Weapon6 15 15 15 25 25 30
Weapon7 30 30 30 40 40 50

Figure 1. Weapon selection RL framework.

DEF. SCI. J., VOL. 74, NO. 3, MAY 2024

392

is	 selected	 and	 used,	 the	BDA	 is	 conducted	 by	manned	 and	
unmanned	 systems.	 Then,	 the	 next	 required	 damage	 for	 the	
target	is	provided,	which	is	the	difference	between	the	required	
damage	and	the	damage	caused	by	the	selected	weapon.	The	
selection	continues	until	the	required	damage	is	achieved,	and	
the weapon selection RL framework is depicted in Fig. 1.

The	states	represent	the	required	damages	from	0	to	50.	
So,	this	simulation	model	has	discrete	action	and	observation	
spaces.	The	 simulation	will	 end	 if	 the	next	 required	damage	
is	 less	 than	 or	 equal	 to	 0.	 The	 goal	 of	 this	 simulation	 is	 to	
achieve	 the	 required	 damage	 quickly.	 Therefore,	 whenever	
a weapon is selected, there will be a penalty of -1. Also, if
the	 next	 required	 damage	 is	 negative	 (more	 damage	 occurrs	
than	the	next	required	damage),	the	cumulative	reward	will	be	
the	cumulative	penalties	 from	weapon	selections	plus	excess	
damage.

The	 weapon	 selection	 RL	 framework	 was	 built	 using	
Simulink	 (R2021b	 version)	 in	 MATLAB,	 which	 is	 a	
block	 diagram-based	 simulation	 tool.	 The	 constructed	 RL	
environment	was	 verified	 using	 various	 cases.	 For	 example,	
one	episode	(a	series	of	steps	until	the	simulation	ends)	showed	
that	 the	 initial	 required	 damage	 was	 32,	 and	Weapon2	 was	
selected with a penalty of -1. The damage was 3, and the next
required	 damage	was	 29.	Then,	Weapon1	was	 selected	with	
the damage of 1, and Weapon7 was selected with the damage
of	40.	Since	the	next	required	damage	was	negative	(-12),	the	
simulation	ended	with	a	return	of	-15	(-3	for	weapon	selections	
and -12 from excess damage).

4. AGENT MODELLING AND TRAINING
In this section, an agent that interacts with the BDA

environment	in	Fig.	1	will	be	modelled	and	trained.	In	order	

to	easily	understand	 the	built	agents,	a	 tabular	 form	solution	
will	be	first	explained	with	a	Q-learning	agent.	And	then,	DRL	
agents	and	advanced	actor-critic	approaches	will	be	used.	All	
the	agents	will	be	realized	using	MATLAB	(R2021b	version).	
Note that the weapon selection RL framework has discrete
action	and	observation	spaces,	so	continuous	space	algorithms	
such	 as	 DDPG,	 TD3	 (Twin	 Delayed	 DDPG),	 and	 SAC	 in	
Section	2.2	cannot	be	used.

4.1 Q-learning Agent as a Critic and Random Agent
Q-learning	is	defined	as45

1 1(,) (,) [max (,)

(,)]
t t t t t ta

t t

Q S A Q S A R Q S a

Q S A

a g+ +← + +

− (5)
where, Q	is	the	action-value	function	to	approximate	the	optimal	
action-state	function	q*; a is the learning rate; g	is	the	discount	
factor. The Q-learning algorithm begins with the initialization
of Q(s, a)	or	Q	values	and	then	iterates	as	follows:	choosing	
A with S	using	Q	values	 (either	exploration	or	exploitation),	
taking action A	and	observing	R and 'S ,	updating	Q(s, a) from
Eqn. (5). To balance exploration and exploitation, the e-greedy
method can be adopted, which selects a random action with
probability eϵ[0,1]	and	otherwise	the	action	with	maximum	Q	
value.	The	Q-learning	agent	was	created	using	rlQ	Agent()	and	
rlQ	Value	Representation()	functions	in	MATLAB.

When	 all	 the	 Q	 values	 were	 set	 to	 be	 0	 (7×51	 table),	
the Q-learning agent only chose Weapon1, regardless of the
required	damage.	The	random	agent	was	realized	as	a	random	
number	of	Q	values	 for	each	episode.	Therefore,	no	 training	
is	 required	 for	 the	 random	 agent.	 In	 order	 to	 determine	 the	
number	of	episodes	for	testing	other	agents,	the	performance	
test	 for	 the	 random	 agent	 was	 conducted	 first.	 The	 random	

Figure 2. Episode number and reward for Q-learning agent training.

MA: MILITARY DECISION SUPPORT WITH ACTOR AND CRITIC REINFORCEMENT LEARNING AGENTS

393

agent interacted with the weapon selection RL framework in
Section	3	and	 resulted	 in	an	average	 return	of	 -15.1,	 -15.23,	
-15.34 for randomly generated 1k, 3k, and 5k episodes. Since
there	 are	 no	 big	 differences	 among	 them,	 3k	 episodes	 were	
selected for the performance test of other agents.

The Q-learning agent was trained with a learning rate
of	 0.005	 and	 a	 discount	 factor	 of	 0.99.	 Figure	 2	 shows	 the	
episode	numbers	and	rewards,	and	the	average	returns	during	
training	are	summarized	in	Table	2.	Due	to	the	uncertainty	of	
the	 simulation	 model	 (initial	 required	 damage	 and	 damage	
distribution),	the	episode	reward	shows	fluctuations,	and	after	
3k	episodes,	the	average	return	reaches	-13.2.	Also,	due	to	the	
randomness,	increasing	the	episode	number	does	not	ensure	a	
better	average	return	(1k	vs.	2k	and	3k).

right	half	of	a	dome	shape	should	appear	as	good	actions.	For	
example,	when	the	required	damage	(target	value)	is	close	to	1,	
Weapon1	should	be	selected,	and	when	close	to	50,	Weapon7	
should	be	used.	It	can	be	observed	that	after	3k	episodes,	better	
actions	can	be	selected	in	comparison	with	500	episodes,	but	
still	there	is	a	space	to	be	improved.

4.2 DQN Agent as a Critic
DQN	was	 initially	 proposed	 to	 adopt	 a	 neural	 network	

in	 order	 to	 learn	 control	 policies	 from	 video	 data	 in	
complex	 environments,	 e.g.,	Atari	 2600	 games,	 as	 a	 variant	
of Q-learning4.	 Q-network	 is	 a	 neural	 network	 function	
approximator	with	weights	w.	When	a	certain	number,	C, of
updates	are	conducted,	another	network	takes	the	weights	and	
fixes	the	weights	for	the	next	C	updates	of	w.	The	outputs	of	
the	duplicate	network	are	used	as	the	Q-learning	targets	for	the	
next C	updates	of	w.	The	update	rule	is	defined	by4

1 1 1[max (, ,)

ˆ̂(, ,)] (, ,)
t t t t ta

t t t t t t

w w R q S a w

q S A w q S A w

a g+ + += + + −

∇

 (6)
where, q̂ and q 	are	the	outputs	of	Q-network	and	the	duplicate	
network. Minih, et al.	 (2013)	 also	 utilized	 the	 experience	
replay, which stores experience in a replay memory and
provides	samples	for	updates4.

The	 DQN	 agent	 was	 created	 using	 rlDQNAgent()	
and	 rlQValueRepresentation()	 functions	 in	 MATLAB.	 The	
structure	of	the	Q-network	was	designed	as	two	paths	of	layers	
of	inputs	(actions	and	observations),	and	each	path	consisted	of	
a	scalar	input	layer,	two	hidden	layers	(50	neurons)	with	two	
ReLU	activation	function	layers,	one	fully	connected	layer	(50	
neurons).	The	two	paths	were	combined	and	then	one	ReLU	
activation	layer	and	a	single	output	layer	were	followed.

The DQN agent was trained with a learning rate of 0.001
and	a	discount	rate	of	0.99.	Figure	4	shows	the	episode	numbers	
and	rewards.	The	average	return	during	training	is	-3.4	after	3k	
episodes,	which	is	a	big	improvement	in	comparison	with	the	
Q-learning agent.

Using	the	trained	DQN	agent	with	3k	episodes,	a	tabular	
form	 was	 built	 as	 shown	 in	 Fig.	 5.	 Note	 that	 the	 trained	
DQN	agent	 is	not	a	 tabular	form	but	a	neural	network	form.	
In comparison with the Q-learning agent in Fig. 3, it can be
observed	that	the	actions	are	much	improved.

4.3 PG Agent as an Actor
The Policy Gradient (PG) method only takes states as an

input	and	provides	the	probability	of	actions	with	the	policy’s	
parameter	vector	q as12.

(| ,) [| ,]t t ta s P A a S sp q q q= = = = (7)
The	benefit	of	policy	parameterization	 is	 that	 the	action	

probability changes more smoothly than e-greedy, and strong
convergence	is	guaranteed	than	action-value	methods.

The	 Monte-Carlo	 PG	 algorithm,	 REINFORCE,	 starts	
with the initialization of policy parameter q and generates
episodes S0,A0,R1,…,AT-1,RT,ST from (| ,)p q⋅ ⋅ .	 Then,	 updates	
for each step t=0,1, …, T-112.

1
1

T k t
kk t

G Rg − −
= +

← ∑ (8)

Figure 3. Q table with learned action ‘×’ after 500 (left) and
3k (right) episodes.

Table 2. Average return during training

Episode	number 500 1k 2k 3k

Average	return	during	training -17 -8 -18.4 -13.2

Figure	3	shows	the	tabular	form	of	the	Q-learning	agent	
after	500	and	3k	episodes.	The	×	mark	represents	the	optimal	
action	or	highest	Q	value	action	in	the	given	state.	Since	the	
weapon	damage	distributions	are	intentionally	simplified,	the	

DEF. SCI. J., VOL. 74, NO. 3, MAY 2024

394

Figure 4. Episode number and reward for DQN, PG, TRPO, PPO agent during training.

The PG agent was trained with a learning rate of 0.001 and
a	discount	rate	of	0.99.	Figure	4	shows	the	episode	numbers	
and	rewards.	The	average	return	during	training	is	-10	after	3k	
episodes.

4.4 Advanced Actor-Critic Approaches: TRPO and
PPO Agent
A	Q	value	critic	 (Q-learning	and	DQN)	and	a	PG	actor	

were	used	as	separate	RL	agents	as	shown	in	Fig.	6.	The	actor-
critic	approach	uses	both	actor	and	critic	agents,	not	just	one	
of	them.	Fig.	6	graphically	shows	the	difference	between	them,	
and the actor-critic approach can be described as follows: After
observing	states	in	the	environment,	actions	and	Q	values	are	
generated	with	an	observed	reward.	The	action	leads	to	a	new	
state,	and	the	critic	produces	a	new	value.	These	interactions	
give	the	original	and	updated	values	of	the	original	state,	and	
the actor-critic approach algorithm trains the actor and the
critic with the information.

TRPO46	 was	 proposed	 to	 guarantee	 monotonic	
improvement	from	standard	PG	methods.	The	Kullback-Leibler	
(KL)	divergence	between	the	old	and	current	polies	was	used	
as	 a	 trust	 region	 constraint,	 and	 the	 trust	 region	 can	 control	
the	 difference	 between	 the	 old	 and	 current	 polies.	Then,	 the	
constrained	optimization	problem	could	be	formulated	to	find	
the	best	policy	in	order	to	maximize	the	expected	discounted	
reward.	 To	 solve	 this	 problem	 practically,	 the	 surrogate	
objective	 function	 was	 used	 using	 Monte	 Carlo	 simulation.	

ln (| ,)t
t tG A Sq q ag p q← + ∇ (9)

The	 PG	 agent	 was	 created	 using	 rlPG	 Agent()	 and	 rl	
Stochastic	Actor	Representation()	functions	in	MATLAB.	The	
structure	 of	 the	 PG	 actor	 network	was	 designed	 as	 a	 scalar	
input	 layer	 for	observations,	 two	hidden	 layers	 (50	neurons)	
with	two	ReLU	activation	function	layers,	one	fully	connected	
layer	(7	neurons	for	7	weapons),	and	a	Softmax	function	layer.	

Figure 5. Transition of DQN agent to a tabular form.

MA: MILITARY DECISION SUPPORT WITH ACTOR AND CRITIC REINFORCEMENT LEARNING AGENTS

395

Figure 6. Individual actor and critic (top) and actor-critic approach (bottom).

PPO47	 was	 proposed	 as	 a	 simplified	 version	 of	 TRPO	 with	
faster	 and	 more	 efficient	 characteristics.	 The	 surrogate	
objective	function	in	TRPO	was	modified	using	the	clipping	of	
a	constraint,	which	made	TRPO	a	first-order	algorithm.

The	 TRPO	 agent	 was	 created	 using	 rlTRPO	Agent(),rl	
Stochastic	Actor	Representation(),	rlQ	Value	Representation()	
functions	 and	 the	 PPO	 agent	 was	 created	 using	 rlPPO	
Agent(),rl	 Stochastic	Acto	 r	 Representation	 ()and	 rlQ	Value	
Representation()	functions	in	MATLAB.	As	an	actor	network	
for both TRPO and PPO, similar to the PG actor network, a
scalar	 input	 layer	 for	 observations,	 two	 hidden	 layers	 (50	
neurons)	with	two	ReLU	activation	function	layers,	one	fully	
connected	 layer	 (7	 neurons	 for	 7	 weapons),	 and	 a	 Softmax	
function	layer	were	organized	as	a	network.	As	a	critic	network	
for	both	TRPO	and	PPO,	a	scalar	input	layer,	two	hidden	layers	
(50	 neurons)	with	 two	ReLU	activation	 function	 layers,	 and	
one	 fully	 connected	 layer	 (50	 neurons)	were	 organized	 as	 a	
network. Both TRPO and PPO agents were trained with a
learning	rate	of	0.001	and	a	discount	rate	of	0.99.	Fig.	4	shows	
the	episode	numbers	and	rewards.	The	average	return	during	
training is -7.6 for the TRPO agent and -4.8 for the PPO agent
after 3k episodes.

Among them, the trained DQN and PPO agents showed the
best performance.

In	order	to	see	the	effect	of	training	episode	numbers,	when	
the	RL	agents	were	trained	using	5k	episodes	and	tested	using	
3k	episodes,	the	resulting	ranking	stayed	the	same	as	in	Table	
3. The histograms of rewards for the RL agents are presented
in	Fig.	7.	Since	 the	X-Axis	 is	 the	absolute	value	of	rewards,	
smaller is better, and the trained DQN and PPO agents show
smaller	means	and	deviations	than	the	other	trained	agents.

In	order	to	check	the	further	improvement	in	performance	
from more training, only DQN and PPO agents were trained
using	10k	episodes	and	tested	using	3k	episodes,	as	shown	in	
Table	4.	However,	it	was	found	that	the	performance	was	not	
improved	from	Table	3.	 In	conclusion,	 the	 trained	DQN	and	
PPO	agents	show	the	best	overall	performance	and	can	be	used	
as	the	weapon	selection	decision	support	system.

Table 4. Average return for RL agents trained using 10k episodes

DQN PPO

Average	return	during	training	(10k	episodes) -3.2 -5

Average	return	for	evaluation	(3k episodes) -3.42 -4.95

5. CONCLUSION
This	study	pointed	out	the	limitations	of	RL	for	military	

applications	from	a	literature	review	and	aimed	at	improving	
the	understanding	of	RL	for	military	decision	support	under	the	
limitations. Most of all, the black box characteristic of Deep RL
makes	things	difficult	to	understand,	in	addition	to	the	complex	
simulation	tools.	A	scalable	weapon	selection	RL	framework	
was	built,	which	can	be	solved	either	by	a	 tabular	 form	or	a	
neural	 network	 form.	The	 transition	 of	 the	DQN	 solution	 to	
the	 tabular	 form	made	 it	 easier	 to	 compare	 the	 result	 to	 the	
Q-learning	solution.	Furthermore,	rather	than	using	one	or	two	
RL	models	selectively	as	before,	RL	models	were	divided	into	
an actor and a critic and systematically compared. A random
agent based on Q-learning, Q-learning and DQN agents as a

Table 3. Average return for RL agents trained using 3k episodes

Critic Actor Actor-Critic

Random Q-
learning DQN PG TRPO PPO

Avg.	
return	
for
eval.

-15.2 -8.4 -3.4 -10.4 -10.2 -4.9

4.5 Performance Test of Agents
The	performance	test	of	the	trained	agents	was	conducted	

with	randomly	generated	3k	episodes	in	the	simulation	model.	
The	 random	 agent’s	 average	 return	 was	 about	 -15,	 and	 all	
other RL agents showed better	 results,	 as	 shown	 in	Table	3.	

DEF. SCI. J., VOL. 74, NO. 3, MAY 2024

396

critic, a PG agent as an actor, TRPO and PPO agents as an
actor-critic approach were designed, trained, and tested. The
performance	results	showed	that	DQN	and	PPO	agents	were	
the	best	decision	support	candidates	for	the	weapon	selection	
RL framework.

The	 limitations	 of	 this	 study	 are	 as	 follows:	 First,	 the	
proposed	scalable	weapon	selection	RL	framework	required	a	
series of decisions within the same selection problem. It can
be extended to a decision problem with a complex hierarchy.
Second,	 in	 order	 to	 improve	 the	 understanding	 of	DRL,	 the	
tabular	form	of	solutions	was	used.	Other	effective,	explainable	
methods	can	be	further	explored.	Third,	the	simulation	model	
had	 a	 discrete	 space,	 soRL	models	with	 a	 continuous	 space	
could	not	be	used.	Even	though	this	study	has	these	limitations,	
it	 is	 very	 important	 to	 bridge	 the	 gap	 between	 researchers	
and	 practitioners,	 and	 RL	 models	 need	 to	 be	 studied	 more	
actively	 for	 a	military	 decision	 support	 system.	 It	 is	 not	 for	
boosting	the	advent	of	killer	robots	but	for	peaceful	usage	of	
AI technologies.

REFERENCES
1. Asher, D.E.; Basak, A.; Fernandez R..; Sharma, P.K.;

Zaroukian,	E.G., et al.	Strategic	maneuver	and	disruption	
with	 reinforcement	 learning	 approaches	 for	multi-agent	
coordination. J. Def. Model. Simul., 2023, 20(4), 509-526.

	 doi:10.1177/15485129221104096
2. Fernandez, R.; Asher, D.E.; Basak, A.; Sharma, P.;

Zaroukian,	 E.G., et al.Multi-Agent	 Coordination	 for	
strategic	 maneuver	 with	 a	 survey	 of	 reinforcement	
learning.	 DEVCOM	Army	 Research	 Laboratory,	 2021,	
1-33.

	 https://apps.dtic.mil/sti/pdfs/AD1154872.pdf	

 [Accessed	on	1	February	2023]
3. Galán,	 J.J.;	 Carrasco,	 R.A.	 &	 LaTorre,	 A.military	

applications of machine learning: A bibliometric
perspective.	Mathematics, 2022, 10(9), 1397.

	 doi:	10.3390/math10091397
4. Mnih,	 V.;	 Kavukcuoglu,	 D.;	 Silver,	 D.;	 Graves,	 A.;	

Antonoglou,	I., et al. Playing atari with deep reinforcement
learning.	arXiv:1312.5602,	2013.

5. Silver,	D.;	Huang,	A.;	Maddison,	C;	Guez,	A.;	Sifre,	L., et
al.Mastering	the	game	of	Go	with	deep	neural	networks	
and tree search. Nature,2016,529, 484–489.

	 doi:	10.1038/nature16961
6. Vinyals,	O.;	Babuschkin,	 I.;	Czarnecki,	W.M.;	Mathieu,	

M.;	 Dudzik,	 A., et al.Grandmaster	 level	 in	 StarCraft	
II	 using	 multi-agent	 reinforcement	 learning.	 Nature,
2019,575, 350–354.

	 doi:	10.1038/s41586-019-1724-z
7. Zhang,	 L.A.;	 Xu,	 J.;	 Gold,	 D.;	 Hagen,	 J.;	 Kochhar,	

A.K.; et al.	Air	dominance	through	machine	learning:	A	
preliminary	exploration	of	artificial	intelligence–Assisted	
Mission	Planning.	RAND	Corporation,	2020.

	 doi:	10.7249/RR4311
8. Soleyman,	S.	&	Khosla,	D.	Multi-agent	mission	planning	

with reinforcement learning. In Proceedings of AAAI
Symposium	 on	 the	 2nd	 Workshop	 on	 Deep	 Models	
and	 Artificial	 Intelligence	 for	 Defense	 Applications:	
Potentials, Theories, Practices, Tools, and Risks,
November	11-12,	Virtual,	2020.	https://ceur-ws.org/Vol-
2819/session1paper1.pdf	[Accessed	on	1	February	2023]

9. Boron,	 J.	 &	 Darken,C.	 Developing	 combat	 behavior	
through	 reinforcement	 learning	 in	 war	 games	 and	
simulations. In	Proceedings	of2020	IEEE	Conference	on	

Figure 7. Histogram of rewards for RL agents trained using 5k episodes.

MA: MILITARY DECISION SUPPORT WITH ACTOR AND CRITIC REINFORCEMENT LEARNING AGENTS

397

Games	(CoG),	Osaka,	Japan,	2020,	728-731.
	 doi:	10.1109/CoG47356.2020.9231609
10. Goecks, V.G.; Waytowich, N.; Asher, D.E.; Park, S.J.;

Mittrick, M., et al.On	games	and	simulators	as	a	platform	
for	 development	 of	 artificial	 intelligence	 for	 command	
and control. J. Def. Model. Simul., 2022,20(4), 495-508.

	 doi:10.1177/15485129221083278
11. Sharma,	R.;	Prateek,	M.	&Sinha,	A.K.Use	of	reinforcement	

learning	as	a	challenge:	A	review.	Int. J. Comput. Appl.,
2013, 69(22), 28-34.

	 doi:	10.5120/12105-8332
12. Sutton,	R.S.	&	Barto,	A.G.	Reinforcement	 learning:	An	

introduction.	 Second	 Edition,	 MIT	 Press,	 Cambridge,	
MA, 2018.

13. Pröllochs,	N.	&	Feuerriegel,	S.	Reinforcement	Learning	
in	R.	arXiv:1810.00240v1,	2018.

14. Azar,	A.T.;	Koubaa,	A.;Mohamed,	N.A.;	 Ibrahim,	H.A.;	
Ibrahim, Z.F., et al. Drone deep reinforcement learning: A
review.	Electronics, 2021, 10(9), 999.

	 doi:	10.3390/electronics10090999
15. Bøhn,	E.;	Coates,	E.M.;	Moe,	S.	&	Johansen,	T.A.Deep	

reinforcement	learning	attitude	control	of	fixed-wing	uavs	
using	proximal	policy	optimization.	In	Proceedings	of	the	
2019	 International	 Conference	 on	 Unmanned	 Aircraft	
Systems	(ICUAS),	Atlanta,	GA,	USA,	11–14,	2019,	523–
533.

16. Koch,	 W.;	 Mancuso,	 R.;	 West,	 R.	 &	 Bestavros,	 A.	
Reinforcement	 learning	 for	UAV	 attitude	 control.	ACM
Trans.Cyber Phys. Syst., 2019,3, 1–21.

	 doi:	10.1145/3301273
17. Liu,	C.H.;	Chen,	Z.;	Tang,	 J.;	Xu,	 J.&	Piao,	C.Energy-

efficient	UAV	control	for	effective	and	fair	communication	
coverage:	A	deep	reinforcement	learning	approach.	IEEE
J. Sel. Areas Commun., 2018, 8(36), 2059–2070.

	 doi:	10.1109/JSAC.2018.2864373
18. Qu,	 C.;	 Gai,	 W.;	 Zhong,	 M.	 &	 Zhang,	 J.	 A	 novel	

reinforcement learning based grey wolf optimizer
algorithm	 for	 unmanned	 aerial	 vehicles	 (UAVs)	 path	
planning. Appl. Soft Comput., 2020, 89, 106099.

	 doi:	10.1016/j.asoc.2020.106099
19. Bayerlein,	 H.;	 Theile,	 M.;	 Caccamo,	 M.&	 Gesbert,	

D.UAV	path	planning	for	wireless	data	harvesting:	A	deep	
reinforcement	 learning	 approach.	 arXiv:2007.00544,	
2020.

20. Jiang,	 S.;	 Jiang,	 C.&	 Jiang,	W.Efficient	 structure	 from	
motion	 for	 large-scale	 UAV	 images:	 A	 review	 and	 a	
comparison of SfM tools. ISPRS J. Photogramm. Remote
Sens., 2020, 167, 230–251.

	 doi:	10.1016/j.isprsjprs.2020.04.016
21. He,	 L.;	 Aouf,	 N.;	 Whidborne,	 J.F.	 &	 Song,	 B.Deep	

reinforcement learning based local planner for
UAV	 obstacle	 avoidance	 using	 demonstration	 data.	
arXiv:2008.02521,	2020.

22. Singla,	A.;	Padakandla,	S.&	Bhatnagar,	S.Memory-based	
deep	 reinforcement	 learning	 for	 obstacle	 avoidance	 in	
UAV	with	limited	environment	knowledge.	IEEE Trans.
Intell. Transp. Syst., 2021, 22(1), 107-118.

	 doi:	10.1109/TITS.2019.2954952.

23. Shin,	S.Y.;	Kang,	Y.W.	&	Kim,	Y.G.	Obstacle	avoidance	
drone by deep reinforcement learning and its racing with
human	pilot.	Appl. Sci., 2019, 9(24), 5571.

	 doi:	10.3390/app9245571.
24. Wei,	M.;	Wang,	S.;	Zheng,	J.&	Chen,D.	UGV	navigation	

optimization aided by reinforcement learning-based path
tracking. IEEE Access, 2018,6, 57814-57825.

	 doi:	10.1109/ACCESS.2018.2872751
25. Sivashangaran,	 S.	&	Zheng,	M.	 Intelligent	 autonomous	

navigation	 of	 car-like	 unmanned	 ground	 vehicle	 via	
deep reinforcement learning. IFAC-Papers OnLine,
2021,54(20),218-225.

 doi: 10.1016/j.ifacol.2021.11.178
26. Chu,	Z.;	Sun,	B.;	Zhu,	D.;	Zhang,	M.	&	Luo,	C.	Motion	

control	 of	 unmanned	 underwater	 vehicles	 via	 deep	
imitation reinforcement learning algorithm. IET Intell.
Transp. Syst., 2020, 14, 764-774.

 doi: 10.1049/iet-its.2019.0273
27. Adawadkar,	A.M.K.	 &Kulkarni,	 N.	 Cyber-security	 and	

reinforcement	learning	-	A	brief	survey.	Eng. Appl. Artif.
Intell., 2022,114,105116.

	 doi:	10.1016/j.engappai.2022.105116
28. Sewak,	M.;	 Sahay,	 S.	 &	 Rathore,	 H.	 DRLDO	A	 novel	

DRL	 based	 de	 obfuscation	 system	 for	 defence	 against	
metamorphic malware. Def. Sci. J., 2021,71(1), 55-65.

	 doi:	10.14429/dsj.71.15780
29. Tao,	 J.;	 Han,	 T.	 &Li,	 R.Deep-Reinforcement-learning-

based	 intrusion	detection	 in	 aerial	 computing	networks.	
IEEE Network, 2021,35(4),66-72.

	 doi:	10.1109/MNET.011.2100068
30. Bouhamed,O.;	Bouachir,O.;	Aloqaily,	M.&	Ridhawi,	I.A.	

Lightweight IDS for UAV networks: A periodic deep
reinforcement learning-based approach. In Proceedings of
2021	 IFIP/IEEE	International	Symposium	on	 Integrated	
Network	 Management	 (IM),	 Bordeaux,	 France,	 2021,	
1032-1037.

31. Heartfield,	R.;	Loukas,	G.;	Bezemskij,	A.&	Panaousis,	E.	
Self-configurable	 cyber-physical	 intrusion	 detection	 for	
smart	homes	using	reinforcement	 learning.	 IEEE Trans.
Inf. Forensics Secur., 2021, 16, 1720-1735.

	 doi:	10.1109/TIFS.2020.3042049
32. Aref,M.A.;	Jayaweera,	S.K.,	&	Machuzak,	S.	Multi-agent	

reinforcement	 learning	 based	 cognitive	 anti-jamming.	
In Proceedings	 of	 IEEE	Wireless	 Communications	 and	
Networking	 Conference	 (WCNC),	 San	 Francisco,	 CA,	
USA, 2017, 1-6.

	 doi:	10.1109/WCNC.2017.7925694
33. Ferdowsi,	 A.	 &	 Saad,	 W.	 Deep	 learning	 for	 signal	

authentication	and	security	in	massive	internet-of-things	
systems. IEEE Trans. Wirel. Commun., 2019,67(2), 1371-
1387.

	 doi:	10.1109/TCOMM.2018.2878025
34. Gao,	N.;	 Ni,	 Q.;	 Feng,	 D.;	 Jing,	 X.	&Cao,	Y.	 Physical	

layer	authentication	under	intelligent	spoofing	in	wireless	
sensor networks. Signal Processing, 2020,166, 107272.

 doi: 10.1016/j.sigpro.2019.107272
35. Lu,	 X.;	 Xiao,	 L.;	 Xu,	 T.;	 Zhao,	 Y.;	 Tang,	 Y., et al.

Reinforcement	 learning	 based	 PHY	 authentication	 for	

DEF. SCI. J., VOL. 74, NO. 3, MAY 2024

398

VANETs. IEEE Trans. Veh. Technol., 2020,69(3), 3068-
3079.

	 doi:	10.1109/TVT.2020.2967026
36. Xiao,	L.;	Sheng,	G.;	Wan,X.;	Su,	W.&	Cheng,	P.	Learning-

based	 PHY-layer	 authentication	 for	 underwater	 sensor	
networks. IEEE Commun. Lett., 2019,23(1), 60-63.

	 doi:	10.1109/LCOMM.2018.2877317
37. Yan,	C.;	Xiang,	X.	&	Wang,	C.	Towards	 real-time	path	

planning	through	deep	reinforcement	learning	for	a	UAV	
in	dynamic	environments.	J. Intell. Robot Syst., 2020,98,
297–309.

 doi: 10.1007/s10846-019-01073-3
38. You,S.;	Diao,	M.	&Gao,	L.	Deep	reinforcement	learning	

for	target	searching	in	cognitive	electronic	warfare.	IEEE
Access, 2019,7, 37432-37447.

	 doi:	10.1109/ACCESS.2019.2905649
39. Wang,	Z.;	Li,	H.;	Wu,	H.	&Wu,	Z.	Improving	maneuver	

strategy in air combat by alternate freeze games with a
deep reinforcement learning algorithm. Math. Probl.
Eng.,2020,2020, 1-17.

 doi: 10.1155/2020/7180639
40. Fu,Q.;	 Fan,	C.L.;	 Song,	Y.	&	Guo,	X.K.	Alpha	C2–An	

intelligent	air	defense	commander	independent	of	human	
decision-making. IEEE Access, 2020,8,87504-87516.

	 doi:	10.1109/ACCESS.2020.2993459
41. Zhang,	L.;	Pan,	Y.;	Liu,	Y.;	Zheng,	Q.	&Pan,	Z.	Multiple	

domain cyberspace attack and defense game based
on reward randomization reinforcement learning.
arXiv:2205.10990,	2022.

42. Wu,	Y.;	Lei,	Y.;	Zhu,Z.;	Yang,	X.	&Li,	Q.	Dynamic	multi	
target assignment based on deep reinforcement learning.
IEEE Access, 2022,10, 75998-76007.

	 doi:	10.1109/ACCESS.2022.3190972
43. Mouton,H.;	Roodt,	J.	&Roux,	H.	Applying	reinforcement	

learning to the weapon assignment problem in air defence.
S. Afr. j. Mil. Stud., 2011, 39(2), 123-140.

	 doi:	10.5787/39-2-115
44. Shin,	M.K.;	Park,	S.S.;	Lee,	D.;	&	Choi,	H.L.	Mean	field	

game based reinforcement learning for weapon-target
assignment. J. KIMS Technol., 2020, 23(4), 337-345.

 doi: 10.9766/KIMST.2020.23.4.337
45. Watkins,	C.J.C.H.	&	Dayan,	P.Q-learning.	Mach.	Learn.,	

1992, 8, 279-292.
 doi: 10.1007/BF00992698
46. Schulman,	J.;	Levine,	S.;	Moritz,	P.;	Jordan,	M.I.	&	Abbeel,	

P.	Trust	Region	Policy	Optimization.	arXiv:1502.05477,	
2015.

47. Schulman,	 J.;	 Wolski,	 F.;	 Dhariwal,	 P.;	 Radford,	 A.	
&Klimov,	O.	Proximal	Policy	Optimization	Algorithms.	
arXiv:1707.06347,	2017.

CONTRIBUTORS

Dr Jungmok Ma	 obtained	 his	 PhD	 in	 Industrial	 Engineering	
from	 University	 of	 Illinois	 at	 Urbana-Champaign.	 He	 is	 a	
Professor in the Department of National Defense Science, Korea
National	Defense	University.	His	research	interest	includes	data	
analytics and National defense modeling.

