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ABSTRACT

In this paper, we present the construction of two Hadamard matrix forms over GF(2") to generate 4x4 and 8x8
involutory MDS (IMDS) matrices. The first form provides a straightforward way to generate 4x4 IMDS matrices,
while the second is an efficient way to generate 8x8 IMDS matrices using a hybrid (combination of search-based
methods and direct construction) approach. In addition, we propose an algorithm for computing the branch number
of any non-singular matrix over GF(2") and improve its computational complexity for Hadamard matrices. Using
this algorithm and the proposed Hadamard matrix form, we obtain 2/x2* lightweight involutory and non-involutory
Hadamard MDS matrices with low XOR counts for £=2,3. Finally, we carry out a comparative study based on the
XOR count to demonstrate that MDS matrices created using our Hadamard matrix forms have lower XOR counts

than MDS matrices available in the literature as of today.
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1. INTRODUCTION

Confusion and diffusion, as defined by Claude Shannon',
are the mandatory characteristics needed in the construction
of secure cryptographic primitives such as block ciphers and
hash functions. In general, substitution boxes (or S-boxes)
and linear transformations are used to achieve these properties
in block ciphers and hash functions. Furthermore, the linear
transformation induced by an MDS (maximum distance
separable) matrix is a popular choice as the core component
of the diffusion layer since it provides optimal diffusion. There
is a well-known concept of branch number?that can be used to
measure the diffusion capabilities of a linear transformation.
Since MDS matrices have the maximum possible branch
number, they are particularly utilised to infuse security against
well-recognized attacks, for example, differential and linear
cryprtanalysis®.

In this study, we are concerned about the generation of
MDS matrices that are useful for lightweight cryptography
(LC). In order to produce an LC design, it is essential that even
the basic building blocks should have lightweight properties.
This has a direct impact since the usage of such building blocks
consumes a lesser number of the logical gates (XOR operations)
in the implementation. Therefore, the cost of hardware
implementation would be lower. Involutory MDS (IMDS)
matrices are preferable choices in several block ciphers, hash
functions, and stream ciphers due to the same execution cost in
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encryption/decryption phases and less area occupancy (see® for
a comprehensive overview). Consequently, researchers around
the world are exploring for novel techniques to build IMDS
matrices for LC.

In general, MDS matrix construction can be divided
into two parts:(i) direct construction and (ii) search-based
construction. The direct construction is primarily based on
Cauchy matrices®’, Vandermonde matrices®, companion
matrices”'? etc. However, it may be noted that Cauchy and
Vandermonde matrices based constructions are not efficient for
lower-cost implementations (see''). Consequently, the majority
of the search-based constructions of MDS matrices comprise
hybrid structures'?, recursive methods"*-%, heuristic approach',
and searching the matrix forms like circulant and Hadamard
matrix forms'®!’. Moreover, several other matrix forms used to
find MDS matrices for LC are Toeplitz, and Hankel matrices
(see! for a nice overview). The search-based constructions of
MDS matrices involve checking whether it is MDS or not for
specific choices of its elements. However, these constructions
are useful for matrices of small orders because checking
whether a matrix is MDS or not, is still computationally
expensive. Recently, the authors of'® proposed a new approach
to construct MDS matrices using generalised Cauchy matrices,
and they found interesting connections between the entries of
any arbitrary 3x3 sub-matrix of the constructed MDS matrix.
In addition, they investigated MDS matrices with maximum
possible 1’s.

One of the aims in this paper is to minimize the amount
of circuit area required to implement the MDS matrices for
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LC (see? for deeper understanding). The XOR count is a
measure used to examine the lightweightness of a matrix (see
Definition 3). For MDS matrices, lightweightness is not an
intrinsic property, but it depends on the irreducible polynomial
(IP) chosen to generate the underlying field. Generally, the
low Hamming weight field elements require fewer hardware
resources to implement the multiplication in GF(2™) and
therefore, it is taken as the common criterion for choosing a
matrix. However, for some particular choice of the polynomial
defining the finite field, even for a high Hamming weight
element, the multiplication in GF(2") may be implemented
with a much lower XOR count'®.

Guzel®, et al. devised a new matrix form for generating
3x3 IMDS matrices over a finite field. In continuation with the
previous work, Pehlivanoglu'®, er al. presented a generalized
Hadamard (GHadamard) form for generating MDS matrices
for LC. Using their GHadamard form, Pehlivanoglu et al.
get better results than the best-known results of XOR count
for several 2x2*non-IMDS and IMDS matrices over GF(2™)
where k£=2,3. Recently, Yang®, et al. proposed a computationally
effective method to locate lightweight IMDS matrices for LC
using the idea of global optimisation and improved various
well-known results of XOR count. Our contribution to this
paper is discussed in the next subsection.

We present the generation of 2%x2* lightweight IMDS
(LIMDS) matrices over the finite fields GF(2*) and GF(2%)
for £=2,3. The rationale behind the selection of dimensions
4x4 and 8x8 is that most of the well-known ciphers and
hash functions use matrices of these dimensions to induce
diffusion?"??). To generate the LIMDS matrices, we suggest
two new Hadamard matrix forms over GF(2™) and use them
to find 2/x2% IMDS matrix representatives for k=2,3. Further,
the generalised Hadamard (GHadamard) matrix form can be
used to produce IMDS matrices'®. Using our matrix forms, we
show that the number of 4x4 and 8x8 IMDS matrices over
GF(2") respectively are r x(2"-1)* and r,%(2"-1)*, where r and
r,, respectively, represent the number of all 4x4 and 8x8 IMDS
matrix representatives.

We explicitly compute the number of IMDS matrices of
order 4x4 over GF(2%) whereas in the case of 8x8 involutory
MDS matrices, we provide an algorithm for computing the
same (see Algorithm 2). Algorithm 2 requires the computation
of branch number (see section 2 for its formal definition) of
non-singular matrices. We provide an algorithm (see Algorithm
1) for computing the branch number of any non-singular
matrix over GF(2"). We explicitly deduce the computational
complexity of Algorithm 1 and improve the computational
complexity in the case of Hadamard matrix form over GF(2").
Further, we also generate 2*x2F (k=2,3) lightweight non-IMDS
Hadamard matrices by exhaustively computing the branch
number through Algorithm 1 with the smallest XOR counts.
Finally, we present a comparative study based on XOR count
to show that our constructed MDS matrices have low XOR
counts in comparison to the known XOR counts of MDS
matrices in the literature.

This paper is organised as follows. In the next section, we
describe mathematical preliminaries including MDS matrices
and XOR count required to implement the multiplication in

GF(2™). In section 3, we propose a direct construction of 4x4
IMDS matrices and a hybrid construction, i.e., a combination
of search-based methods and direct construction, of 8x8 IMDS
matrices over GF(2™). We discuss the strategy for computing
the branch number of any non-singular matrix over GF(2") in
the same section. Furthermore, in section 3, we also generate
4x4 and 8x8 lightweight non-IMDS Hadamard matrices with
lesser XOR counts than the known XOR counts. We exhibit
our experimental results in section 4 and present a comparative
study based on the XOR count. Finally, we conclude the paper
in section 5.

2. MATHEMATICAL PRELIMINARIES

This section discusses certain definitions
and the mathematical preliminaries needed to
comprehend the paper. We construct the finite field
GF(2™) from the prime field GF(2) as a residue class ring
GF(2)[x]/(fix)), where, fx) is an irreducible polynomial
in GF(2)[x] of degree m. The residue class ring
GF(2)[x]/(fix)), consists of residue classes g+(fx)) denoted
by [g] with g € GF(2)[x]. Two residue classes [g] and [4]
are identical precisely if g-4 is divisible by f. Each residue
class contains a unique representative re GF(2)[x] with
deg(r)<deg(f), which is simply the remainder in the division of
g by f. The distinct residue classes are exactly r+(f(x)) where,
r runs through all polynomials in GF(2)[x] with deg(r)<deg(f).
Then the cardinality of GF(2)[x]/(f(x)), is the count of total
polynomials in GF(2)[x] of degree <m, which is precisely 2".
The necessary background of finite fields can be found in®.

The differential branch number** B, (M) of a matrix M of
order n over GF(2") is defined as:
B,(M) = r?igl{wh(x) +w,(M.x)}

d

where, w,(x) denotes the weight of the vector x. Also, the linear
branch number* B, (M) of a matrix M over GF(2") is defined
as:

B(M)= mi(r)l{wh(x) + w, (M".z)}

1

Our focus in this work is on the Hadamard matrix form,
which is symmetric. For this matrix form, differential and
linear branch numbers are the same. We write B, (M) simply as
the branch number and denote it as B(M).

Definition 1. A 2'x2' Hadamard matrix H over GF(2") for
¢t >0 is defined as:
A4 4

1 =had4,A) =0

where, sub matrices 4, and 4, are also 2°'x2*' Hadamard
matrices. Some results of Hadamard matrix H over GF(2™) are
as follows'’:

)

HU = a,. Here, a’s are first-row elements of a Hadamard
matrix H.
H = c>[where,c = @' a. and I is the 2'x2'identity

matrix. If c=1, then H is an involutory matrix.
Definition 2. Let H=had(a,a,,....,a, ) be a kxk Hadamard
matrix over GF(2™) with £&=2' for t >0. Then a A<k GHadamard
matrix GH=(a,a ;b ,a;b,,....a,_; b, ) can be expressed as

ol ot
follows:
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a(] albl o ak‘-Qbk-Z ak-lbk-l
alb;l aO ak-lbflbk-Z ak-2b;1bk-l
GH =| : : :
ak—2b1€7712 ak—lblsTJle o a[) alblgflzbk—l
-1 ~1 -1
ajk—lbkfl ak—Zbkflbl o a’lbkflbk—Q aO
Let GHI.J. be the (/)" entry GH. Then, GHI,J, :aiejbl."bj , where,
0 <i<k1;1<j < k-1, b,’s are non-zero element of GF(2")
and b=b;'=1.

Next, in Table 1, we give the abbreviations used in this

paper.
Table 1. Abbreviations

Abbreviation Meaning

MDS Maximum distance separable

LC Lightweight cryptography

LIMDS Lightweight involutory MDS matrices
IMDS Involutory MDS

Non-IMDS Non-involutory MDS

IP(s) Irreducible polynomial(s)

CC Computational complexity

2.1 Analysis of XOR Count

Definition 3. XOR(a) is the minimum XOR operations
needed to compute the multiplication of ae GF(2") with any
beGF(2™).

The distribution of XOR counts in a finite field is not an
intrinsic property of the finite field. It is rather dependent on
the underlying generating polynomial used for implementing
field multiplication. Given m>2 the total XOR count i.e.,
ZaemmX OR(a)is independent of the generating polynomial
and is equal to mz:;?”(i -1), where, m>2, (See'?). It means
different XOR count distributions in a finite field with respect
to different generating polynomials have the same mean
but different variances. If the variance of some generating
polynomials is too low, the XOR counts will predominantly
lie near the mean, and the XOR count of an arbitrary nxn
IMDS matrix will be nearly constant for such a distribution.
Such a polynomial is not very useful for searching lightweight
IMDS matrices. As a result, we choose polynomials with high
variance values to find a low XOR count matrix. We choose
the polynomials Ox13[x*tx+1] and Ox1c3[x*+x"+ x%+ x+1] for
GF(2*) and GF(2%). The variances of these polynomials are
57.7490 and 56.7490, respectively.

Let us begin with a straightforward approach for
calculating the number of XOR operations required to
perform the product of ae GF(2)[x]/(0x1c3) with an element
x over GF(2)[x]/(0x1c3). Let a=(a,,a,,...,a,) be in hexadecimal
coefficient form, then the corresponding polynomial form in
GF(2)[x]/(0x1c3) is ax"+ax"+...+a,. We see that:

ax = (a1’ +a2’ +..+a)x

_ 8 7 6 5 4 3 2
=(a,2° +az" + 01"+ a7 +ax' 402’ + a2’ + ax)
=a(z' +2° +z+1)+az’ +az’+aa’
4 2
+az' +a,2’ +ax’ +ax

= (a, ®ag,a, Da,, a,a,, a,a, a. ag,a.).
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As a result, the XOR count in a.x is three. In general, we
can write

a.x = (msb(a) * 0x c3) ® (a << 1),
where, msb(a) represents the most significant bit of a.
Furthermore, when « is multiplied by x?, we see that:
ax?

= (a, ® a0, Da,, a,,a,, a,a, a. Day,a.).r

= (a, @ a,,a, Da, ©ay, a,, aya, a. Da,a,a Da,).
As a result, the XOR count for a.x*is 5. Furthermore,
while multiplying a with x*, we notice that:
ax’
=(a, ®a,,a, ®a,,0,0,0,0,a, Da,,a, Da,)
®(a, ®a, Day,, a,, a,a,0. Da,a,a dag,0)
=(a, ®a, Da

47a6 @ aIS @ a/37 a27a17a7 @ a(J’aIG’
a. ®a,a Da,).

The XOR count for a.x® is 7. Similarly, we can
calculate the XOR counts for ax*ax’ax® and a.x’.
Furthermore, if b=b x"+bx%+...+b, is any arbitrary element in
GF(2)[x]/(0x1c3), then we can write:

ab=a.(ba" +ba’+..+b)

= a.b7:1;7 —+ (1.176336 + a.b5x5 + a.b4:z:4 + a.b3:1:3 + a.b2m2

+ a.blx1 + a.b,.

We can then compute the number of XOR operations
required to multiply ae GF(2)[x]/(0x1c3) with any element .

Next, we compute the number of XOR operations required
in implementing a row of an nxn matrix over GF(2"). Let
XyX,,...X, | be the elements of any row of an nxn matrix over
GF(2"). Leta,,a,,...0. , be the XOR counts required to execute
the multiplication of x,x,...,x  with another field element.
Then, the number of XOR operations required to implement
a row is determined by (o, + ¢, +....+ ¢ )+ (w-1).m,
where, m is the dimension of the finite filed GF(2") over GF(2)
and w is the number of non-zero elements in the row. We
also compute the number of XOR operations required in the
implementation of a n Xn matrix over GF(2™). Let M:(mu.) bean
n>n matrix and X=(x,,x,,...,x )" be a column vector in GF(2").
Then, M.X = (Z:Zlmlkxk7zzzlmmxk7...,Zzzlmnkazk). Clearly,
M.X contains n entries. For each entry, n-field multiplications
and (n-1) additions are required. As a result, there will be n?
field multiplications and n(n-1) additions. In this case, n* field
multiplications will require " >~" XOR(m,)XOR operations
and n(n-1) additions will require n(n-1).m XOR operations,
where, m is the dimension of the finite field GF(2™) over GF(2).
The number of XOR operations required to implement a nxn
matrix over GF(2™") now becomes:

27:1 ::1 XOR(m, ;) + n(n -1)m.

We also develop a tool that computes the number
of XOR operations required to implement the product of
ae GF(2)[x]/(fx)) with an arbitrary element b over GF(2™) for
m=1,2,...,16 where, fx) is an IP of degree m. Using this
tool, we present the amount of XOR operations required to
implement the product of ae GF(2%) with b over GF(2%) using
two different polynomials Ox1c3 and Ox11d in Table 5.
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3. THE PROPOSED METHOD

We recall that there are two generic strategies in the
literature for obtaining an MDS matrix. The first is direct
construction, which ensures that the constructed matrix is
MDS. The second is to use testing to filter MDS matrices from
a given collection of matrices. The present paper comes into
both of these categories. The proposed methods include a direct
construction of 4x4 IMDS matrices over GF(2™), and a hybrid
construction of 8x8 IMDS matrices over GF(2™) which is a
combination of search-based methods and direct construction.

The key idea of the proposed methods is first to generate
4x4 and 8x8 IMDS matrix representatives and then to
obtain 2¢x2¢ IMDS matrices by applying some non-zero
parameters along with their inverses to these IMDS matrix
representatives for &=2,3. These parameters preserve MDS and
involutory properties of any given 4x4 and 8§x8 IMDS matrix
representatives.

Apart from the ease of optimizing XOR counts, using
involutory matrices provides an added advantage. All square
submatrices in an MDS matrix should be non-singular. When we
work with nxn involutory matrices over GF(2")\{0}, we know
that every (n-1)x(n-1) submatrix is invertible. As a result, one
of the matrix’s required conditions for being MDS is already
met. To generate an involutory MDS matrix representative, we
use generic properties of a Hadamard matrix that satisfy the
involutory property, namely, the XOR sum of the elements in
any row/column of a Hadamard matrix is 1 and the XOR sum
of the elements in the main diagonal and anti-diagonal (counter
diagonal) is equal to 0.

Plan of section: In subsections 3.1 and 3.2, we generate
4x4 and 8x8 IMDS matrices over GF(2%) for LC, respectively.
In subsection 3.2, we also discuss an algorithm for computing
the branch number of non-singular matrices and improve its
complexity in the case of Hadamard matrices. In subsection
3.3, we present the generation of 4x4 and 8x8 lightweight
non-IMDS Hadamard matrices by exhaustively computing the
branch number.

3.1 GENERATION OF 4x4 IMDS MATRICES
We define the Hadamard matrix form M, in order to search
for 4x4 IMDS matrix representatives over GF(2") as follows:

1 ﬁ(l ﬁl ’[3()+ﬁ1

6, 1 G+8 B
M=ls g8 1 g
6,+6 B 8 1

The Hadamard matrix form M, for deducing 4x4 IMDS
matrix representatives is explicitly defined by two parameters
B,and B, over GF(2")\{0}. The search space for finding 4x4
IMDS matrix representatives is (2”-1)%. The following theorem
states that if B and [3, are chosen in a specific way, the search
over this space can be eliminated.

Theorem 1. The matrix M, defined above is an IMDS if 3 and
B, satisfy the following conditions:
1. 1,8,.B, are linearly independent

2' B()B]_]?I: B0+B1

3. BB, #BHB,
4. B,HB#

Proof: M is invertible because it is a Hadamard matrix with a
sum of entries in each row and column of 1. Now we prove that
the proposed form M| is an MDS matrix if the four conditions
listed above are met. All square submatrices in an MDS matrix
should be non-singular. Note that each entry in a 4x4 involutory
matrix is its co-factor. This fact makes every 3x3 submatrix of
M, non-singular as we choose our entries to be the non-zero
elements of GF(2™). It is still necessary to demonstrate that the
determinant of every 2x2 sub-matrix is not zero. If we choose
BO,BIEGFQ'") such that 1,[30,[31 are linearly independent over
GF(2) and satisfy the conditions laid down in (b), (¢) and (d)
ie., B#BFL By+P#1 and BB #BAB,.BB#BHB LB, B,
~121. Then determinant of every 2x2 sub-matrix is non-zero.
This completes the proof.
When conditions on B and B, laid down in Theorem 1 were
asserted on M|, a total of 63,252 IMDS matrix representatives
of order 4x4 were found over GF(2%).
LetRIM=[m_]representa4>4 IMDS matrix representative.
Then, the GHadamard matrix form GRIM obtained by the
matrix RIM and some parameters b/s for i=1,2,3 is also
involutory MDS in the following form:

ml 1 lebl m13b2 ml4b3
1 -1 -1
_ m21b1 m22 m23b1 b2 m24b1 b3
- 1 1 15 s
m31b2 m32b2 bl m'i'i m3’1b2 b3
-1 -1 -1
m, b, m,.b. b m.b b m

4173 4273 1 4373 2 44

where, b/'s for i=1,2,3 are the elements of GF(2")\{0}. There
are:

63252x(28-1)>=1048805131500
IMDS matrices of order 4x4 over GF(2%).

3.2 Generation of 8x8 IMDS Matrices

We define the Hadamard matrix form M, in order to search
for 8x8 IMDS matrix representatives over GF(2™") (matrix 1).

The Hadamard matrix form M, for deducing 8x8 IMDS
matrix representatives is explicitly defined by three parameters
(ByB,;B,) over GF(2")\{0}. The search space for finding 8*8
IMDS matrix representatives is (2"-1)3.

Let RIM=[ml./.] represent an 8x8 IMDS matrix
representative. Then, the GHadamard matrix form GRIM
derived by the matrix RIM and some parameters b/s for
i=1,2,...,7 is also IMDS in the Matrix 2 form.

The number of 8x8 IMDS matrices over GF(2") is given
by r,x(2"-1)’, where, r, represents the number of 8x8 IMDS
matrix representatives. We are interested in finding the instances
of M, where, it is MDS. Instead of verifying for non-vanishing
minors, we employ the fact that an nxn matrix over GF(2™) is
an MDS matrix if and only if its branch number is n+1. The
original problem is now reduced to finding the instances of
matrix M, with branch numbers of precisely nine.

We discuss the computational complexity (CC) of an
algorithm for computing the branch number of non-singular
matrices (based on observations of Guo?, et al.). Furthermore,
we improve the CC of this algorithm in the case of Hadamard
matrices. This will be discussed in the subsections 3.2.1 and
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1 B, b, B+l B +58+1 B, B,+B8, B +8
B, 1 B +1 B, B, By +8+1 B +5 B, + 5,
A B +1 1 Ay b+B  B+B G+H+L A
B+1 B By 1 B+b  Bth b B+h+]
’BO+/61+1 /62 /62+/80 '61+’60 1 ﬂ(] ﬂl ﬁ1+1
I R By 1 B +1 )
B, + 5, B+6, B+8+1 B, B, B +1 1 B,
B, + 5, B, + 8, B, By+6,+1 B +1 B, B, 1
Matrix 1.
my, m12b1 m13b2 m14b3 m15b4 m16b5 m17b6 m18b7
-1 1 1 1 1 1 1
m21b1 My, m23b1 b m24b1 b m25b1 b m26b1 b m27b1 b m28b1 b
-1 1 1 1 1 1 1
m31b2 m32b2 b Mgy m34b2 b m35b2 b m36b2 b m37b2 b mgsbz b
-1 1 1 1 1 1 1
m41b3 m42b3 b m43b3 b My, m45b3 b m46b3 b m47b3 b m48b3 b
mslbz: 1 m52b; 1b1 m53b4 lb m54b4 lb Mgy m56b4 lbo my b lb m58b4 lb
—1 -1 -1 1 -1 1 1
m61b5 mezbs bl mcsbs bz m64b5 b3 m65b5 b4 Mg m67b5 b m68b5 b
-1 -1 -1 -1 -1 1 1
mnbs mnbe bl m73be bz mmbe b3 m75b6 b4 mmbe b My m78b6 b
-1 -1 -1 -1 -1 1 1
m81b7 m82b7 bl m83b7 bz m84b7 b3 m85b7 b4 mSGb7 b m87b7 b Mg
Matrix 2.
3.2.2. At the end of subsection 3.2.2, we discuss an algorithm B — weight
for computing r, and deduce its CC. end if

3.2.1  Algorithm for Computing Branch Number of Non-
Singular Matrices

Guo?, et al. observed that the branch number d of a binary

nxn non-singular matrix M can be determined by searching for

the minimum value of w, (x)+w, (4.x), where, A=M,M"' among

the input vectors of weight up to d/2, d<n+1. However, the

algorithm proposed in?is only confined to binary matrices.

We generalize the idea of? to compute the branch number
of any non-singular matrix M of order nxn over GF(2"). We
define the set 7}, 1</<n as the collection of column vectors of
weight / given as:

I = {[%7

a,...,a | anday,a,...,a  €GF@Em), wt([a,,a,,....a,_]) =1}.

To that goal, we develop the algorithm as follows:

Algorithm 1
Computation of branch number of n Xn non-singular matrix
M over GF(2™).
function GETBRANCHNUMBER (M, n)
B « 2n (B Stores branch number of M)
n+1
—
2 ‘

for (k < 1tor)do
while (7, = @)do
Choose T € T
weight «— w, (z )-I—w (M.x)

if(weight < B) then
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weight — w, (z) + w, (M " .z)

if (weight < B) then
B «— weight
end if
T, =T /{«}
end while

end for

return B
end function

Next, we study the CC of Algorithm 1. The computationally
dominating steps in the algorithm are (M.x) and (M'.x)
(i.e., multiplication of matrix M by x and M ' by x). This

n+1
and

step is getting repeated |7, |times, where r=

|T|[ ]u,

where pu+1=2".

As T, contains vectors of weight / from (GF(2™))". Given
1<I<r, the steps (M.x) and (M "'.x) involve matrix multiplication
of order nxn with an element of x in 7. As a result,
the CC of Algorithm 1 is:

n+l

231423 2o o

Next, we observe the CC of Algorithm 1 for involutory
matrices. As M=M"! for an involutory matrix M of order nxn,
its branch number d can be determined by searching for the
minimum value of w,+w,(M.x) among the input vectors of
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weight up to d/2, d<n+1. Hence, the CC of Algorithm 1 for

involutory matrices is:
n+1

R 2
ny T |l=n). [%]l,ul, where p+1=2" 2)
=1 =1

Using Eqn. (2), the CC for computing the branch number
of the 8x8 involutory matrix M over GF(2%) is approximately
2% In the next subsection, we show that in the case of specific
matrices such as Hadamard matrices, the CC of Algorithm 1 is
by a factor of n.

3.2.2  Reduction of Computational complexity for Hadamard
Matrices
For an nxn Hadamard matrix, our approach reduces the
complexity of Algorithm 1 by a factor of 1/n. We present our
main result as follows.

Theorem 2. Assume H is an nxn Hadamard matrix over

GF(2™). Let p” be a column vector in (GF(2™))". Then:
wi(H.p') = w{(Ho (p)").

where ¢_ : (GF(2™))" — (GF(2™))" for each z=1,2,....n is a

map that permutes the elements of the vector p and is defined

as:

¢.(p)=(a,a - ma ),
p=(aya,..,a,,) € GFR"))".

We discuss an important result in Lemma 1 to prove
Theorem 1. This lemma will be used to prove Theorem 1.

Lemma 1.Let 0 = (aov Qpyeees an—l)’
n= (a’o’a’l’ * n_l)G(GF(Qm))"7g:{1’2,.._7n_1} and
O: (GF2™))" x (GF(2™))" — (GF(2™))" is a map defined

as:

n): Zabﬂzazﬁﬂ it ’E ld:ﬂ |)b

1€C 1€C IS
Then, we have:

wt(©(p,n)) = wt(O(p,¢,(n)), 0<z<n, (3

where, ¢ _is the same as defined in Theorem 1.

Proof. We observe that©(¢.(p),n) is a permutation of entries of
O(p,n) for every 0< j<n. Therefore, we can write

wt(©(p,n)) = wt(©(9.(p),n)), 0<j<n.
Further, we observe that

[Z al i) Z aiealbi%z ” Z ai@(”-l)bi@z ] :

1€Q 1€Q (S

For 0</<n, the above expression may be rewritten as:

@(p’ ¢l( { z LJJI’ Z azf\ﬂ el Z M)(w])biel ] :
1EC

1€C 1ES

Let z®/=m for some z,m € ¢. Then, we derive that:

[Z a7 idl? Z alel il Z a%e(n,-l)biaal ] :

166 (1SS 166

Furthermore, let m®i=h. Consequently, we reach at:

e(p’ ¢l(n)) = [ Z ama&hbzeh’ Z amﬂ:‘h@lbzﬂ:‘h7"'7

m@heg m@heg

Z amehe(nfl)bzgh ] .

mohes

Since m is fixed, h D m € ¢is the same ash € q.
Therefore, we further obtain that:

O(p,9,() = [Z 8D Dby

heg heg

Z améP,héE(n—l)bzeh ] = @(¢m (P, ¢Z m)). 4)

heg

By combining Eqn. (3) and Eqn. (4) we conclude that
wi(©(p,¢,(n)) = wl(O(8,,(p),¢.(1)) =
wi(©(p,,(n))- (5)

Thus, the result holds. To this end, we prove Theorem 2.

Proof of Theorem 2. Consider the Hadamard matrix H formed
by permutations of elements of p as:

H = (¢,(p): ¢,(0),--,6,,(p))"-

For an arbitrary vector ne(GF(2™))", it holds that:
Hn' =6(p,n)".

Using Eqn. (5) of Lemma 1, we note that:
wi(Hn") = wt(O(p,n)") =
wt(@(p.6,(n))" ) = wilH.,(n)").

This completes the proof.

It follows from Theorem 1 that post-multiplying a
Hadamard matrix H with a permutation of a column vector
p” determined by ¢_0<z<n, will not change the weight of
the product of H and p’. It indicates that the
search space of input vectors for computing the
branch number of an 7 xn Hadamard matrix H can be reduced

by a factor of 1/n. More precisely, it becomes:
77+1

nZ|T|l—:Z 2

=1

', where p-+1=2"

Finally, we give an algorithm for computing r, and
derive its CC, where 7, represents the number of 8x8 IMDS
matrix representatives. We recall that r, equals the number of
Hadamard matrix forms M, witha branch number of 9. The total
matrices of the form M, are (2”-1)°. Let M'2 be a set contamlng
all matrices of the form M,. Clearly, M} = (2" -1)°.

Algorithm 2
Computation of r, in GF(2™)

te—(2"-1)°
J<0
for (k < 1tot) do

Choose M € MQ’

b <« branch number(M ) (Compute branch

number b of M using Algorithm 1.)
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If (b=9) then
Je—J+1
end if
end for
return J

Therefore, the CC of Algorithm 2 is:

n+1

> [

=1

l+3

where p+1=2"

l
! K

3.3 Generation of 4x4 and 8x8 Non-IMDS Hadamard
Matrices
The aim of this subsection is different from the previous
subsections. In earlier subsections, we have generated 2* x 2"
IMDS matrices for LC fork =2,3. In this subsection, we

generated 2° x 2" lightweight non-IMDS Hadamard matrices
for kK =2,3. We generated these matrices by exhaustively
computing the branch number using Algorithm 1. First, we
choose elements of the first row with a lower XOR count. Then
by computing its branch number, we generate lightweight
non-IMDS Hadamard matrices, these generated matrices
are significantly lighter than the non-IMDS matrix used in
WHIRLPOOL?. The experimental results and the generated
matrices are given in the next section.

4. EXPERIMENTAL RESULTS

Using our proposed method, we create lightweight IMDS
and non-IMDS matrices of order 2°x2" over GF(2*)and
GF(28), respectively for k =2,3 (Tables 2-4). In tables, MT
denotes matrix type, FF denotes finite field, R, denotes the first-
row elements, XC denotes the XOR count and Ref denotes the
reference(s).

Table 2. 4x4 MDS Matrices Over GF(2%)

MT FF R, XC Ref
Involutory Hadamard GF(2)[z] / (0213) 1,.,4.9..d) 6+3x4=18 12, 30
Involutory Hadamard GF(2)[z] / (0219) 1,2,6.,4) 6+3x4=18 12,31
Hadamard GF(2)[z] / (0213) (1,2,4.,9) 4+3x4=16 Our result
Hadamard GF(2)[z] / (0213) 1.,2.,8.9) 5+3x4=17 12
8x8 MDS Matrices Over GF(2%)
MT FF R, XC Ref
Involutory Hadamard GF(2)[z] / (0213) (f,a,8,5,3,c,2,4) 36 +7x4 =064 Our result
Hadamard GF(2)[z] / (0713) 8.,d.9.,2,c,1,6,a) 26 +7x4 =54 Our result
Hadamard GF(2)[z] / (0213) (5,.4.,a,6,2,d,8,3) 33+7x4 =61 29
Hadamard GF(2)[z] / (0213) (5,.e.4.,7.,1.,3 .f,8) 39+7x4 =67 29
Table 3. 4x4 IMDS Matrices Over GF(2%)
MT FF R, XC Ref
Hadamard GF(2)[z] / (0z1e3) (01,02 ,cl ,c3) 18 +3%x8 =42 Our result
Hadamard GF(2)[z] / (0z1e3) (01,,91,70_,el ) 18+3x8=42 Our result
Hadamard GF(2)[z] / (02165) (01,02 ,b0_,b2 ) 16 +3x8 =40 12
Hadamard GF(2)[z] / (0x11d) (01,02 ,04 ,06 ) 22 +3x8 =46 26
Hadamard GF(2)[z]/ (0x11d) (01,08 ,02 ,0a ) 30+3%x8 =54 27
Compact Cauchy GF(2)[z] / (0z11b) (01,12 ,04 ,16 ) 54+3%x8 =78 6
Hadamard Cauchy GF(2)[z] / (0211b) 01,02 ,fc ,fe ) 74 +3x8 =098 32
8x8 IMDS Matrices Over GF(2%)

MT FF R, XC Ref
Hadamard GF(2)[z] / (0x1¢3) (01 ,02,,03_,70 ,04 91,05 el ) 1617 %8 — 102 Our result
Hadamard GF2)[z] ] (0z1¢c3) (01,,02,,08,,38 ,48 ,91 ,el ,0a ) 52+ 7x8 =108 Our result
Hadamard GF(2)[z] / (0x1c3) (01,,02_,03 ,91 ,04 ,70 ,05 ,el ) 46 +7x8 =102 12
Hadamard GF(2)[=] / (0z11d) (01,,03_,04 ,05_,06_,08 ,0b ,07,) 100+ 7 x 8 = 156 28
Hadamard Cauchy GF(2)[z]/ (0x11d) (01,,02,,06_,8¢c,,30_,fb,87 ,c4 ) 1224+ 7x8=178 32
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Table 4. 4x4 Non-IMDS Matrices Over GF(2%)

MT R, XC of first row Ref
Hadamard GF(2)[z] / (0z1c3) (e1,,01,,04,,91) 13+3x8=237 Our result
Hadamard GF(2)[z] / (0z1c3) (01,,02,,04,,91 ) 13+3x8=37 12
Circulant GF(2)[z] / (0x11b) (02,,03,,01,,01,) 14 +3x8=38 24

8x8 Non-IMDS Matrices Over GF(2?%)
MT FF R, XC of first row Ref
Hadamard GF(2)[z] / (0z1¢3) (01,02 ,e0,,08 el ,a9 ,04 ,91) 40 +7x8 =96 Our result
Hadamard GF(2)[z] / (0x1e3) (01,,02,03,08 ,04 ,91 ,el ,a9 ) 40+7%x8 =96 12
Circulant GF(2)[z] / (0211d) (01,01,04_,01,08 ,05 ,02 ,09 ) 49+ 7x8 =105 25

Table 5. Distribution of XOR(a) values with respect to ¢ € GF(2%) corresponding to two generator polynomials 0zlc3 and 0Ozlld.

T 0z1c3 0x11d T 0z1e3 0z11d T 0x1c3 0z11d T 0z1c3 0z11d T 0x1c3 0z11d
0x00 0 0 .4 27 24 .8 29 26 ..C 31 22 0xd0 31 28
.1 0 0 .5 33 30 .9 35 32 .d 27 22 .1 29 32
.2 3 3 .6 26 19 .a 36 29 ..e 32 15 .2 36 31
.3 9 11 .7 34 25 .b 40 35 0x9f 26 15 .3 32 35
.4 5 6 .8 11 23 ..C 26 16 0xa0 19 29 .4 38 28
.5 11 14 .9 19 29 .d 34 22 .1 17 27 .5 34 32
.6 10 13 .a 22 22 ..e 35 23 .2 26 30 .6 41 35
.7 14 21 .b 28 28 0x6f 41 29 .3 22 28 .7 35 39
.8 7 09 ..C 24 33 0x70 10 23 .4 28 21 .8 26 13
.9 11 17 .d 30 39 .1 18 21 .5 24 19 .9 2 17
.a 12 16 ..e 29 32 .2 19 32 .6 29 26 .a 33 20
.b 18 24 0x3f 33 38 .3 25 30 .7 23 24 .b 29 24
..C 14 15 0x40 20 19 .4 21 21 .8 14 20 ..C 35 21
.d 20 23 .1 24 15 .5 27 19 .9 08 18 .d 31 25
.. 13 22 .2 23 16 .6 28 26 .a 23 25 ..e 40 28
0x0f 21 30 .3 29 12 .7 32 24 .b 19 23 0xdf 38 32
0x10 12 12 .4 25 17 .8 25 34 ..C 25 12 0xe0 09 24
.1 18 12 .5 31 13 .9 29 32 .d 21 10 .1 03 30
.2 11 21 .6 26 10 .a 28 39 .. 28 17 .2 16 19
.3 19 21 .7 34 06 .b 34 37 Oxaf 26 15 .3 12 25
.4 13 18 .8 11 30 ..C 30 32 0xb0 21 29 .4 18 32
) 17 18 .9 19 26 .d 36 30 .1 17 35 ) 14 38
.6 18 27 .a 20 27 .e 31 37 .2 24 32 .6 23 31
.7 24 27 .b 26 23 0x7f 39 35 .3 22 38 .7 21 37
.8 17 17 ..C 22 24 0x80 25 21 .4 18 21 .8 20 21
.9 23 17 .d 28 20 .1 21 29 ) 12 27 .9 18 27
.a 22 22 ..e 29 21 .2 26 16 .6 27 24 .a 25 16
.b 26 22 0x4f 33 17 .3 20 24 .7 23 30 .b 21 22
..C 12 23 0x50 18 25 .4 24 17 .8 22 24 ..C 27 25
.d 20 23 .1 24 29 ) 22 25 .9 18 30 .d 23 31
..€ 23 32 .2 25 20 .6 31 12 ..a 23 31 .e 30 20
ox1f 29 32 .3 29 24 .7 27 20 .b 17 37 Oxef 24 26
0x20 16 16 .4 15 19 .8 30 20 ..C 21 24 0xf0 25 34
.1 22 14 ) 23 23 .9 26 28 .d 19 30 .1 21 32
.2 21 13 .6 24 14 .a 33 15 ..e 28 27 .2 28 31
.3 25 11 .7 30 18 .b 31 23 0xbf 24 33 .3 22 29
.4 11 26 .8 19 28 ..C 27 12 0xc0 27 20 .4 26 38
) 19 24 .9 25 32 .d 21 20 .1 23 16 ) 24 36
.6 22 23 .a 20 23 ..e 36 03 .2 32 25 .6 31 35
.7 28 21 .b 28 27 0x8f 32 11 .3 30 21 .7 27 33
.8 17 21 ..C 22 26 0x90 11 35 .4 26 28 .8 30 31
.9 23 19 .d 26 30 .1 05 35 ) 20 24 .9 26 29
..a 16 18 ..e 25 25 .2 20 28 .6 33 33 .a 35 28
.b 24 16 0x5f 31 29 .3 16 28 .7 29 29 .b 33 26
..C 18 27 0x60 24 19 .4 22 27 .8 28 17 ..C 29 39
.d 22 25 .1 30 25 ) 18 27 .9 24 13 .d 23 37
.. 23 28 .2 25 26 .6 25 24 .a 31 26 ..e 36 32
0x2f 29 26 .3 33 32 .7 23 24 .b 25 22 Oxff 32 30
0x30 20 18 .4 27 17 .8 22 26 ..C 29 25

.1 24 24 ) 31 23 .9 20 26 .d 27 21

.2 25 17 .6 30 24 .a 29 19 .. 34 30

.3 31 23 .7 36 30 .b 25 19 Oxcf 30 26

Notation: (here, ...1 written below 0x00 means 0x01 and so on. Similarly, ...1 written below 0x00 means 0x01. This notation is used throughout in the table)
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We create lightweight 2°x2' IMDS matrices over
GF(2)[z] / (0x13) and GF(2)[z]/ (0z1le3) for k=23 in
terms of XOR count. We show that our IMDS matrices are
significantly lighter than the matrices used in ANUBIS?,
CLEFIA?, and KHAZAD?. We also create some non-IMDS
matrices that are lighter than the non-IMDS matrix utilized in
WHIRPOOL?.

Our paper’s findings are as follows:

*  We created a lightweight 4 x 4 non-IMDS Hadamard ma-
trix in the finite field GF(2)[z] / (0213) with XOR count
16, which is the minimum XOR count among the other
best-known XOR counts of lightweight non-IMDS ma-
trices over GF'(2*) (Table 2). In addition, we generated
4 x 4 IMDS Hadamard and non-IMDS Hadamard matri-
ces with optimal XOR counts. Table 2 also demonstrates
that the XOR count is affected by the polynomial used to
generate a finite field.

* We created an 8x8 IMDS Hadamard matrix
in GF(2)[z]/ (0z13)with an XOR count of 64
(Table 2). To the best of our knowledge, this is the best
XOR count for constructing an 8 X 8 MDS matrix in the
field GF(2)[z] / (0213). In addition, we created an8 x 8
non-IMDS Hadamard matrix in GF(2)[z] / (0x13) with
XOR count 54 (Table 2). This XOR count is the minimum
of the known XOR counts of 8 x 8§ non-IMDS Hadamard
matrices generated”.

*  We created a lightweight 4 x4 IMDS Hadamard matrix
in GF(2)[z] / (0z1c3) with an XOR count of 40 (Table 3).
This XOR count is less than that of the 4 x4 IMDS Ha-
damard matrices used in the well-known ANUBIS and
CLEFIA ciphers. In addition, we created a lightweight
8 x 8 IMDS Hadamard matrix in GF(2)[z] / (0z1c3) with
XOR count 102 (Table 2). This XOR count is equal to
the minimum known XOR count required in the im-
plementation of an 8 x8IMDS Hadamard matrix in
GF(2)[x] / (0x1c3) (Table 3 and '?).

*  In addition, we created lightweight 4 x 4 and 8 X8 non-
IMDS Hadamard matrices over GF(2%) having XOR
counts of 37 and 96, respectively (Table 4). These XOR
counts are equal to the minimum known XOR counts of
lightweight 4 x 4 and 8 x 8 non-IMDS Hadamard matri-
ces (see '2). We constructed a 4 X 4 non-IMDS Hadamard
matrix that requires fewer XOR operations than the well-
known circulant matrix associated with AES (see ?*).

*  The MDS matrices generated in'¢ can also be generated us-
ing the matrix forms M| and M, proposed in section 3. For
example, if we take ﬂo =022 and 3, = 0z5 in M, then
we can obtain Hadamard matrix had(0x1, 022, 0x5, 027),
which can then be utilized to build the same GHadamard
matrix considered in Example 5 of'®. Similarly, using our
matrix forms M and M, , we can construct the other GHa-
damard matrices mentioned in Examples 6 and 7 of™,

* The XOR count of the 4 x4 IMDS Hadamard matrix
over GF(2)[z] / (0z11d), which is used in ANUBIS,
is 46. Furthermore, the XOR count of CLEFIA’s 4 x 4
IMDS Hadamard matrix over GF'(2)[z]/ (0211d), is 54.
Table 2 shows that the 4 x 4 IMDS Hadamard matrix over
GF(2)[z] / (0z1c3) generated in this study is significantly
lighter than the matrices used in the ANUBIS and CLE-
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FIA ciphers. Furthermore, the XOR count of the 8Xx8
IMDS Hadamard matrix over GF(2)[z]/ (0211d), used
in the KHAZAD cipher is 156. In this paper, we created
an 8 X8 IMDS Hadamard matrix over GF(2)[z] / (0x1c3)
with a much lower XOR count than the matrix used in
KHAZAD.

5. CONCLUSIONS

Author presented two new Hadamard matrix forms for
generating 2:x2*IMDS matrices over GF(2"), for LC, where &=2,3
respectively. The proposed methods provide a straightforward
way for generating 4x4 IMDS matrices as well as a hybrid
method for constructing 8x8 IMDS matrices over GF(2"). In
addition, we provided an algorithm for computing the branch
number of nxn invertible matrices over GF(2”). In the case of
Hadamard matrices, we reduced the computational complexity
of our algorithm. Furthermore, we generated 4x4 and 8x8 non-
IMDS matrices for LC with optimal XOR counts using the
branch number algorithm. In future, proposed techniques will
be useful for search-based methods developed in prior studies
to generate IMDS matrices over GF(2").
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