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NOMENCLATURE
PU  : Prediction Unit
TU   : Transform Unit
CB   : Coding Block
CTU      : Coding Tree Unit
CU        : Coding Unit
RDO Rate : Distortion Optimization
Y   : Luminance
Cb  : Blue Chroma
Cr  : Red Chroma
HD   : High Definition
UHD   : Ultra High Definition
Sk  : Sobel Operator

1. INTRODUCTION
High-Efficiency Video Coding (HEVC) is the most recent 

video coding standard. It was introduced in 2013 and was 
developed by the Joint Collaborative Team on Video Coding 
(JCT-VC). HEVC is an improvement over its predecessor, 
H.264/AVC, due to its ability to decrease data requirements 
by 50% while maintaining video quality. By utilising a variety 
of techniques to enhance video quality while preserving data, 
HEVC increases the computational complexity of the encoder. 
The following are some of the novel functionalities introduced 
by HEVC to improve coding efficiency:

• A flexible quadtree structure.
• Increased intra-prediction.
• Adaptive sample offset.
• Advanced motion vector prediction.

Using these additional features in a real-time environment 
significantly increases computational complexity. The quadtree 
structure is used as a reference when dividing a video frame 
from a particular sequence into non-overlapping Coding Tree 
Units (CTU). The largest and smallest CUs in the CTU partition 
are 64×64 and 8×8, respectively3. Each 64×64 coding unit is 
subdivided into four sub-CUs recursively until the 8×8 coding 
unit hasreached. Fig. 1 depicts an intra-prediction coding tree 
unit partition for HEVC. The CU, often called the CTU, is 
64×64 and has a depth of 0. Each sub-CU is 32×32 and has 
a depth of one. The CU depth is continuously increasing and 
being divided into smaller CUs to improve the performance of 
an image. For instance, the size is 16×16, and the CU depth of 
the letters a, b, g, j, o, and p is 2. CUs labeled as c, d, e, f, k, l, 
m, and n are 8x8 in size and maximum depth is 3.

CU is composed of the three Coding Blocks (CBs) 
Luminance (Y), Blue Chroma (Cb), and Red Chroma for a color 
image (Cr). CB is sufficient for determining prediction type, 
but it may need to be more significant to store Motion Vectors 
(MV) inter prediction or intra-prediction mode.The Prediction 
Unit (PU) for each CU must be determined4-7. Each PU has one 
of 35 distinct prediction modes. The best PU must be chosen 
and assigned to the corresponding CU. HEVC uses the Rate-
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Distortion Optimization (RDO) method8-12. Each CU must 
be iteratively checked to identify which of the 35 prediction 
modes has the lowest rate-distortion cost. For a standard 64×64 
block, one must look at RD cost to get prediction units for the 
whole block. 

The present paper is organised in the following manner: 
Section 2 of the paper presents a comprehensive compilation 
of pertinent scholarly works. The discussion on the complexity 
of an image’s texture is included in Section 3, while Section 
4 provides a description of the machine-learning algorithms 
proposed for reducing the complexity of coding unit 
partitioning in all intra-HEVC configurations. The empirical 
results outlined in Section 5. The conclusion of our paper is 
presented in Section 6.

2.  LITERATURE REVIEW
Over the last decade, numerous researchers have developed 

various algorithms and methods for faster determining the 
coding unit partitioning of an image. Some ways to divide up 
coding units are based on recursion, while others use online 
learning. Finding the coding unit partition with recursive-
based methods is much harder and takes a lot more time than 
with online-based methods. In this section, some of the most 
recent online learning methods have beendiscussed.

Lee & Jeong13 suggest a machine learning algorithm 
to quickly decide the depth of coding units in HEVC intra-
coding. They use RDO to measure complexity. They employ 
K- nearest neighbor and Fischer linear discriminant analysis 
for efficient CU partitioning decision-making.

Bai & Yuan14 propose a quickly decide the CTU decision 
technique for accelerating HEVC intra-prediction by using the 
Sobel operator and maximum absolute difference to remove 
texture complexity modes. However, the combination of these 
methods may result in the skipping of certain coding units 
during the process.

Li15, et al. & Imen16, et al. propose using CNN-based 
algorithms as an alternative to the recursive search used in 
RDO for coding unit partitioning. This strategy maintains 
compressionefficiency while significantlyreducing the time 
required to determine if all depths need to be split.

Guanwen Zhang17, et al. suggest a deep learning-based 
approach for CU partitioning in HEVC intra-prediction. Their 
method utilizes a CNN to forecast whether a given CU (64×64, 
32×32, or 16×16) should be divided, reducing the need for 
recursive search, and improving efficiency.

Kim & Ro18 introduce a neural network architecture for 
predicting CU division in HEVC intra-coding. They develop a 
neural network database that encodes image and vector data to 
enhance prediction accuracy, enabling effective determination 
of CU partitioning depths.

Wang & Li19 introduce a one-step method for dividing 
coding units and prediction units in HEVC intra-coding.They 
use a one-step decision network structure in their approach 
to predict CU partitioning. This helps reduce complexity and 
eliminates the need for repeated searching.

Bouaafia20, et al. suggest a fast CU splitting strategy 
for HEVC intra-coding using a deep learning model. Their 
approach combines CNN-LSTM to predict CU splitting and 
decrease encoding complexity. The deep framework is trained 
and evaluated using an efficient dataset.

Bouaafia21, et al. demonstrate a machine learning-based 
approach for coding unit division in inter-mode HEVC. They 
use an online SVM to simplify things and build a deep learning 
framework. This framework relies on a large training database 
to predict coding unit partitions.

Existing literature offers numerous models and methods 
for reducing complexity and bit rate in Coding Unit (CU) 
partitions. However, many of these techniques suffer from 
time-consuming computations, computational complexity, or 
limited bit rate reduction. Many people want faster and simpler 
methods for coding unit partitioning. This study suggests 
using a machine learning approach to fulfill this demand with a 
method that is not too complex.

The literature13-21,suggests that various texture features, 
such as standard deviation, root mean square error, sub-CU 
complexity difference, directional complexity, and quantization 
parameter, should be employed to determine the homogeneity 
or diversity of CUs within CTUs during the CU splitting 
process. By incorporating these multiple features, a more 
comprehensive evaluation of CU complexity can be achieved, 
leading to improved CU partitioning decisions and potentially 
better compression efficiency.

3.  MULTIPLE FEATURES FOR FINDING IMAGE 
TEXTURE COMPLEXITY
The texture features used for computing image complexity 

are classified into three categories: Class A (non-homogeneous), 

Figure 1.  Partition of a coding tree unit. (a) The final partition 
of a coding tree unit. (b) CU and PU partition. (c) 
Quad-tree partition of a coding tree unit.
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Class B (homogeneous), and Class C (recursive-based 
technique). This classification improves the accuracy of texture 
classification and reduces the computational load for coding 
unit depth calculations.

The image complexity is divided into two categories: 
direction information and texture information. The texture 
information is determined by three distinct characteristics:

3.1  Root Mean Square Error (RMSE)
It calculates the average gap between the pixel values of 

an image block and the values predicted for it. Higher RMSE 
indicates greater complexity and depth within the block. The 
RMSE of an image is calculated using equation Eqn. (1).
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In this context, h (i, j) is the luminescent value of a pixel at 
location i, j. 
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 stands for the average luminescent of the 
entire block, and N represents the block’s size.

variation and complexity.The standard deviation is calculated 
using Eqn. (3).
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 is 
the average luminescence of the entire block.

Additionally, the Directional Complexity (DC) is 
computed using the Sobel operator to capture direction 
information. The angular Sobel operator estimates the gradient 
of the image and helps determine its complexity in different 
directions as shown in Table.1. Eqn. 4 and 5 helps to capture 
the directional information.

Table 1.  Angular Sobel operators Sk at each pixel location 
(horizontal, vertical, 450, and 1350).

1 2 1
0 0 0
-1 -2 -1
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1 0 -1
2 0 -2
1 0 -1
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0 1 2
-1 0 1
-2 -1 0
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where, g (i, j) is the luminescent value at that location, N is the 
block size, and Gk is the Sobel matrix.

The Quantization Parameter (QP) step is also considered, 
as it directly affects the bitrate and coding unit partitions in 
HEVC encoding. It is normalized using the Qstep value, which 
is calculated based on the QP.The quantization parameter is 
determined using Eqn. (6) as follows: 
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             (6)
If the QP increases by 1, Qstep varies by 12.5 per cent. 

Thus, it is observed that for a slight change in QP, Qstep 
changes drastically.

By considering these features, including RMSE, SCCD, 
SD, DC, and QP step, the proposed approach aims to effectively 
evaluate the texture and directional complexity of coding units 
for more accurate and efficient coding unit partitioning.

4.  PROPOSED MACHINE LEARNING-BASED 
ALGORITHM FOR FAST CODING UNIT DEPTH 
DECISION IN HEVC INTRA-PREDICTION
The motivation behind this research is to explore SVM-

Figure 2.  Example of coding unit partitions obtained for an 
image in basketball pass sequence.

3.2  Sub-CU Complexity Difference
SCCD measures the complexity difference between the 

sub-coding units within a block as shown in Fig. 2. The second 
sub-CU of block A is separated into smaller blocks because 
of the second sub-CU’s complex texture. Block B is already 
broken into other blocks to show its complexity. The SCCD 
is higher when the block is more likely to split and lower 
when the sub-CU complexity is different. A higher complexity 
difference suggests a higher probability of splitting for the 
block. The SCCD of a block is calculated by Eqn. (2)
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where, vari is the ith sub-CU of the block’s variance, and 
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is the total variance over all four sub-CUs.

3.3  Standard Deviation
SD calculates the dispersion of pixel values within an 

image block. Higher standard deviation indicates greater 
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based approaches for simplifying the HEVC intra-coding 
process. By employing online learning techniques, it is possible 
to reduce the complexity and computational load involved in 
determining coding unit depths, thus achieving faster encoding 
while maintaining satisfactory coding efficiency.

4.1  Support Vector Machine (SVM) Learning Algorithm 
for Finding Coding Unit Depth Values
Compared to deep learning techniques22, the Support 

Vector Machine (SVM) algorithm requires less training time. 
SVMs can find the decision boundary using only the support 
vectors, which results in a smaller subset of the dataset 
being used for training. This is advantageous when accurate 
classification is achieved, as less data is needed for training.

SVM utilizes the kernel trick, a technique that projects 
data into higher dimensions, enabling the establishment of a 
decision boundary in n-dimensional space.This allows for the 
classification of data into different classes using an optimal 
hyperplane.

When predictability of the learning model’s results is 
a concern, it is advisable to initially explore conventional 
machine learning methods before opting for deep learning 
models.

The proposed methodology as shown in Fig. 3 for 
identifying optimal coding unit (CU) depths in intra-prediction 
involves calculating the root mean square error, standard 
deviation, sub-coding units complexity difference and 
directional complexity for each feature of the coding tree units. 
To improve distribution properties and eliminate redundant 
information, it is recommended to normalize the values of the 
texture features. The normalization is achieved by applying a 
logarithm transformation Eqn. (7).
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SVM is utilized to classify the normalized texture data. 

Simulation results have shown that SVM achieves higher 
accuracy in classifying image blocks compared to other 
classification algorithms like K-Nearest Neighbor (KNN), 
Logistic Regression (LR), Naive Bayes, etc.

In the proposed approach, the samples are divided into 
three classes (A, B, and C) using SVM23. Figure 4 demonstrates 
a two-class classification example, indicating that certain 
samples exhibit significant ambiguity. To reduce ambiguity, 
the proposed method employs a three-class classification, as 
depicted in Fig. 5.

Figure 5 illustrates the three-class classification by 
dividing the plot into classes A, B, and C. Class A samples are 
mostly split, while class B samples are predominantly un-split. 
On the other hand, class C samples consist of both split and 
un-split samples, making their classification more challenging. 
The difficulty lies in identifying the sample class for class 
C. This means that the original RDO cost method must be 
employed to determine whether samples from class C should 
be split.

In the proposed method, RDO cost is used to identify 
only class C samples, while SVM is employed to classify 
samples belonging to class A and class B. Due to the smaller 
number of samples in class C compared to classes A and B, this 

Figure 3. Proposed algorithm to calculate the CU depths.

Figure 4. An example for 2 class classification afternormalizing.
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approach decreases complexity and reduces the time required 
for classification.

The literature discusses the limitations of using a single 
feature for rate distortion optimization (RDO), which divides 
samples into different block sizes such as CTU (64×64), CU 
(32×32), and sub CU (16×16). By relying on a single feature, 
the information in the image is not fully utilized, leading to the 
loss of some information during reconstruction. Moreover, the 
accuracy and computation time for sample separation based on 
rate distortion using a single feature are poor, as indicated in 
Table 2.

Tables 3 and Table 4 present the results of simulations with 
combinations of 2, 3, and 4 features to reduce computational 
complexity. It is found that the accuracy achieved with 
combinations of two or more features is nearly identical. 
Therefore, two features are selected as inputs to the SVM for 
classification accuracy assessment. The directional complexity 
and standard deviation are chosen as the two input features, and 
they exhibit good accuracy in identifying the class to which 
each CTU belongs and estimating the depths of the bestCUs.

Figures 6, 7, and 8 illustrate the classification texture 
with the highest accuracy based on directional complexity 
and standard deviation for 64×64, 32×32, and 16×16 samples, 
respectively. The split samples are depicted in purple on the 
left side of these graphs, while the un-split samples are shown 
in yellow on the right side.

Figure 5. An example of three-class classification after normalizing.

Table 2. Accuracy comparison with a single feature.

Single-texture 
feature 
considered

64 × 64
Split/unsplit 
accuracy 
classification 
(%)

32 × 32
Split/unsplit 
accuracy
classification 
(%)

16 × 16
Split/unsplit 
accuracy
classification 
(%)

Rate-Distortion 
(RD) cost 87.5 77.4 69.0

Table 3. Accuracy comparison with two features

Multiple features 
considered

Accuracy with block sizes
64 × 64 
(%)

32 × 32 
(%)

16 × 16 
(%)

Dcom and SCCD 92.78 87.11 82.86

Dcom and RMSE 91.12 87.15 84.30

Dcom and SD 93.03 87.28 85.16

SCCD and RMSE 92.60 87.08 83.51

SCCD and SD 92.30 86.35 83.49

RMSE and SD 91.81 87.20 83.32

Table 4. Accuracy comparison with more than two features.

More than two features are 
considered

Accuracy with block sizes
64 × 64
(%)

32 × 32
(%)

16×16
(%)

Dcom, SCCD, and RMSE 91.29 85.33 84.75

Dcom, SCCD, and SD 90.08 84.14 84.68

RMSE, SCCD, and SD 89.76 86.43 82.44

RMSE, Dcom and SD 91.43 86.32 84.13

Dcom, SCCD, RMSE, and SD 92.33 86.43 85.04

To address these limitations, this paper proposes using 
multiple features to retrieve texture information from images. 
These features include RMSE, SD, SCCD, DC, and the 
quantization parameter, as shown in Table 3. Simulations 
are conducted with different combinations of these features 
as inputs to the SVM, and the accuracy is evaluated. It is 
observed that by incorporating multiple features, the accuracy 
is improved compared to using a single feature, albeit with a 
modest increase in computational complexity.

Figure 6. Dcom and SD for 64×64 samples.

Figure 7. Dcom and SD for 32×32 samples.
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images were determined, and features such as RMSE, DC, 
SCCD, SD, and QP were defined. The training dataset consisted 
of a substantial number of images with associated luminance 
values. The algorithm was trained using 4000 blocks of size 
64×64, 16000 blocks of size 32×32, and 640,000 blocks of size 
16×16. The SVM algorithm was used to calculate depth values 
for each YUV sequence. These depth values for the best CUs 
were generated and incorporated into the HM 15.0 master to 
complete the HEVC procedure and achieve the desired results. 
Different classes were utilized in the algorithm. The HM 15.0 
reference software was employed to implement additional 
quantization parameters (22, 27, 32, and 37).The test videos, 
featuring different resolutions,ran  on a Windows 10 computer 
powered by an Intel(R) Xeon® W-2133 CPU running at 3.60 
GHz, with 3600 MHz, 6 Cores, and 12 Logical Processors, 
using an All-Intra-Main configuration.

Tprop indicates the proposed encoding time,the encoding 
time of orginal is denoted by THM15.0, and ∆T is the percentage 
of saved encoding time. In Table 6, the suggested approach 
is contrasted with the other fast coding unit partition methods 
in terms of ∆T, BP, and BR. The proposed method lowered 
complexity with a slight increase in bit rate while reducing the 
average encoding time by 67.44 % compared to the several 
fast-coding unit decision algorithms.

6.  CONCLUSION
This paper reduced the fast-coding unit partition complexity 

by using different image characteristics. Multiple features 
like RMSE, SD, SCCD, DC, and quantization parameters are 
calculated to extract the complete texture image information. 
Using homogeneous and non-homogeneous classification 
combined with brute force search will reduce computational 
complexity and improve classification accuracy. The proposed 
SVM model achieved the highest accuracy for splitting a 
sample using Directional Complexity and Standard Deviation. 
For all yuv sequences, the performance of the optimal depths 
is calculated, and these prediction depths are included in HM 
15.0. The suggested machine learning approach for estimating 
the depths utilized less encoding time than the other coding 
unit partition methodologies, by roughly 67.44 %, with a slight 
increase in a bit rate of 1.61 %.

6.1  HEVC Application in the Defence Domain
Traditional HEVC reduces the bit rate by 50 % compared 

to H.264, whereas our suggested method reduces the encoding 
time by more than 50 % compared to traditional HEVC. 
Consequently, our proposed method is more appropriate for 
encoding high-quality video sequences, such as 4K and 8K 
resolutions. The high-resolution Image/Video coding is helpful 
for medical imaging, Satellite Imaging, and surveillance at 
borders with clearer images/Video. This feature is more useful 
for capturing and retrieving small objects from Indian border 
attackers. It is also useful for drone photography/videography.
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