
270

Defence Science Journal, Vol. 74, No. 2, March 2024, pp. 270-277, DOI : 10.14429/dsj.74.18780
 2024, DESIDOC

Received : 22 December 2022, Revised : 01 December 2023
Accepted : 04 December 2023, Online published : 26 March 2024

NOMENCLATURE
PU : Prediction Unit
TU : Transform Unit
CB : Coding Block
CTU : Coding Tree Unit
CU : Coding Unit
RDO Rate : Distortion Optimization
Y : Luminance
Cb : Blue Chroma
Cr : Red Chroma
HD : High Definition
UHD : Ultra High Definition
Sk : Sobel Operator

1. INTRODUCTION
High-Efficiency Video Coding (HEVC) is the most recent

video coding standard. It was introduced in 2013 and was
developed by the Joint Collaborative Team on Video Coding
(JCT-VC). HEVC is an improvement over its predecessor,
H.264/AVC, due to its ability to decrease data requirements
by 50% while maintaining video quality. By utilising a variety
of techniques to enhance video quality while preserving data,
HEVC increases the computational complexity of the encoder.
The following are some of the novel functionalities introduced
by HEVC to improve coding efficiency:

• A flexible quadtree structure.
• Increased intra-prediction.
• Adaptive sample offset.
• Advanced motion vector prediction.

Using these additional features in a real-time environment
significantly increases computational complexity. The quadtree
structure is used as a reference when dividing a video frame
from a particular sequence into non-overlapping Coding Tree
Units (CTU). The largest and smallest CUs in the CTU partition
are 64×64 and 8×8, respectively3. Each 64×64 coding unit is
subdivided into four sub-CUs recursively until the 8×8 coding
unit hasreached. Fig. 1 depicts an intra-prediction coding tree
unit partition for HEVC. The CU, often called the CTU, is
64×64 and has a depth of 0. Each sub-CU is 32×32 and has
a depth of one. The CU depth is continuously increasing and
being divided into smaller CUs to improve the performance of
an image. For instance, the size is 16×16, and the CU depth of
the letters a, b, g, j, o, and p is 2. CUs labeled as c, d, e, f, k, l,
m, and n are 8x8 in size and maximum depth is 3.

CU is composed of the three Coding Blocks (CBs)
Luminance (Y), Blue Chroma (Cb), and Red Chroma for a color
image (Cr). CB is sufficient for determining prediction type,
but it may need to be more significant to store Motion Vectors
(MV) inter prediction or intra-prediction mode.The Prediction
Unit (PU) for each CU must be determined4-7. Each PU has one
of 35 distinct prediction modes. The best PU must be chosen
and assigned to the corresponding CU. HEVC uses the Rate-

High-Speed Coding Unit Depth Identification Based on Texture Image Information
Using SVM

Pattimi Hari* and Kota Naga Srinivasarao Batta
National Institute of Technology Warangal, Telangana-506004, India.

*E-mail: harinitw@student.nitw.ac.in

ABSTRACT

The High-Efficiency Video Coding (HEVC/H.265) standard was created by a group called the Joint
Collaborative Team on Video Coding (JCT-VC) and was released in 2013.In HEVC Rate-Distortion Optimization
(RDO) is employed for partitioning the coding tree units into coding units recursively due to this the computational
complexity increases. However, changing from macroblocks to coding tree units the compression efficiency increases
and increases the encoding of the video sequence. This paper presents a Support Vector Machine (SVM)-based
method for finding the fastest coding unit division in intra-prediction HEVC without compromising compression
efficiency. All partitions of CTU are assessed using five characteristics: Root Mean Square Error (RMSE), Sub CU
Complexity Difference (SCCD), Standard Deviation (SD), Directional Complexity (DC), and Quantization Parameter
(QP) to optimize the intra-prediction of HEVC in all intra-configurations. The simulation results reveal combining
directional complexity and standard deviation yields a more accurate classification. SVM was used to separate
split-unsplit data, and the conventional rate-distortion optimisation technique was applied to separate samples that
were difficult to separate. The results show that the encoding process has been completed 67.44% faster, albeit with
a marginal increase in bit rate.

Keywords: CTU; DC; HEVC; RMSE; SCCD; SD; SVM

HARI & BATTA: HIGH-SPEED CODING UNIT DEPTH IDENTIFICATION BASED ON TEXTURE IMAGE INFORMATION USING SVM

271

Distortion Optimization (RDO) method8-12. Each CU must
be iteratively checked to identify which of the 35 prediction
modes has the lowest rate-distortion cost. For a standard 64×64
block, one must look at RD cost to get prediction units for the
whole block.

The present paper is organised in the following manner:
Section 2 of the paper presents a comprehensive compilation
of pertinent scholarly works. The discussion on the complexity
of an image’s texture is included in Section 3, while Section
4 provides a description of the machine-learning algorithms
proposed for reducing the complexity of coding unit
partitioning in all intra-HEVC configurations. The empirical
results outlined in Section 5. The conclusion of our paper is
presented in Section 6.

2. LITERATURE REVIEW
Over the last decade, numerous researchers have developed

various algorithms and methods for faster determining the
coding unit partitioning of an image. Some ways to divide up
coding units are based on recursion, while others use online
learning. Finding the coding unit partition with recursive-
based methods is much harder and takes a lot more time than
with online-based methods. In this section, some of the most
recent online learning methods have beendiscussed.

Lee & Jeong13 suggest a machine learning algorithm
to quickly decide the depth of coding units in HEVC intra-
coding. They use RDO to measure complexity. They employ
K- nearest neighbor and Fischer linear discriminant analysis
for efficient CU partitioning decision-making.

Bai & Yuan14 propose a quickly decide the CTU decision
technique for accelerating HEVC intra-prediction by using the
Sobel operator and maximum absolute difference to remove
texture complexity modes. However, the combination of these
methods may result in the skipping of certain coding units
during the process.

Li15, et al. & Imen16, et al. propose using CNN-based
algorithms as an alternative to the recursive search used in
RDO for coding unit partitioning. This strategy maintains
compressionefficiency while significantlyreducing the time
required to determine if all depths need to be split.

Guanwen Zhang17, et al. suggest a deep learning-based
approach for CU partitioning in HEVC intra-prediction. Their
method utilizes a CNN to forecast whether a given CU (64×64,
32×32, or 16×16) should be divided, reducing the need for
recursive search, and improving efficiency.

Kim & Ro18 introduce a neural network architecture for
predicting CU division in HEVC intra-coding. They develop a
neural network database that encodes image and vector data to
enhance prediction accuracy, enabling effective determination
of CU partitioning depths.

Wang & Li19 introduce a one-step method for dividing
coding units and prediction units in HEVC intra-coding.They
use a one-step decision network structure in their approach
to predict CU partitioning. This helps reduce complexity and
eliminates the need for repeated searching.

Bouaafia20, et al. suggest a fast CU splitting strategy
for HEVC intra-coding using a deep learning model. Their
approach combines CNN-LSTM to predict CU splitting and
decrease encoding complexity. The deep framework is trained
and evaluated using an efficient dataset.

Bouaafia21, et al. demonstrate a machine learning-based
approach for coding unit division in inter-mode HEVC. They
use an online SVM to simplify things and build a deep learning
framework. This framework relies on a large training database
to predict coding unit partitions.

Existing literature offers numerous models and methods
for reducing complexity and bit rate in Coding Unit (CU)
partitions. However, many of these techniques suffer from
time-consuming computations, computational complexity, or
limited bit rate reduction. Many people want faster and simpler
methods for coding unit partitioning. This study suggests
using a machine learning approach to fulfill this demand with a
method that is not too complex.

The literature13-21,suggests that various texture features,
such as standard deviation, root mean square error, sub-CU
complexity difference, directional complexity, and quantization
parameter, should be employed to determine the homogeneity
or diversity of CUs within CTUs during the CU splitting
process. By incorporating these multiple features, a more
comprehensive evaluation of CU complexity can be achieved,
leading to improved CU partitioning decisions and potentially
better compression efficiency.

3. MULTIPLE FEATURES FOR FINDING IMAGE
TEXTURE COMPLEXITY
The texture features used for computing image complexity

are classified into three categories: Class A (non-homogeneous),

Figure 1. Partition of a coding tree unit. (a) The final partition
of a coding tree unit. (b) CU and PU partition. (c)
Quad-tree partition of a coding tree unit.

DEF. SCI. J., VOL. 74, NO. 2, MARCH 2024

272

Class B (homogeneous), and Class C (recursive-based
technique). This classification improves the accuracy of texture
classification and reduces the computational load for coding
unit depth calculations.

The image complexity is divided into two categories:
direction information and texture information. The texture
information is determined by three distinct characteristics:

3.1 Root Mean Square Error (RMSE)
It calculates the average gap between the pixel values of

an image block and the values predicted for it. Higher RMSE
indicates greater complexity and depth within the block. The
RMSE of an image is calculated using equation Eqn. (1).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

(1)

In this context, h (i, j) is the luminescent value of a pixel at
location i, j.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

 stands for the average luminescent of the
entire block, and N represents the block’s size.

variation and complexity.The standard deviation is calculated
using Eqn. (3).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

(3)

where, N represents the size of the block, h (i, j) is the
luminescent value of a pixel at coordinatesi, j, and

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

 is
the average luminescence of the entire block.

Additionally, the Directional Complexity (DC) is
computed using the Sobel operator to capture direction
information. The angular Sobel operator estimates the gradient
of the image and helps determine its complexity in different
directions as shown in Table.1. Eqn. 4 and 5 helps to capture
the directional information.

Table 1. Angular Sobel operators Sk at each pixel location
(horizontal, vertical, 450, and 1350).

1 2 1
0 0 0
-1 -2 -1

Shor

1 0 -1
2 0 -2
1 0 -1

Sver

0 1 2
-1 0 1
-2 -1 0

S45
0

2 1 0
1 0 -1
0 -1 -2

S135
0

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

 (4)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

(5)

where, g (i, j) is the luminescent value at that location, N is the
block size, and Gk is the Sobel matrix.

The Quantization Parameter (QP) step is also considered,
as it directly affects the bitrate and coding unit partitions in
HEVC encoding. It is normalized using the Qstep value, which
is calculated based on the QP.The quantization parameter is
determined using Eqn. (6) as follows:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

 (6)
If the QP increases by 1, Qstep varies by 12.5 per cent.

Thus, it is observed that for a slight change in QP, Qstep
changes drastically.

By considering these features, including RMSE, SCCD,
SD, DC, and QP step, the proposed approach aims to effectively
evaluate the texture and directional complexity of coding units
for more accurate and efficient coding unit partitioning.

4. PROPOSED MACHINE LEARNING-BASED
ALGORITHM FOR FAST CODING UNIT DEPTH
DECISION IN HEVC INTRA-PREDICTION
The motivation behind this research is to explore SVM-

Figure 2. Example of coding unit partitions obtained for an
image in basketball pass sequence.

3.2 Sub-CU Complexity Difference
SCCD measures the complexity difference between the

sub-coding units within a block as shown in Fig. 2. The second
sub-CU of block A is separated into smaller blocks because
of the second sub-CU’s complex texture. Block B is already
broken into other blocks to show its complexity. The SCCD
is higher when the block is more likely to split and lower
when the sub-CU complexity is different. A higher complexity
difference suggests a higher probability of splitting for the
block. The SCCD of a block is calculated by Eqn. (2)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

 (2)
where, vari is the ith sub-CU of the block’s variance, and

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

is the total variance over all four sub-CUs.

3.3 Standard Deviation
SD calculates the dispersion of pixel values within an

image block. Higher standard deviation indicates greater

HARI & BATTA: HIGH-SPEED CODING UNIT DEPTH IDENTIFICATION BASED ON TEXTURE IMAGE INFORMATION USING SVM

273

based approaches for simplifying the HEVC intra-coding
process. By employing online learning techniques, it is possible
to reduce the complexity and computational load involved in
determining coding unit depths, thus achieving faster encoding
while maintaining satisfactory coding efficiency.

4.1 Support Vector Machine (SVM) Learning Algorithm
for Finding Coding Unit Depth Values
Compared to deep learning techniques22, the Support

Vector Machine (SVM) algorithm requires less training time.
SVMs can find the decision boundary using only the support
vectors, which results in a smaller subset of the dataset
being used for training. This is advantageous when accurate
classification is achieved, as less data is needed for training.

SVM utilizes the kernel trick, a technique that projects
data into higher dimensions, enabling the establishment of a
decision boundary in n-dimensional space.This allows for the
classification of data into different classes using an optimal
hyperplane.

When predictability of the learning model’s results is
a concern, it is advisable to initially explore conventional
machine learning methods before opting for deep learning
models.

The proposed methodology as shown in Fig. 3 for
identifying optimal coding unit (CU) depths in intra-prediction
involves calculating the root mean square error, standard
deviation, sub-coding units complexity difference and
directional complexity for each feature of the coding tree units.
To improve distribution properties and eliminate redundant
information, it is recommended to normalize the values of the
texture features. The normalization is achieved by applying a
logarithm transformation Eqn. (7).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁 1

ℎ ̅(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 1
4 ∑ (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅)23

𝑖𝑖=0 2

𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅

𝑅𝑅𝑆𝑆 = √∑ ∑ (ℎ(𝑖𝑖,𝑗𝑗)−ℎ̅(𝑖𝑖,𝑗𝑗))2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0

𝑁𝑁2−1 3

 𝐺𝐺𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑘𝑘 × 𝐴𝐴, 𝑘𝑘 = (ℎ𝑜𝑜𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣, 450, 1350)

A=[
g(i-1, j-1) g(i-1, j) g(i-1, j + 1)

g(i, j-1) g(i, j) g(i, j + 1)
g(i + 1, j + 1) g(i + 1, j) g(i + 1, j + 1)

] 4

𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 = 1
𝑁𝑁2 ∑ ∑ (

|𝑔𝑔ℎ𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)| +
|𝑔𝑔𝑣𝑣𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)| + |𝑔𝑔450(𝑖𝑖, 𝑗𝑗)| +

|𝑔𝑔1350(𝑖𝑖, 𝑗𝑗)|)
) (5)

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑄𝑄𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 2
𝑄𝑄𝑄𝑄−4

6 6

 𝑋𝑋𝑛𝑛𝑣𝑣𝑛𝑛=log10 𝑋𝑋 7

∆𝑇𝑇 =
𝑇𝑇𝐻𝐻𝐻𝐻15.0 − 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

𝑇𝑇𝐻𝐻𝐻𝐻15.0

 (7)
SVM is utilized to classify the normalized texture data.

Simulation results have shown that SVM achieves higher
accuracy in classifying image blocks compared to other
classification algorithms like K-Nearest Neighbor (KNN),
Logistic Regression (LR), Naive Bayes, etc.

In the proposed approach, the samples are divided into
three classes (A, B, and C) using SVM23. Figure 4 demonstrates
a two-class classification example, indicating that certain
samples exhibit significant ambiguity. To reduce ambiguity,
the proposed method employs a three-class classification, as
depicted in Fig. 5.

Figure 5 illustrates the three-class classification by
dividing the plot into classes A, B, and C. Class A samples are
mostly split, while class B samples are predominantly un-split.
On the other hand, class C samples consist of both split and
un-split samples, making their classification more challenging.
The difficulty lies in identifying the sample class for class
C. This means that the original RDO cost method must be
employed to determine whether samples from class C should
be split.

In the proposed method, RDO cost is used to identify
only class C samples, while SVM is employed to classify
samples belonging to class A and class B. Due to the smaller
number of samples in class C compared to classes A and B, this

Figure 3. Proposed algorithm to calculate the CU depths.

Figure 4. An example for 2 class classification afternormalizing.

DEF. SCI. J., VOL. 74, NO. 2, MARCH 2024

274

approach decreases complexity and reduces the time required
for classification.

The literature discusses the limitations of using a single
feature for rate distortion optimization (RDO), which divides
samples into different block sizes such as CTU (64×64), CU
(32×32), and sub CU (16×16). By relying on a single feature,
the information in the image is not fully utilized, leading to the
loss of some information during reconstruction. Moreover, the
accuracy and computation time for sample separation based on
rate distortion using a single feature are poor, as indicated in
Table 2.

Tables 3 and Table 4 present the results of simulations with
combinations of 2, 3, and 4 features to reduce computational
complexity. It is found that the accuracy achieved with
combinations of two or more features is nearly identical.
Therefore, two features are selected as inputs to the SVM for
classification accuracy assessment. The directional complexity
and standard deviation are chosen as the two input features, and
they exhibit good accuracy in identifying the class to which
each CTU belongs and estimating the depths of the bestCUs.

Figures 6, 7, and 8 illustrate the classification texture
with the highest accuracy based on directional complexity
and standard deviation for 64×64, 32×32, and 16×16 samples,
respectively. The split samples are depicted in purple on the
left side of these graphs, while the un-split samples are shown
in yellow on the right side.

Figure 5. An example of three-class classification after normalizing.

Table 2. Accuracy comparison with a single feature.

Single-texture
feature
considered

64 × 64
Split/unsplit
accuracy
classification
(%)

32 × 32
Split/unsplit
accuracy
classification
(%)

16 × 16
Split/unsplit
accuracy
classification
(%)

Rate-Distortion
(RD) cost 87.5 77.4 69.0

Table 3. Accuracy comparison with two features

Multiple features
considered

Accuracy with block sizes
64 × 64
(%)

32 × 32
(%)

16 × 16
(%)

Dcom and SCCD 92.78 87.11 82.86

Dcom and RMSE 91.12 87.15 84.30

Dcom and SD 93.03 87.28 85.16

SCCD and RMSE 92.60 87.08 83.51

SCCD and SD 92.30 86.35 83.49

RMSE and SD 91.81 87.20 83.32

Table 4. Accuracy comparison with more than two features.

More than two features are
considered

Accuracy with block sizes
64 × 64
(%)

32 × 32
(%)

16×16
(%)

Dcom, SCCD, and RMSE 91.29 85.33 84.75

Dcom, SCCD, and SD 90.08 84.14 84.68

RMSE, SCCD, and SD 89.76 86.43 82.44

RMSE, Dcom and SD 91.43 86.32 84.13

Dcom, SCCD, RMSE, and SD 92.33 86.43 85.04

To address these limitations, this paper proposes using
multiple features to retrieve texture information from images.
These features include RMSE, SD, SCCD, DC, and the
quantization parameter, as shown in Table 3. Simulations
are conducted with different combinations of these features
as inputs to the SVM, and the accuracy is evaluated. It is
observed that by incorporating multiple features, the accuracy
is improved compared to using a single feature, albeit with a
modest increase in computational complexity.

Figure 6. Dcom and SD for 64×64 samples.

Figure 7. Dcom and SD for 32×32 samples.

HARI & BATTA: HIGH-SPEED CODING UNIT DEPTH IDENTIFICATION BASED ON TEXTURE IMAGE INFORMATION USING SVM

275

images were determined, and features such as RMSE, DC,
SCCD, SD, and QP were defined. The training dataset consisted
of a substantial number of images with associated luminance
values. The algorithm was trained using 4000 blocks of size
64×64, 16000 blocks of size 32×32, and 640,000 blocks of size
16×16. The SVM algorithm was used to calculate depth values
for each YUV sequence. These depth values for the best CUs
were generated and incorporated into the HM 15.0 master to
complete the HEVC procedure and achieve the desired results.
Different classes were utilized in the algorithm. The HM 15.0
reference software was employed to implement additional
quantization parameters (22, 27, 32, and 37).The test videos,
featuring different resolutions,ran on a Windows 10 computer
powered by an Intel(R) Xeon® W-2133 CPU running at 3.60
GHz, with 3600 MHz, 6 Cores, and 12 Logical Processors,
using an All-Intra-Main configuration.

Tprop indicates the proposed encoding time,the encoding
time of orginal is denoted by THM15.0, and ∆T is the percentage
of saved encoding time. In Table 6, the suggested approach
is contrasted with the other fast coding unit partition methods
in terms of ∆T, BP, and BR. The proposed method lowered
complexity with a slight increase in bit rate while reducing the
average encoding time by 67.44 % compared to the several
fast-coding unit decision algorithms.

6. CONCLUSION
This paper reduced the fast-coding unit partition complexity

by using different image characteristics. Multiple features
like RMSE, SD, SCCD, DC, and quantization parameters are
calculated to extract the complete texture image information.
Using homogeneous and non-homogeneous classification
combined with brute force search will reduce computational
complexity and improve classification accuracy. The proposed
SVM model achieved the highest accuracy for splitting a
sample using Directional Complexity and Standard Deviation.
For all yuv sequences, the performance of the optimal depths
is calculated, and these prediction depths are included in HM
15.0. The suggested machine learning approach for estimating
the depths utilized less encoding time than the other coding
unit partition methodologies, by roughly 67.44 %, with a slight
increase in a bit rate of 1.61 %.

6.1 HEVC Application in the Defence Domain
Traditional HEVC reduces the bit rate by 50 % compared

to H.264, whereas our suggested method reduces the encoding
time by more than 50 % compared to traditional HEVC.
Consequently, our proposed method is more appropriate for
encoding high-quality video sequences, such as 4K and 8K
resolutions. The high-resolution Image/Video coding is helpful
for medical imaging, Satellite Imaging, and surveillance at
borders with clearer images/Video. This feature is more useful
for capturing and retrieving small objects from Indian border
attackers. It is also useful for drone photography/videography.

REFERENCES
1. Wiegand, T.; Sullivan, G.J.; Bjøntegaard, G. & Luthra,

A. Overview of the H.264/AVC video coding standard.
IEEE Trans. Circuits Syst. Video Technol., 2003, 13(7),

Figure 8. Dcom and SD for 16×16 samples.

Table 5. The suggested algorithm’s performance is compared
to HM15.0 in terms of performance using the support
vector machine

Test Classes Test Sequence BR
(%)

BP
(%)

∆T
(%)

Class A
2560×1600

Traffic 1.7 0.3 65.41
People On Street 1.3 0.3 67.20

Class B
1920×1080

Kimono 1.4 0.6 63.60
Park Scene 2.3 0.8 61.10

Class C
1280×720

Kristen and Sara 1.9 0.5 65.48
Four People 1.7 0.4 67.71
Johnny 1.5 0.5 67.90

Class D
832×480

BQ Mall 1.6 0.2 69.97
Basket Ball Drill 1.5 0.5 64.05
Race Horse 1.9 0.4 64.30
Party Scene 1.5 0.8 66.92

Class E
416×240

BQ Square 1.6 0.7 71.72
Basket Ball Pass 1.1 0.6 74.65
Race Horses 1.4 0.4 70.13
Blowing Bubbles 1.8 0.8 71.46

Average 1.61 0.52 67.44

Table 6. Comparing our proposed coding unit decision algorithms
with other state-of-the-art methods.

Algorithms Bit Rate
(BR) %

Encoding
time(∆T)%

Proposed support vector machine 1.61 67.44
[23] 1.7 53.00
[24] 0.88 57.21
[25] 1.45 59.64

5. EXPERIMENTAL RESULTS
The proposed ML-based approach was evaluated on test

sequences of varied resolutions, and the results are outlined
in Table 5. The approach achieved a 67.44 % decrease in
average Encoding Time (∆T) compared to the original HEVC,
although there was a slight increase in Bit Rate (BR). To train
the machine learning algorithm, the luminance values of the

DEF. SCI. J., VOL. 74, NO. 2, MARCH 2024

276

560–576.
 doi: 10.1109/TCSVT.2003.815165.
2. Sullivan, G.J.; Ohm, J.R.; Han, W.J. & Wiegand, T.

Overview of the High-Efficiency Video Coding (HEVC)
standard. IEEE Trans. Circuits Syst. Video Technol., 2012,
22(12),1649–1668.

 doi: 10.1109/TCSVT.2012.2221191.
3. Bossen, F.; Bross, B.; Suhring, K. & Flynn, D. HEVC

complexity and implementation analysis. IEEE Transact.
Circuits Syst. Video Technol. 2012, 22(12), 1685–1696.

 doi: 10.1109/TCSVT.2012.2221255.
4. Lim, K.; Lee, J.; Kim, S. & Lee, S. Fast PU skip and split

termination algorithm for HEVC intra prediction. IEEE
Trans. Circuits Syst. Video Technol., 2015, 25(8), 1335–
1346.

 doi: 10.1109/TCSVT.2014.2380194.
5. Chao Tsai, An. & Bharanitharan, K. Multi-directional

mode reduction algorithm for intra prediction in video
coding. IETE Technical Rev., 2016, 34(1), 102-109.

 doi:10.1080/02564602.2016.1151386.
6. Zhang, T.; Sun, M.T.; Zhao, D. & Gao, W. Fast intra-mode

and CU size decision for HEVC. IEEE Trans. Circuits
Syst. Video Technol., 2015, 27(8), 1714–1726.

 doi: 10.1109/TCSVT.2016.2556518.
7. Lakshmi, P. & Aparna, P. A mixed parallel and pipelined

efficient architecture for intra prediction schemein
HEVC. IETE Technical Rev., 2022, 39(2), 244-256(2022).

 doi:10.1080/02564602.2020.1841686.
8. Chen, Z.Y. & Chang, P.C. Rough mode cost-based fast

intra coding for high-efficiency video coding. J. Vis.
Commun. Image Represent., 2017, 43, 77–88.

 doi: 10.1016/j.jvcir.2016.12.007.
9. Lim, K.; Lee, J. & Kim, S. Fast PU skip and split

termination algorithm for HEVC intra prediction. IEEE
Trans. Circuits Syst. Video Technol., 2015, 25(8), 1335–
1346.

 doi: 10.1109/TCSVT.2014.2380194.
10. Zhang, H. & Ma, Z. Fast intra-mode decision for high-

efficiency video coding (HEVC). IEEE Trans. Circuits
Syst. Video Technol., 2014, 24(4), 660–668.

 doi: 10.1109/TCSVT.2013.2290578.
11. Yang, M. & Christos, C. Fast intra-encoding decisions

for high-efficiency video coding standard. J. Real-Time
Image Process., 2017, 13, 797–806.

 doi: 10.1007/s11554-014-0445-7.
12. Huangyuan, Q.; Song, L.; Luo, Z.; Wang, X. & Zhao,

Y. Performance evaluation of H.265/MPEG-HEVC
encoders for 4K video sequences. Signal and Information
Processing. In Signal and Information Processing
Association Annual Summit and Conference (APSIPA),
2014 Asia-Pacific. pp.1-8.

 doi:10.1109/APSIPA.2014.7041782.
13. Lee, D. & Jeong, J. Fast CU size decision algorithm using

machine learning for HEVC intra coding. Signal Process.
Image Commun., 2018, 62, 33–41.

 doi:10.1016/j.image.2017.12.005.
14. Bai, C.& Yuan, C. Fast coding tree unit decision for HEVC

intra coding. In 2013 IEEE International Conference on

Consumer Electronics - China, April 2013, pp. 28–31.
 doi:10.1109/ICCE-CHINA.2013.6780861.
15. Li, T.; Xu, M.& Deng, X. A deep convolutional neural

network approach for complexity reduction on intra-
mode HEVC. In 2017 IEEE International Conference on
Multimedia and Expo (ICME), July 2017, pp. 1255–1260.

 doi: 10.1109/ICME.2017.8019316.
16. Imen, W.; Amna, M. & Fatma, B. Fast HEVC intra-CU

decision partition algorithm with modified LeNet-5 and
AlexNet. SIViP, 2022, 16, 1811-1819.

 doi: 10.1007/s11760-022-02139-w.
17. Guanwen, Zhang.; Liyuan, Xiong.; Xiaocong, Lian. &

Wei, Zhou1. A CNN-based coding unit partition in HEVC
for video processing. In Proceedings of the 2019 IEEE
International Conference on Real-time Computing and
Robotics.August 4-9, 2019, pp. 273–276.

 doi: 10.1109/RCAR47638.2019.9043972.
18. Kim, K. & Ro, W.W. Fast CU depth decision for HEVC

using neural networks. IEEE Transact. Circuits Syst.
Video Technol., 2019, 29(5), 1462-1473.

 doi:10.1109/TCSVT.2018.2839113.
19. Wang, Z. & Li, F. Convolutional neural network based

low complexity HEVC intra encoder. Multimedia Tools
Appl., 2021, 80, 2441–2460.

 doi:10.1007/s11042-020-09231-8.
20. Bouaafia, S.; Khemiri, R.; Maraoui, A. & Fatma

Elzahra, S. CNN-LSTM Learning approach-based
complexity reduction for high-efficiency video coding
standard. Scientific Programming., 2021.

 doi: 10.1155/2021/6628041.
21. Bouaafia, S.; Khemiri, R.& Sayadi, F.E. Fast CU partition-

based machine learningapproach for reducing HEVC
complexity. J. Real-Time Image Proc., 2020, 17, 185–
196.

 doi: 10.1007/s11554-019-00936-0.
22. Grellert, M; Zatt, B.; Bampi, S.& da Silva Cruz, L.A. Fast

coding unit partition decision for HEVC using support
vector machines. IEEE Transact. Circuits Syst. Video
Technol., 2019, 29(6),1741-1753.

 doi:10.1109/TCSVT.2018.2849941.
23. Zhang, M.; Zhai, X. & Liu, Z. Fast and adaptive mode

decision and CU partition early termination algorithm for
intra-prediction in HEVC. J. Image Video Proc., 2017, 86.

 doi: 10.1186/s13640-017-0237-7.
24. Song, Y.; Zeng, Y. & Li, X. Fast CU size decision

and mode decision algorithm for intra prediction in
HEVC. Multimedia Tools Appl., 2017, 76, 2001–2017.

 doi: 10.1007/s11042-015-3155-7.
25. Zhu, W.; Yi, Y. & Zhang, H. Fast mode decision algorithm

for HEVC intra coding based on texture partition and
direction. J. Real-Time Image Proc., 2020, 17, 275–292.

 doi:10.1007/s11554-018-0766-z.

CONTRIBUTORS

Mr Pattimi Hari obtained his MTech degree in Electronics
and Communication Engineering from JNTU Kakinada, Andhra
Pradesh, India.

HARI & BATTA: HIGH-SPEED CODING UNIT DEPTH IDENTIFICATION BASED ON TEXTURE IMAGE INFORMATION USING SVM

277

In the current study, he developed the approach, conducted
simulations, explained the findings, and wrote the manuscript.

Dr Kota Naga Srinivasarao Batta obtained his PhD degree
from IIT Kharagpur, India. He is working as an Assistant
Professor in the Department of ECE, National Institute of

Technology, Warangal. His research interests include: VLSI
architectures for image and video compression and embedded
systems design.
In the current study, he has given guidance for how to develop
the models in video coding. He has revised the manuscript also.

