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ABSTRACT

Intercepting reentry vehicles is difficult because these move nearly at hypersonic speeds
that traditional interceptors cannot match. Counterparallel guidance law was developed for
defending a high speed target that guides the interceptor to intercept the target at a 180° aspect
angle. When applying the counterparallel guidance law, it is best to predict the impact point
before launch. Estimation and prediction of a reentry vehicle path are the first steps in establishing
the impact point prediction algorithm. Model validation is a major challenge within the overall
trajectory estimation problem. The adaptive Kalman filter, consising of an extended Kalman filter
and a recursive input estimator, accurately estimates reentry vehicle trajectory by means of an
input estimator which processes the model validation problem. This investigation presents an
algorithm of impact point prediction for a reentry vehicle and an interceptor at an optimal intercept
altitude based on the adaptive Kalman filter. Numerical simulation using a set of data, generated
from a complicated model, verifies the accuracy of the proposed algorithm. The algorithm also
performs exceptionally well using a set of flight test data. The presented algorithm is effective
in solving the intercept problems.

Keywords: Reentry vehicle, trajectory estimation, input estimation, adaptive Kalman filter, impact point
prediction, counterparallel guidance law

NOMENCLATURE

C
b

Ballistic coefficient

C
D0

Zero-lift drag coefficient

g Gravity

Gi
6 6 Gain matrix

H, I 6 6 Identity matrix

k Starting index of input

K
n+1

6 6 Kalman gain matrix

P
k+l/k+l-1

6 6 Covariance matrix of the predicted state

Q 6 6 Covariance matrix of process noise

R 6 6 Covariance matrix of measurement
noise

r Upper limit of the acceptance region

s Stopping index of input
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S Reference area of the reentry vehicle

S
I

Flight range of the interceptor

t* Flight time

t
b

Time to terminate booster of the interceptor

t
l

Time to launch interceptor

t
p

Time to predict impact point

t
s

Time to head on the reentry vehicle

t
st

Upper limit of confidence interval

V
I

Velocity of the interceptor

V
i

6 6 Covariance matrix of the estimated input

V
ii

The iith element of  V
i

W Weight of the reentry vehicle

u
4
, u

5
, u

6
Unmodelled accelerations

v
0
, v

b
, v

s
Velocity constants

v
x 

, v
y 
, v

z
Velocity components

( *** ,, zyx vvv ) Impact point in velocity

x, y, z Positions

(x*, y*, z*) Impact point in position

z* Optimal intercept altitude

t Sampling period

Air density

6 1 Process noise vector

6 1 Measurement noise vector

v
i
( j) Innovation of the  ith state at  t = j t

1 . INTRODUCTION

The reentry vehicle (RV) flies at very high
velocity, especially during the reentry phase, with
speed reaching up to 10 Mach. The major difficulty
in intercepting a reentry vehicle during the reentry
phase, is that the velocity of a traditional interceptor,
which is below 4.5 Mach, usually is significantly
lower than that of a reentry vehicle. The conventional
guidance laws such as pursuit, proportional navigation,
etc thus become useless. Consequently, the
counterparallel guidance law was developed for
defending very high speed targets that navigate an
interceptor along the trajectory of a target with

180° aspect angle1. Restated, the counterparallel
guidance law guides an interceptor to collide head-
on with the reentry vehicle. The impact point is
thus defined as the intersection of the predicted
trajectory of the reentry vehicle and counterparallel
path of the interceptor. Accordingly, the impact
point needs to be predicted to determine the launch
time and the guidance parameters of the interceptor.
An online, fast, and precision estimation and prediction
method is required to accurately forecast the impact
point.

The key issue in trajectory estimation problem
is the model validation which focuses on the model
error between the physical system and the mathematical
model. Model error generally is induced by simplifying
assumptions, manoeuvre, and unpredictable external
forces in flight, parameter uncertainty, and by other
sources. Measurable quantities in the mathematical
model to be identified are also required and would
make the problem worse if a precision radar is the
only data source provider. The effects of the model
error are considered extra input in the mathematical
model for compensating and reducing estimation
errors.

Chang2, et al. designed an online filter for a
manoeuvring reentry vehicle based on the augmented
Kalman filter2. Position, velocity, drag force, and
manoeuvre forces yield the augmented state vector
and the estimation is performed using an extended
Kalman filter(EKF). However, the proposed filter
performance deteriorates for a non-manoeuvring
vehicle. Manohar and Krishnan3 reconstructed rocket
trajectory using a differential corrections method
whose measurements are beyond what a single
radar can measure3. A simple model with the unmodelled
acceleration input seems applicable for online trajectory
estimation if a recursive determination of input is
well-defined.

Least-squares methods have been successfully
used to estimate the input for solving tracking problems4-6,
initial levelling problems in strapped-down inertial
navigation 7,8, and inverse heat conduction problems9,10.
Lee and Liu 11 proposed a method based on the
EKF with a recursive input estimator, named the
adaptive Kalman filter (AKF), for executing online
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trajectory estimation for a reentry vehicle11,12. The
robustness and accuracy of this method have been
verified by simulation and flight tests. The method
developed by Lee and Liu11 is thus suitable for
application to the impact point prediction problem.
This investigation presents an algorithm to accurately
predict the impact point for the interceptor and the
reentry vehicle at an optimal altitude using the
AKF. The trajectory of the reentry vehicle is predicted
using the AKF. The flight path of the interceptor
is approximated by the three straight lines based
on the counterparallel guidance law. The impact
point then can be determined using a constraint of
optimal altitude that provides an excellent
manoeuvrability. The increased accuracy is demonstrated
by numerical simulation using data from a model
with six degrees of freedom (6-DOFs) and flight
test using data from an experiment.

This study formulates a model for a reentry
vehicle and details an AKF that can quickly and
accurately estimate trajectory in terms of the position,
velocity, and flight time. An algorithm for predicting
the impact point at an optimal intercept altitude is
presented. Simulation and flight test results validate
that the proposed algorithm provides accurate impact
point prediction. The proposed algorithm is suitable
for application to the reentry vehicle intercept problem.

2 . DYNAMIC MODEL

Consider a vehicle in the reentry phase over
a flat, nonrotating earth as illustrated in Fig. 1.
Assume the reentry vehicle to be a point mass with
constant weight following a ballistic trajectory in
which two types of significant forces, drag and
gravity, act on the reentry vehicle. Extra forces
are induced by model error when assumptions are
violated or the reentry vehicle undertakes a manoeuvre.
The manoeuvring reentry vehicle model during reentry
phase in radar coordinate (OR
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Figure 1. Reentry vehicle flight geometry 
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where 

 
stands for air density and is a function

of altitude13. The well-known normal gravity model
is considered since the reentry vehicle generally
flies over several hundred kilometers height14.
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An accurate phased array radar is taken for
detecting the reentry vehicle. Position and velocity
of the reentry vehicle are measured and filtered,
respectively. The equation of measurement is:

Z = HX + (6)

where 

 

is the measurement noise vector and is
assumed to be normally distributed with mean zero
and variance R. Equations (5) and (6) form the
dynamic equations for the vehicle during reentry.

3 . RECURSIVE INPUT ESTIMATION

The predicted and updated state vectors of the
EKF from t = n t to t = (n+1) t, n = 0,1,2,...,
under a known input vector u

n 
at t = n t are

respectively given 15 as

nn/nn/nn uXX ˆˆ
1  (7)

)ˆ(ˆˆ
111111 /nnnn/nn/nn XHZKXX

  

(8)

where Z
n+1 

denotes radar measurements at t =
(n+1) t, and the transition matrix.

t
X

XF
I

n/nXX
n

ˆ
66

)(

K
n+1

, P
n+1/n 

and P
n+1/n+1 

are the Kalman gain and
covariance matrices.  An input estimation algorithm
of u

n 
is given as follows:

Let 1/1 nnX be the updated state for the EKF

with no input at t = (n+1) t. For simplicity, denote

111
ˆˆ

/nnn XX , 111 /nnn XX , and define

nnn HKIM )( 11 , )( 11 HKIN nn . Assume

that the abrupt deterministic input are applied during

tskttk )( , then one gets:

,...,s,,ltskttku

k,stskt,tkt
u

lk 210))(

0))(0
(9)

where  u k+l 
is a constant vector over the sampling

interval. Then kk XX̂ during tkt . Define the

measurement residual for the EKF with no input

to be lklklk XHZZ .

The recursive least-squares input estimator can
be derived as11,12

221 ˆˆˆˆ lklklklklklk uYGuu

l = 0,1,2,...,s (10)

where
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In Eqn (10), k and s represent the starting and
stopping indices of the system input, respectively,
can be determined by testing. The test for detection
of input is expressed11,12 as

st

ii

i t
V

û 
existence of u

i   
for i = 4,5,6  (11)

otherwise ui
 is absent. The value of t

st
 can be determined

by inspecting the cumulative normal distribution table
for a preset confidence coefficient, 1– .

4 . ADAPTIVE KALMAN FILTER

By incorporating the estimated input into the
EKF, the predicted and the updated states at time

interval tskttk )( are:
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The Kalman gain becomes:
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For time beyond the interval t < k t  and
t>(k+s) t, state estimation can also be based upon
the original EKF. Note that the initial states and
covariance matrices at t >(k+s) t are reinitiated
by v

ss/kkX̂ and  v
ss/kkP . Equations (10) to (16)

form the adaptive Kalman filter (AKF) and Fig. 2
schematically depicts the proposed filter.

5.  PREDICTION OF IMPACT POINT

The impact point is geometrically defined as
the intersection between the predicted reentry vehicle
trajectory and the interceptor flight path. At the
time to predict impact point, tp

, the reentry vehicle
trajectory at ptt

 

can be predicted from Eqns (1)
to (3) with u

4 
= u

5 
= u

6 
= 0  and initial state v

n/nX̂
where n = t

p 
/ t.

The interceptor flight path depends on the
interception strategy. The major problem for intercepting
the reentry vehicle during the reentry phase is that
the velocity of the reentry vehicle can reach 10 Mach,
significantly exceeding the most conventional interceptors
whose maximum speed is below 4.5 Mach. Most
traditional pursuit and proportional navigation guidance
laws thus are unsuitable for such interceptions.
The counterparallel guidance law was designed to
keep a head-on correlation between the reentry
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vehicle and the interceptor. This law directs the
interceptor along the path with a 180° aspect angle
to the predicted trajectory of the reentry vehicle
in the shortest time without excessive velocity loss.
The flight path of the interceptor can then be roughly
divided into three segments, from launch point O
to P1

, from P
1 

to P
2
, and from P

2 
to P*, as illustrated

in Fig. 3. In the first segment, process control
phase, required velocity and attitude should be achieved.
The interceptor then is refracted to point P2

, entering
the path parallel with but facing the approaching
reentry vehicle and is guided to the impact
point using  midcourse and terminal guidances. The
velocities at each time intervals are approximated
empirically as

b
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t
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where t 0 
= 3s. The related flight ranges are then

obtained as
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where V 0 
= 0.5 m/s and V

1 
= 1 m/s. The values of

v
0
, v

b 
, v

s 
, t

b 
, and t

s 
greatly rely on the interceptor

properties and are determined by simulation in adavance.
The impact point, P*, is the intersection of the
estimated reentry vehicle trajectory and the simplified
interceptor flight path given in Eqns (17) to (22)
at a certain flight time t*.

The criterion of the impact point prediction
algorithm is that the flight time t* from O to P*

should equal to the time spent by the reentry vehicle
from its position at t

p
  to P*. Since the manoeuvrability

of the interceptor decreases at altitude, the maximum
interceptable altitude is limited to a certain range,
for example, 5 km to 20 km. Consequently, the
impact point is restricted to an optimal intercept
altitude z* to ensure excellent manoeuverability of
the interceptor. The steps of the algorithm associated
with the AKF for predicting impact point at z* are
as follows:

 

INITIAL 
CONDITIONS

RV MOVEMENT RADAR DETECTION EKF WITH INPUT 

EKF WITHOUT 
INPUT  H 

LSE OF  
INPUT 

EQN (10) 

  
TEST 

EQN (11) 

+

 

Figure 2. Mechanism of the adaptive Kalman filter scheme
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Step 1. Estimating the trajectory of the reentry vehicle
using the AKF.

Step 2. Predicting the reentry vehicle position
(x*, y*), velocity ( *** ,, zyx vvv ), and flight time
t *  from its position at t

s 
to a given z* based

on the AKF.

Step 3. Calculating the flight time tf
  of the interceptor

from O to the point (x*, y*, z*) from the
simplified trajectory.

Step 4. If tttt f
**  indicating that the interceptor

and the reentry vehicle require the same
flight time to reach the impact point (x*, y*,
z *), then the interceptor is launched at launch
time, t

l 
= t

p 
. If  ttt f

* , return to
Step 1. Otherwise, the interception fails.

The impact point prediction algorithm may be
associated with other trajectory estimation methods.

6.  SIMULATION & FLIGHT TEST

This section evaluates the algorithm associated
with the AKF using simulation data and real flight
data by comparing the prediction errors with two
algorithms using the EKF and 

 

filter16 with
position and velocity gains 0.488 and 0.108, respectively.

Case 1. Simulation

A 6-DOFs model of a flying vehicle is a set
of equations of motion, including both translational
and rotational motion. This model is more complicated
than the 3-D model indicated in Eqns (1) to (3).
In this case, a simulation analysis based on a set
of data generated from a 6-DOFs model is utilised
to compare prediction errors among these three
algorithms. It is the mismatched case and would
lead the mismatched filters. The simulated trajectory
for a specific reentry vehicle is with the measurement
noise which is generated from a verified radar
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Figure 3. Interception strategy against the reentry vehicle
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model. The whiteness test for trajectory estimation
using the AKF and EKF is given first to show the
consistency under this mismatched case. Let the
time-average autocorrelation of the ith state up to

tkt

 
be17

k

j

k

j

k

j
iiiii jjjj

1 1 1

2
122 )]1()()[1()( (23)

For large enough k, i

 

is, in view of the

central limit theorem, normally distributed. The hypothesis
that the correlation of the innovation sequence is
zero, is accepted if the time-average autocorrelation

is falling in the acceptance region, that is, ],[ rri

where ktr st . However, the mismatch would

cause an unacceptable situation17. The distance
between the time-average autocorrelation induced
by the AKF or EKF and acceptable region becomes
the key issue.

Figures 4 and 5 depict the time-average
autocorrelation using the AKF and EKF under the

acceptance region with 95 per cent probability that
is t

st
 = 1.96 . Although the time-average autocorrelation

induced by the AKF is outside the 95 per cent
probability region, it approaches the region well
and is much better than that by the EKF. The
mismatch situation is improved by the input estimation
definitely. The impact point prediction begins to
predict after 10 s and the reentry vehicle reaches
z* at t = 48 s. Notably, the time t

p 
relates to the

prediction accuracy and interceptor launch time.
Accuracy increases with increasing t

p
, providing

an accurate impact point, but launch time, t
l
, is

delayed, curtailing the intercept range. Therefore,
t

p 
is an independent variable.

The ballistic coefficient, C
b
, is set at 9646.5 kg/m2

in the simulation. Figures 6 to 11 display the flight
time, position, and velocity prediction errors generated
by the three algorithms using AKF, EKF, and 
filter under 0.95 confidence coefficient, that is

= 0.05.

For flight time prediction, the errors induced
by the algorithm associated with the AKF keep in

Figure 4. Time-average autocorrelation using the adaptive Kalman filter
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±1s and approach zero as t
p 

grows. Moreover,  the
prediction errors generated by the algorithm using

 

filter are within ±8 s, and approach zero as
t

p 
increases with large amplitudes. The EKF has

the largest error among three approaches, of up
to 23 s, but tends to converge over a longer period
of time. For position prediction in XR 

and Y
R
, the

AKF yields the smallest errors among the three
methods, with a maximum of 2 km at t

p 
=18 s. The

 

filter offers an oscillated error curve with a
maximum amplitude of 25 km in X

R 
and 15 km in

Y
R
, which is much larger than that of the AKF.

Finally, the EKF has prediction errors within 15 km
to 27 km in X

R 
and 10 km to 18 km in Y

R
, but also

tends to converge. The small errors of the AKF
are easily corrected if the terminal guidance is

used. The fluctuation of the prediction errors induced
by the algorithm using 

 

filter would result in
unstable interception. Obviously, the prediction results
of the algorithms using 

 

filter and EKF are
inadequate for interception.

Velocity prediction errors for the AKF are
always bounded 0 m/s to 200 m/s. Meanwhile, for
the 

 

filter, the velocity prediction error curve
also oscillates with a  maximum amplitude of 280 m/s,
290 m/s, and 420 m/s in X

R
, Y

R
, and Z

R
, respectively.

The algorithm associated with EKF gives accurate
predictions in X

R
, Y

R
,and Z

R
. Table 1 lists the prediction

errors of these three algorithms associated with
the AKF, EKF, and 

 

filter, without terminal
guidance at launch time t

l 
= 29.0 s, t

l 
= 26.5 s, and

Figure 5. Time-average autocorrelation using the extended Kalman filter
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Type Flight time 
(s) 

Position XR 

(km) 
Position YR 

(km) 
Velocity XR 

(m/s) 
Velocity YR 

(m/s) 
Velocity ZR 

(m/s) 

AKF 0 0.28 0.40 85.70 62.30 106.50 

-  filter 3.50 15.42 0.92 200.30 151.80 256.50 

EKF 21.50 25.55 16.44 27.60 13.70 229.10 

 

Table 1. Prediction error of impact point
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Figure 6. Flight time prediction error

EKF

FILTER

AKF

TIME TO PREDICT (s)

E
R

R
O

R
S 

IN
 F

L
IG

H
T

 T
IM

E
 (

s)

Figure 7. Position prediction error in X
R

AKF

EKF

FILTER

P
O

S
IT

IO
N

 E
R

R
O

R
S 

IN
 D

O
W

N
R

A
N

G
E

 (
km

)

TIME TO PREDICT (s)



139

CHENG-YU LIU, et al.: ALGORITHM OF IMPACT POINT PREDICTION FOR INTERCEPTING REENTRY VEHICLES

Figure 8. Position prediction error in Y
R
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Figure 10. Velocity prediction error in Y
R
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Figure 11. Velocity prediction error in Z
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t
l 
= 13.5 s, respectively. The position errors of

278.5 m in X
R
, 396.5 m in Y

R 
and zero flight time

error for the proposed algorithm are easily corrected
by terminal guidance. The errors generated by the
algorithm using EKF may be corrected if an excellent
terminal guidance is included. The interceptor launched
at t l 

= 13.5 s provided by the 

 
filter is too early

that it causes a failed interception since the intercept
range exceeds the designed range. This result is
unacceptable unless the oscillated prediction error
is improved. Therefore, the proposed algorithm
associated with the AKF for impact point prediction
provides accurate prediction and satisfies the
requirements of midcourse guidance.

Case 2. Real Flight Test

Two sets of data were gathered in a flight
test. The first data set, called the measured trajectory,
was detected by a precision radar with sampling
time 0.5 s. Meanwhile, the other, named the INS
trajectory which was the closest to real trajectory,
was measured and transmitted by onboard inertial

sensors and transmitters. The INS trajectory is
considered the true trajectory of the reentry vehicle.
The prediction error is then defined as the difference
between the predicted impact point and the INS
trajectory at an optimal altitude z*.

Let C
b 

= 9646.5 kg/m2, and 

 
= 0.05. The

measured trajectory from t = 55.0 s to 126.7 s was
adopted and  the reentry vehicle reached an altitude
of z * at t = 103.5 s. Figures 12 to 17 display the
flight time, position and velocity prediction errors
induced by the algorithms associated with the AKF,
EKF, and 

 

filter. The prediction errors induced
by the proposed algorithm associated with the AKF
converges with t

p 
increasing and performs well in

predicting impact point. Moreover, the algorithm
using EKF induces large prediction error, which is
also illustrated by the simulation results. The algorithm
using 

 

filter provides oscillated prediction error
curves with very large amplitudes. Similarly, the
fluctuation of prediction error causes unstable predictions
and creates difficulty in achieving interception.
Obviously, the algorithms using EKF and 

 

filter

Figure 12. Flight time prediction error for a flight test
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Figure 13. Position prediction error in X
R 

for a flight test
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Figure 14. Position prediction error in Y
R 

for a flight test
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Figure 15. Velocity prediction error in X
R 

for a flight test
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Figure 16. Velocity prediction error in Y
R 

for a flight test
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Figure 17. Velocity prediction error in Z
R 

for a flight test
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Flight time 
(s) 

Position XR 

(km) 
Position YR 

(km) 
Velocity XR 

(m/s) 
Velocity YR 

(m/s) 
Velocity ZR 

(m/s) 

AKF 2.50 0.72 1.85 1.90 14.06 36.95 

 

Table 2. Prediction error of impact point for a flight test

are unaccptable. Table 2 lists the prediction errors
induced by the proposed algorithm with launch time
t

l 
= 85.5 s. The small position prediction errors are

easily corrected by terminal guidance. The proposed
algorithm satisfies midcourse guidance requirements
that leads the interceptor to fly in the tolerated
basket to enter the terminal guidance phase.

7 . CONCLUSIONS

This study presents an accurate algorithm of
the impact point prediction for the interceptor and
reentry vehicle at an optimal intercept altitude based
on the AKF with a recursive input estimator. The
proposed algorithm attempts to identify the intersection
of the predicted trajectory of the reentry vehicle
and the flight path of the interceptor. The predicted
trajectory is obtained using the AKF which comprises
an EKF and an input estimator with a detection

criterion. The flight path of the interceptor can be
approximated by three straight lines from the launch
point to the impact point, based on the counterparallel
guidance law. The accuracy of the proposed algorithm
is validated using simulation data generated from
a model with 6-DOFs and flight data collected in
the test. Small prediction errors induced by the
proposed algorithm are easily corrected by terminal
guidance. This investigation thus concludes that
the proposed algorithm is worthy of further applications.
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