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AbsTrACT

During movement in various unpaved terrain conditions, the track impressions left over by the leading vehicles 
provide guiding and safe routes in the area. The delineation of these tracks captured by the images can extend 
immense support for guidance in real time. These tracks that look like edges in coarse-resolution images take the 
shape of elongated areas in fine-resolution images. In such a scenario, the high pass and edge detection filters give 
limited information to delineate these tracks passing through different surroundings. However, the distinct texture 
of these tracks assists in the delineation of these tracks from their surroundings. Gray level co-occurrence matrix 
(GLCM) representing the spatial relation of pixels is employed here to define the texture. The authors investigated 
the influence of different resolutions on the distinguishability of these tracks. The study revealed that texture plays 
an increasing role in distinguishing objects as the image resolution improves. The texture analysis extended to 
investigate the track impressions left over by the leading vehicle brings out an ample scope in delineating these 
tracks. The measures could improve the track contrast even better than conventional techniques. To select the most 
optimal contrast enhancement measure in a given scenario, authors proposed a quantified measure of track index. 
An investigation is made on the difference-based track index (TI) representing the mean contrast value of the track 
vis-à-vis off-track areas. The results show an increase in the quantified contrast from 7.83 per cent to 29.06 per 
cent. The proposed technique highlights the image with the highest track contrast in a given scenario. The study 
can lead to onboard decision-making for the rut following vehicles moving in low-contrast terrain. 
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1.  InTroduCTIon
The movement of vehicles on unpaved terrain is quite 

common in agriculture, forestry, armed forces, robotics, 
Unmanned Ground Vehicles (UGV), night safari, etc. Many 
challenging operations like firefighting, search and rescue, 
and movement in snow-bound and loose desert soils for 
many combat missions utilize the unpaved off-road terrain 
during need. The trafficability condition of the area depends 
upon the spatial features and the ground state to support the 
movement of vehicles. Significant resources are available to 
infer the trafficability condition using spatial data resources. 
For instance, Pundir and Garg1 worked on evaluating the 
impact of terrain features on trafficability employing spatial 
data resources. However, empirical and experimental models 
are there for precise evaluation of prevalent soil condition and 
their inference on trafficability conditions. Vehicles in many 
places get stuck due to these uncertainties.  

Delineation of vehicle tracks on unpaved terrain reflects 
the wealth of information about trafficable off-road routes for 
these areas. Moreover, the rut formed by the earlier vehicular 
movement on unpaved terrain becomes the preferred route for 
applications like night safari and robotics-based operations2 for 

better stability. Tremendous work exists to study the rut formed 
by vehicles from different perspectives. For instance, Kalra3, 
et al. investigated the rut contrast improvement using various 
alternate indices. Liu4, et al. studied the variation in rut width 
on turnings using military vehicles. In another study, Vennik5, 
et al. investigated the impact of single and multiple passes of 
military vehicles. During strategic missions, vehicles move 
on unpaved terrain in low contrast dark conditions6. In such 
a scenario, the delineation of tracks or the rut impressions by 
leading vehicles plays an important role. 

These days, many vehicular operations make use of 
vision-based systems. Pierzchala7, et al. used close-range 
photogrammetry to detect the rut. Salmivaara8, et al. worked 
on a vehicle-mounted LiDAR system for rut depth detection 
and measurement. Digital image processing techniques are 
there to be employed to enhance the features of interest9. 
However, these techniques alone extend limited aid for 
delineating the tracks from their surroundings in an image. 
The pattern and texture of these tracks over tonal variation are 
some appropriate measures that enable the delineation of these 
tracks. The statistical measures of the GLCM-based texture 
analysis technique have shown reasonably good results in a 
wide range of applications10. Fauji11, et al. presented one such 
study for improving the robustness of detection of road surfaces 
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in varied environmental conditions using a combination of 
GLCM measures and local binary pattern (LBP).

In this paper, the authors investigated conventional and 
texture-based analysis to delineate the tracks. The study used 
satellite images representing different resolutions and ground-
based vehicle tracks formed by leading vehicles. A quantitative 
track index (TI) based approach is examined in this study to 
compare and find the most appropriate contrast measure for the 
delineation of tracks. The paper gives the details of the study.

2.  rELATEd WorK
Caraffi12, et al. used decision networks and the stereo 

vision technique for detecting the off-road path and obstacles. 
Howard and Seraji13 used a vision system-based mobile robot 
and applied Artificial neural network (Ann) for real-time 
terrain characterization. Ordonez2, et al. investigated the 
movement of robotic vehicles by tracking the rut in unpaved 
areas. Chowdhury14, et al. introduced an algorithm for a line-
following robot to achieve the ability to follow the straight-line 
path autonomously. 

There are various techniques used for the enhancement 
of image contrast. These image-processing-based techniques 
primarily employ filters and histogram stretching. Janani15, 
et al. made a compilation of different image enhancement 
techniques. Babu16 presented a framework for contrast 
enhancement. The edge detection techniques that preserve the 
structural features and the high-frequency components belong 
to either of the two groups based on the derivates17. The first 
one computes the Gradient or the first-order derivative of an 
image. The second one, based on the second-order derivative is 
a Laplacian operator. Both these filters highlight sharp changes 
or discontinuities in the picture. However, the gradient-
based filters emphasize the prominent edges while Laplacian 
filters enhance the finer details18. Based on these, researchers 
brought out several edge detection algorithms. Shrivakshan 
and Chandasekar19 compared the prominent edge detection 
algorithms covering Sobel, Robert’s cross gradient, prewitt, 
Canny, Laplacian of Gaussian (LoG), etc. The goodness of 
edge detection algorithms depends upon measures such as the 
accuracy of edge detection, the localization of edges, and the 
minimal response. Canny’s edge detection is a computationally 
more expensive algorithm. However, it performs better than all 
these operators under almost all scenarios20.

The track features appear like an edge in the coarse-
resolution images. These features take the shape of elongated 
areas in fine-resolution images. In such a scenario, the high 
pass and edge detection filters give limited information to 
delineate these tracks passing through diverse surroundings. 
However, the distinctive pattern formed by these tracks gives 
rise to relative variation in its texture from the surroundings.

The relationship of pixels with neighboring pixels reveals 
worthful information distinctive to distinguish these objects. 
Various approaches exist that describe the texture in an image. 
Bharti21, et al. compared different approaches to describe the 
texture. Humeau-Heurtier22 presented a survey of various 
methods of texture feature extraction. GLCM-based texture 
analysis could delineate well the road boundaries23. Measures 
like energy, homogeneity, entropy, contrast, etc. define the 
texture using this approach. 

The most suitable texture measure that can distinguish the 
track area more prominently depends upon the surrounding. 
This paper presents a study to enhance contrast enhancement 
using different alternate approaches. The proposed method of 
comparative analysis makes way for selecting the most optimal 
contrast enhancement measure.

3. METhodoLogy 
 Suitable image processing techniques enhance the vehicle 

tracks and assist in their delineation in an image. The image 
background, resolution, and noise level in the image containing 
the tracks form the basis for selecting suitable measures. 

3.1 Various Edge Enhancement and high-Frequency 
Filters
In some course-resolution imagery, the track impressions 

appear as linear features. In such cases, high-pass and edge-
detection filters facilitate the detection of these features.

Edges that form a set of connected pixels create a boundary 
between two disjoint areas. edge detection aids in highlighting 
the high-frequency components in an image. Edge detection 
usually depends upon the computation of the first or second 
derivatives of the image17 and computed as below:


































y
f
x
f

g
g

fgradf
y

x)(
 1 

y
f

x
ff 2

2

2

2
2











 2 

 
 

a

as

b

bt
tysxftswyxfyxwfwConv ),(),(),(),(),(

 3 


ji

jipEnergy
,

2),(  4 





ji ji

jipyHomogeneit
, 1

),(
  5 

)(log)( ,
,

2, ji
ji

ji ppEntropy   6 





ji ji

ji jipii
nCorrelatio

, .
),().).((




 7 

 
ji

jipjiContrast
,

2 ),(  8 

42

4422
nn

xnxnPT 


  9 

531

553311
nnn

xnxnxnPOT 


  10 

minmax
min
xx

xxz



  11 




CV  12 

OT
T

P
PTR   13 

CV
TRTI   14 

 

 

          

(1)

here, gx and gy are the first derivative or gradients of the 
image f(x,y) and show the pixel value changes in both x and 
y directions defined using a column vector 
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. The second 
derivative-based edge filter is also defined using Laplacian of 
the image f(x,y) computed using a second-order differential 
eqn. as follows: 
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Based on the above procedure, a study brings out the 
comparative analysis of various edge detection algorithms 
like Sobel, Canny, prewitt, and LoG. The images processed 
for highlighting the edges use different high-frequency 
filters that de-emphasize the low-intensity features. All such 
operations make use of the convolution of images with filters 
for representing various edges or other high-frequency filters 
as follows: 
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(3)

here, w(x,y) denotes a filter of dimension (s x t) that 
scans over the image f(x,y). The symbol (*) stands for 
convolution- Conv(w,f) of image and filter. In these techniques, 
noise removal can be helpful. Barbu24 presented the details 
about using a fourth-degree partial differential equation to 
remove the noise. Tavakkol25 showed a spatially adaptive 
technique that performs when the directional texture is there. 

 
3.2  Image Texture Measures 

Most of the techniques mentioned above try to enhance the 
image contrast using primarily tone-based image classification, 
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which gives limited understanding. This study uses texture 
measures as a descriptor of the spatial relation of pixels. 
Several applications employ texture for extracting the required 
features. Zhou26, et al. and Alsmadi27 combined edge detection 
and properties of a co-occurrence matrix for content-based 
image retrieval. Pradhan28, et al. demonstrated the extraction 
of flooded areas using a GLCM-based texture analysis based 
program over TerraSAR- X satellite image. Micheal and Vani29 
employed texture features for automatic mountain detection 
using DTM data of lunar images. Doycheva30, et al. used texture 
features for evaluating road distress conditions in real-time. 
Sudha and Aji31 used GLCM texture features as the descriptors 
of features for image retrieval in varied applications. Liu32, et 
al. employed the local second-order entropy to characterize 
the variation in the grayscale. Winarno33, et al. applied edge 
detection with GLCM for fingerprint recognition even though 
the edges are predominant in such images. Here, the authors 
used edge detection for preprocessing. Feature extraction 
is based on the GLCM using measures like energy, contrast, 
homogeneity, and correlation to improve the results further. 
Singh34, et al. employed features of GLCM on Sentinel-2 
imagery for the identification of avalanche debris areas. Kar 
and Banerjee35 used GLCM texture features to evaluate the 
intensity of tropical cyclones.

This study used GLCM-based measures as a good 
descriptor of texture features. Haralick36, et al. proposed the 
GLCM-based concept of measuring texture by computing 
different texture measures. He introduced 14 features to 
represent the texture of an image. Subsequently, Conners and 
Harlow37 presented that out of 14 parameters, only five are 
good enough to describe texture. These parameters include 
Energy, homogeneity, entropy, correlation, and contrast. The 
following points provide details about the key measures used 
in the current study.

3.2.1  Energy
This parameter which reflects the uniformity and 

represents the angular second moment computes the uniformity 
of texture. This measure considers the pixel pair repetitions 
and detects the disorders in textures. A constant or periodic 
form shows high values of energy. The following eqn. defines 
this measure:
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where, p(i,j) is the probability value recorded for the co-
occurrence of cell i,j of the GLCM matrix.

3.2.2 Homogeneity
This statistic which reflects the Inverse Difference Moment 

measures image homogeneity. It assumes larger values for the 
slight differences in the gray tone of pair elements. It is more 
sensitive to near diagonal elements of the GLCM. It gives 
maximum value when the same values of image elements are 
there. The following eqn. defines this measure:
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3.2.3 Entropy
This statistic computes the complexity or disorderliness 

of the image. Complex texture typically has high entropy. 
The entropy is small for the image containing uniform texture 
whose GLCM elements have large values. The entropy 
correlates inversely with energy. The following eqn. defines 
this measure:
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3.2.4 Correlation
It measures the linear dependency of the gray level values 

in the GLCM matrix. It reflects the relation of the reference 
pixel with its neighbor. The following eqn. defines this 
measure:
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where μi, μj, σi, and σj are the means and standard deviations. 

3.2.5 Contrast
This statistic represents the spatial frequency of an image 

and gives the difference-moment of GLCM. It measures the 
quantum of local variations and considers the difference 
between the highest and the lowest values of a contiguous set of 
pixels. A low-contrast image presents a GLCM concentration 
term around the principal diagonal and features low spatial 
frequencies. The following eqn. defines this measure:
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GLCM contrast correlates inversely but strongly with 
homogeneity. Homogeneity decreases when the contrast 
increases while maintaining constant energy levels.

This study presents the utility of all the above-computed 
texture measures over the track images. It computes these 
statistical measures and gives details for optimal selection 
reflecting maximum contrast.

4.  dATA And TooLs usEd 
This study uses filters of suitable size representing different 

high-pass and edge enhancement filters and texture measures. 
It convolves them over the image to create the resulting filtered 
images. This study used GLCM-based measures to define the 
image texture. More levels imply higher accuracy but with 
increased computational cost. Clausi38 provided details about 
the computational complexity using the GLCM method, which 
is proportional to O (G2). Suitable selection of displacement 
value in GLCM is a significant consideration as the large 
values result in missing the details of textural information39. 
This study uses a kernel of size 5 x 5, a quantisation level of 32, 
and a horizontal offset of 1 pixel to compute texture. It assigns 
the value to the center pixel of the filter, which then moves 
further to cover the whole image. This study used MATLAB 
and Sentinel Application Platform (SNAP) for further analysis. 
The google earth images of different resolutions, displaying 
track areas near Chandigarh given in Fig. 1(a) formed the basis 
for further study.

5. IMAgE AnALysIs And rEsuLTs
Several conventional techniques can assist detection 

of various features in the image. Since the idea here is to 
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Figure 1.  (a) Multi-resolution images of tracks (source: google, Maxar Technologies). result after convolving images, (b) using 
sobel edge detection filter, (c) Using second-order Laplacian filter, and (d) using the high-pass filter.

highlight the linear track features and enhance their contrast, 
the authors analyzed the impact of edge detection and high-
pass filters. The convolution using the Sobel gradient and 
Laplacian filter resulted in images as shown in Fig. 1(b) and 
Fig. 1(c), respectively. As the track boundaries are delineable 
using a high-pass filter, its convolution resulted in the image in 
Fig. 1(d). The figure also shows a comparative effect of these 
techniques on three different resolutions.

As the tracks have differentiable texture from the 
surroundings, the texture analysis using GLCM revealed 
meaningful results. Figure 2 shows the outcome of various 
statistical measures on images of different resolutions. 

The visual appearance of the results at different resolution 
images brings out the importance of texture as the resolution 

improves. The texture analysis is carried further on the even 
finer resolution images captured using ground-level cameras. 
The illustration in Fig. 3 displays the track impressions of the 
leading vehicle. The contribution of texture increases as one 
moves toward the finer level of resolution. 

Figure 4 illustrates the results of different contrast 
enhancement measures and texture analysis on the image of 
vehicle tracks, as observed in field running conditions.

These results exhibit the role of texture analysis for 
improved delineation of the vehicle tracks. The authors proposed 
a quantitative method of computing and comparing the track 
contrast here. This method considers the relative difference in 
contrast for on-track and off-track areas and computes the track 
index for arriving at the most optimal solution.
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5.1  Track Index-based optimal selection 
As illustrated in Fig. 5, the procedure comprises drawing 

a cross-sectional profile across the tracks on the image.
It selects the pixels On-track (pT) and pixels Off-track 

(POT) in the image for each enhancement measure separately. 
It considers the average value of pixels in each area to account 
for the local variation. The authors considered this aspect by 
choosing a rectangular zone of 11x100 pixels. The average 
value of the statistical measure (xi) is: 
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where, xi, i = [1:5] are the averaged statistical measure of areas 

around tracks. Here, x1, x3, and x5 are the averaged values 
for pixels in off-track areas left to the left Track, in-between 
Tracks, and right to the right Track, respectively. Similarly, the 
values x2 and x4 are the averaged values for pixels on the left 
and right Track, respectively.

If the focus is to highlight any single track, for instance, 
the Track by any two-wheeler, the computation for areas 
representing pixels on the Track is done for the points on one 
Track. Similarly, the mean value for the area representing Off-
track makes the basis on the two zones surrounding the Track.  

Data normalisation is an important consideration here 
for a better comparison of the two measures having different 
ranges of values. Here, normalisation considers the minimum 
and maximum values of the pixel value range for various 
contrast enhancement measures. The following eqn. explains 
this computation process:

Figure 2.  result of gLCM texture analysis on the multi-resolution images, (a) Contrast image, (b) Entropy image, (c) Energy image, 
and (d) Variance image.
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Therefore, it uses the mean value and standard deviation to 
compute the coefficient of variation defined as:
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where, CV is the coefficient of variation, σ the standard 
deviation, and μ is the mean value of the Measure. The lower 
the Coefficient of Variation, the better the reliability of the 
Measure, representing contrast based on normalized off-track 
and on-track pixel values. The Track Ratio (TR) for comparing 
the track contrast used here is: 
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Since, CV value for each image representing different 
contrast measures will be different, the equation used for 
computing the normalized Track Index (TI) here includes:
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Table 1 gives the comparative details of the normalised 
track index as evaluated using various image enhancement 
measures. 

6.  dIsCussIon
Table 1 presents the duly sorted values of the normalised 

track index. The same suggests that one can achieve better 
contrast than the original gray Image using one or the other 
texture images of contrast, dissimilarity, correlation, etc. The 
track index value for the original gray image increased from 
7.83 per cent to 29.06 per cent. The comparative contrast of the 
Images shown in Fig. 4 confirms this view. It is noticeable that 
for testing this approach, the areas chosen in off-track and On-
rack zones are of size 100x11 pixels. By taking larger areas, the 
conclusions can improve even further. 

The observation reveals that the GLCM texture-based 
technique effectively addresses the contrast enhancement 
issue. It also supports the view expressed by Mohanaiah10, 
et al. that GLCM-based measures give satisfying results in a 
large domain of applications. The track contrast enhancement 
achieved here verifies this point. The studies of the rut following 

Figure 3.  Field Image of vehicle tracks impressions of leading 
vehicle.

Table 1. Computation of Track Index (TI) quantifying image contrast

Computation of track index

Contrast measure Off_track mean On_track mean Track ratio (Tr) Off_tr_ sigma Coeff of variation Track Index (TI)

Correlation 0.858 0.793 0.065 0.192 0.224 29.06
Dissimilarity 0.480 0.551 0.071 0.372 0.775 9.11

Contrast 0.291 0.379 0.088 0.294 1.010 8.72

Gray 0.681 0.632 0.049 0.429 0.630 7.83

Entropy 0.803 0.821 0.018 0.272 0.338 5.34

GLCM mean 0.541 0.514 0.027 0.316 0.585 4.65

High pass Filter 0.328 0.379 0.051 0.498 1.519 3.35
GLCM 
homogeneity 0.243 0.219 0.024 0.311 1.281 1.86

SobelN 0.452 0.459 0.007 0.433 0.956 0.70

Laplacian 0.515 0.514 0.001 0.512 0.994 0.09
GLCM variance 0.362 0.362 0.000 0.312 0.861 0.02
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where, z is the normalised value of x data representing contrast 
enhancement measure, and xmin and xmax are the minimum and 
maximum values, respectively. Here the range of numeric data 
gets normalised between 0 and 1. 

The comparison of measures also needs to consider 
the variance in data for both off-track and on-track zones. 
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Figure 4.  (a) Images of vehicle track impressions as observed in vehicle running condition, (a) In original gray tone and using (b) 
High-pass filter, (c) Laplacian filter, (d) Sobel edge detection filter and GLCM measures of (e) Dissimilarity, (f) Contrast, 
(g) Entropy, (h) Correlation, and (i) Mean filter.

robotic vehicles like the ones presented by Ordonez2, et al. and 
Chowdhury14, et al. can have improved decision-making about 
the track areas using the proposed technique.  

Some related aspects are notable here. If a vehicle moves 
in a zig-zag fashion or during curves, Liu4, et al. reported in the 
study of movement on curves that the width of the track portion 
increases. The localization of the track zones is an important 
consideration here. The position of the camera capturing 
pixels data focus around the mid-portion of track zones may 
not give correct results always. The other way out could be 
to study the improved localisation of the tracks by employing 
a deep-learning model. Already attempts are there by various 
researchers like Stewart40, et al. to identify the road network 
using CNN. These techniques can improvise the localisation 
aspects of these tracks. The focus here is to highlight the 
relative contrast of the track zones w.r.t. the surroundings by 
quantified comparison.

As per the surrounding terrain, the measure that shows 
better contrast could vary. There are some other aspects too 
which need consideration. For instance, the area around the 
tracks nearer to the vehicle gets captured with better resolution 
and usually has more variance of pixel values. However, the 
distant features around the tracks appear smooth to the image 
captured by the camera. These points may reveal different 
results at different sections along the track in the same image. 
This process considers various image enhancement measures, 
computes the track index in each case, compares, and displays 

the image with maximum contrast. The technique given in 
this study considers the effect of generating maximum track 
contrast and is thus adaptive to the changes in the surrounding 
terrain. 

Further, the index-based computation at different sections 
along the track shall vary as the vehicle moves. With this, the 
contrast-based ordered set of images shall also alter. One can 
apply the probabilistic approach to get the most optimal contrast 
image set. This aspect, however, demands more computational 
power from the onboard system. Alternatively, the contrast 
measure based on a suitably selected section can help to 
achieve reasonably good image ordering. A better measure of 
track contrast could also emerge by considering such additional 
inputs. This aspect, however, needs further study.

The images convolved using high-pass filters and edge 
detection like the one by narendra and Hareesha20 help highlight 
the boundaries of track areas w.r.t. its surroundings. However, 
there could also be many high-frequency features in the area 
that can bar distinguishing exactly the track areas. The role of 
texture in getting increased track contrast w.r.t. its surrounding 
becomes noticeable both visually and quantitatively. The 
GLCM texture-based results presented here support the views 
of Alsmadi27 that these measures enrich the content for image 
retrieval. 

An onboard decision-making tool can usefully employ the 
process given in this study for increased track contrast in both 
manual and autonomous navigation modes. It may extend as a 
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Figure 5. Location of pixels chosen for comparing the contrast of track areas with reference to its surroundings.

vital support for the rut following vehicles, particularly those 
which operate in the low contrast areas. This study can help 
many industries like defence, autonomous ground vehicles, 
robotic vehicles, night safari, etc.

7.  ConCLusIons
The contrast enhancement study presented here leads to 

drawing the following key conclusions:
The role of texture assumes importance and can reveal • 
valuable information as the resolution increases. When 
the features of interest are of smaller dimensions, the 
texture analysis may not add much value in delineating 
the features. This aspect may need further investigation 
while considering all associated conditions of different 
surroundings. In the current study, the texture analysis 
of the image employs a kernel of size 5x5, horizontal 
displacement of 1 pixel, and 32 quantization levels. 
Considering other options of these associated parameters 
can give further insight into the dependence upon these 
parameters.

The statistical measures of GLCM-based texture analysis • 
form a strong base for understanding the influence of 
texture in contrast enhancement. The suitable texture 
measure for maximizing the contrast could vary with the 
surrounding. The proposed track index-based technique 
can quantitatively bring out the variation in track contrast 
levels w.r.t. its surroundings. The proposed approach that 
brings out the image with optimal track contrast can thus 
prove vital for the on-board decision-making.

8.  FuTurE sCopE
The current study used a kernel of fixed size 5x5, 

horizontal displacement of 1 pixel, and 32 quantization levels 
for the texture analysis of the image. Considering other options 
of these associated parameters can give further insight into the 
dependence upon these parameters.

The area around the tracks nearer to the vehicle gets 
captured with better resolution, while the distant features 
appear smooth in the image captured by the camera. This 
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aspect needs further study for better insight and an improved 
decision on-board vehicle.

The track index-based study presented in this paper 
considered images in the optical range. However, the 
comparative analysis of varied input source data could reveal 
some interesting results.

The proposed technique may also find application in areas 
like the detection of wake created by ocean-going vehicles. A 
wake, that causes instability to the vehicles operating in its 
surrounding can last long and impact other distant vehicles 
even. Depending upon the vehicle configuration, its speed, etc., 
the extent and time of wake may vary. A study on the detection 
of wakes using suitable sensors and various image analysis 
techniques could give better insight. The proposed track index 
that comparatively selects the images also seems to have good 
potential in detecting the most optimal image highlighting the 
wake.
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