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AbsTrACT

Digital Twin (DT) is a virtual representation of a product system that exhibits the properties and analyzes the 
system’s functions. The significant impact of DT extends to several fields, which increases productivity and reduces 
wastage. This article focuses on developing a Digital twin model of a Lathe machine for Tool Condition Monitoring 
(TCM). DT implementation in industries is challenging due to simulating online cutting forces and wear. Even 
though several pieces of research have been carried out in the prediction of tool conditions using machine learning, 
Artificial Neural network models, only a few pieces of research have been made in digital twins for TCM. This article 
provides the technique for implementing the DT model of a lathe tool. The feasibility of the DT Model framework 
is verified by a case study of the turning process with a CNC Lathe machine while machining of Aluminium 5052 
workpiece using Titanium Nitride coated tool inserts. The sensor’s data are acquired and fed to the microcontroller 
for real-time data acquisition. The real-time dataset is processed in the DT model for monitoring and predicting the 
tool conditions. The tool wear classification using the DT model is achieved. Developing the Digital Twin model 
in machining increases productivity and assists in predictive maintenance.
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1. InTroDuCTIon
In manufacturing industries, cutting tools are vital 

components in metal removal operations. Owing to the fast 
growth of material science, it isn’t accessible to machine 
alloys, especially in the defense and aerospace industries. 
It led to the development of modern cutting tools and tool 
monitoring systems for manufacturing precise and accurate 
machined products. In continuous machining, tool wear 
happens due to the high temperature, heavy cutting forces, 
and hard abrasion1-5. Many research scholars have blended 
manufacturing technologies, especially, artificial intelligence, 
machine learning, Machine vision, signals, and systems for 
tool condition monitoring and prediction systems. After the 
development of modern machine learning algorithms, the 
prediction of tool characteristics in machining is feasible 
with more accuracy. However, real-time data processing data 
needs high processing capability processors. The obstacle is 
cleared by modern fast computing processors, which enriches 
the Digital Twin (DT) technology more feasible for industries.
In the digital twin process, end-to-end factory simulations 
are made, live machine data can be acquired using sensors 
and signals, and transparency in inventory and operational 
performance can be monitored. Preventive asset maintenance 
also can be achieved in the digital twin process. Changing 
machine layouts and sequence of operations can be simulated 
in process digital twin models6-8. 

The CNC Machine is modelled in PTC Creo Elements, 
and the control systems are developed using python. The DT 
framework’s development into three phases, as illustrated in 
Fig. 1.

Data acquisition systems acquire sensors and signals from • 
the physical machine
The data received are interfaced with the cloud or local • 
system for prediction and condition monitoring
The virtual machine visualises the results obtained from • 
the prediction
The machine learning technique is adopted for regression• 
The real-time physical machine acquires the data and is • 
used for training the machine learning model in the digital 
twin framework.
The schematic representation of data flow in the DT 

framework is illustrated in Fig. 2.
The scope of the DT Model in the CNC machine is to 

simulate the tool behavior and predictive maintenance, as 
illustrated in Fig. 3. Therefore, the derived DT model is 
symmetric with the physical and virtual models9-15. 

2. DeveLopMenT oF DIgITAL TwIn 
FrAMeworK
This research paper focuses on developing a digital 

framework using sensors and signal data acquisition systems. 
DT model is experimented with turning of Aluminium 5052 
workpiece in CNC Lathe Machine in dry condition. In the initial 
stage, the data acquisition system is developed using sensors. 
Monitoring the data from the machine and building the model 
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is an initial step of DT model development. The thermocouple 
is used to acquire the temperature while machining. The 
tool dynamometer and vibration sensors are used to receive 
the cutting force and vibration signals, respectively16-19. 
Several types of research have been carried out for indirect 
measurement of cutting tool characteristics while machining, 
such as acoustics, vibration, and image processing. Based 
on the outcomes of the literature study, the DT framework 
is developed by integrating acoustic sensors, thermocouples, 
speed sensors, tool wear measurement, and cutting force 
measurement systems. The surface roughness of the workpiece 
is monitored in an indirect measurement technique based on 
the cutting forces. The sensor is connected to the workstation 
in this data acquisition system. The real-time data set is fed to 
the KNN machine learning algorithm in regression analysis. 
The tool wear behavior and fracture characteristics are time-

variant. Hence the data is recorded concerning the machining 
time20-26.

The signals from the Lathe tool dynamometer, vibration 
sensor, and speed sensor are interfaced with the ATMEGA 
microcontroller. 

The Arduino platform is interfaced with python to receive 
the data. The Lathe tool dynamometer was developed with 
three axes load cell, which uses a Wheatstone bridge circuit. 
The smart lathe tool holder acquires the tangential, feed, and 
radial force signals27-34.The cutting force given by the operator 
is converted into electrical signals and amplified. The pre-
processed electrical signals are interfaced with the ATMEGA 
microcontroller integrated development environment (IDE). 
The LM393 Infrared optocoupler senses the speed of the 
lathe machine. The disc attached to the lathe machine enables 
it to hold the optocoupler, which reads the revolutions of the 

Figure 2. real-time machine and virtual machine.

Figure 3. scope of digital twin model.

Figure 1. stages of digital twin development.
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chuck. An SW420 Non-contact type vibration sensor senses 
the vibrations of the machine35-38. 

The components used in sensors systems, and controllers, 
are exhibited in Fig. 4. The real-time machining data is stored 
in the workstation as data set and consistently updated in a 
python machine learning environment. Python 3.10.6 and the 
machine learning libraries used in regression analysis are used. 
The real-time machining data acquired in the workstation is 
interfaced with the python environment using a graphical user 
interface (GuI), as shown in the Fig. 5.

The hyperparameter tuning of regression equations is 
accomplished in the DT model during the turning operation. 
The DT model is verified by an MTAB CNC machine 
(Physical Model) in which an Aluminium 5052 workpiece is 
machined. A 25.4 mm diameter of the aluminium rod is held in 
three jaw chucks, aligned to avoid runout errors. The belt drive 
transmits the power from the motor to the lathe spindle. Power 
transmission efficiency is taken as 90 % from belt to spindle. 

Since the tool wear phenomenon is consistent concerning 
time, the DT model is validated for time. The Aluminium 5052 
workpiece is machined up to 200 mm in length with varied feed 
rates, depth of cut, and spindle speed. The real-time indirect 
tool wear measurement is compared with predicted values, 
which shows the performance of the DT model prediction 
efficiency. The prediction performance of the DT model is 
illustrated in the results section. The actual system response is 
compared with the simulation results. The parameter tuning of 
the model improves the DT model’s prediction accuracy. The 
continuously calibrated DT model results in high prediction 
accuracy. To develop the digital replica of the CNC Machine, 
machining features such as cutting speed, feed, and depth of cut 
are injected to calculate the cutting forces39-40. The features of 
the digital twin are to predict, control and optimize the process, 
as shown in Fig. 6.

The predictive maintenance is performed by selecting 
algorithms such as KNN, support vector machine (SVM), 

Figure 4. sensors for digital twin of lathe machine.

Figure 5. sensor interface and data acquisition system.
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Random forest, Multilayer perceptron, and convolution neural 
network. The stress, cutting forces, and temperature monitoring 
GUI is shown in Fig. 7. The tool wear classification and 
optimization of machining parameters are carried out in the 
regression phase. The GuI was developed for linking the python 
environment, and the dataset is illustrated in Fig. 8. Finally, 
the performance of the Digital twin framework is evaluated. 
At the same time, the machining of the Aluminium workpiece 

with Titanium nitride-coated tool inserts is summarised in the 
results and discussion section.

The development of a DT framework for lathe tool 
condition monitoring in machining of aluminum 5052 involves 
the integration of vibration sensors, temperature sensors, cutting 
force sensors and image capturing devices. Data from these 
sensors is used to generate a real-time model of the lathe tool 
condition and performance. This model is then used to analyse 

Figure 6. Features of DT model.

Figure 7. Digital twin – Tool condition monitoring system interface.

Figure 8. predictive maintenance panel using machine learning algorithm.
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Table 1.  Average real time data set vs DT model prediction 
for 200 turning tests

Machining parameters units
real 
time 
dataset

DT model 
prediction

Length of cut (CL) mm 200 200

Feed (F) mm/rev 0.1 0.1

Cutting speed (Vc) mm/min 40 40

Depth (Dp) mm 0.5 0.5

Tangential force (ft) N 870 776

Feed force (ff) N 424.47 564.5

Radial force (ff) N 268.15 290.6

Resultant (R) N 1004.48 1350

Cutting time (Ct) min 3.99 4.65

Metal removal rate (MRR) cm3/min 2 2.85

Spindle speed (S) 1/min 501.3 550.6

Machining tool efficiency 
factor (ƞt)

(No units) 0.9 0.9

Ps Horsepower at the 
cutting tool (CTHP)

KW 0.58 0.59

Pm Horsepower at the 
motor MHP

KW 0.64 0.69

Torque (T) N-m 11.05 13.64

This predictive capability can be used to optimize machining 
operations and reduce the need for unexpected downtime due 
to tool failure. Machine learning algorithms, such as Support 
Vector Machine (SVM), KNN, Random forest, multilayer 
perceptron, and convolution neural network are deployed to 
build the models and to monitor the tool condition.

Optimising tool wear monitoring using digital twin 
technology involves utilizing the data generated by the digital 
twin to identify patterns and trends in tool wear. The data 
can be used to develop predictive models that can be used to 
anticipate tool wear before it becomes a problem. Additionally, 
the data can be used to identify routes to reduce tool wear, such 
as changing cutting parameters or using different cutting tools.
The parameter tuning of the DT model is used to improve its 
prediction accuracy by optimising the parameters of the model 
to best fit the data. This is done by adjusting parameters such 
as the learning rate, the number of nodes in the neural network, 
the number of layers, the regularization technique, and the 
activation functions to achieve the best possible performance. 
The DT model is also continuously calibrated to enhance its 
prediction accuracy. This is done by using a validation set 
which is used to evaluate the performance of the model and 
identify which parameters need to be adjusted. The model is 
then adjusted to improve its accuracy and reduce its errors. 

3. resuLT AnD DIsCussIons 
The performance of the digital twin model is evaluated 

using the data set obtained from the machining of the Aluminium 
5052 workpiece using titanium nitride-coated tool inserts. The 
tool wear obtained under each cutting condition after turning 
of Aluminium 5052 workpiece using TiN-coated inserts is 
recorded. To validate the proposed DT model, the real-time 
cutting forces, flank wear, and surface finish of the workpiece 
are compared with the prediction made by the DT model. 
The nose radius of TiN-coated tool inserts at the initial stage 
is measured as 1.6 mm, and after machining, the nose radius 
changed to 2.5 mm. This may happen due to the cutting tool 

Table 2.  Comparison of surface roughness of Aluminium 5052 work piece with Digital Twin model predictions using machine 
learning

Description surface roughness – Digital microscopic 
images physical model Digital Twin model 

prediction

Surface finish  after turning at 250 rpm, feed 
rate 0.5mm per rev, 0.5 depth of cut

Actual surface 
roughness of work 
piece 2.675 µm

Predicted surface 
roughness of work 
piece 3.064 µm

Surface finish  after turning at 750 rpm, feed 
rate  1 mm per rev, 0.5 depth of cut

Actual surface 
roughness of work 
piece 1.264 µm

Predicted surface 
roughness of work 
piece 2.031 µm

and detect any changes in the tool condition or performance 
which indicates the need for maintenance or repair. The DT 
model also identifies any changes in the machining process, 
such as changes in cutting parameters, which leads to tool failure 
or poor quality parts. The Digital Twin framework also enables 
the generation of predictive models that anticipate the future 
condition of the lathe tool based on current and historical data. 
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material’s frictional force and wear behavior. The DT model 
predicted the change in nose radius of 3.2 mm. A variation of 
0.7 mm is observed between the actual and predicted results. 
Flank wear after machining at a feed rate of 0.2 mm per rev, 
spindle speed of 750 rpm, and depth of cut 1 mm are measured 
as 3mm, whereas in DT model prediction, 5 mm is obtained 
through the KNN regression technique. Similarly, the chip 
formation and metal removal rate are compared between 
the real-time and DT model predictions, as illustrated in  
Annexure I. Surface finish after turning at 250 rpm, feed rate 
0.5 mm per rev, 0.5 depth of cut is measured as 1.264 µm, and 
DT model predicted Surface roughness of workpiece 2.031 µm 
the surface roughness behavior is compared in Table 2.

The wear behavior of cutting tool inserts is time-dependent. 
The consistent machining of workpieces and intermittent 
machining vary the wear behavior. The comparison of Actual 
flank wear and Digital twin predicted value is illustrated in  
Fig. 9.

Figure 9.  variation of Flank wear with real time CnC machine 
and DT predicted model.

Figure 10. variation of resultant force with real time CnC 
machine and DT predicted model.

The resultant cutting forces concerning time are plotted 
for Actual and Digital model prediction in Fig. 10. The average 
deviation for 100 turning tests is found to be 10 %. Hence it 
can be concluded that the Digital twin model works with 90 % 
accuracy41-46.

The Coincidence of predicted and actual values of cutting 
force values takes 100 seconds, as shown in the figure. The 
cutting forces from X, y, and Z directions are taken from 
the strain gauges, and resultant forces are calculated using 
embedded C, which is programmed in an ATMEGA processor. 
The chip formation while turning the aluminium workpiece 
with various cutting speeds shows the variation in chip length. 
The average chip length of 50 mm is observed at a cutting speed 
of 250 rpm. The chip length reduces concerning increased 
cutting speed. At a speed of 1000 rpm, the average chip length 
decreases to 4 mm.

4. ConCLusIons
Future machine tools require the Digital Twin model for 

troubleshooting and optimizing processes. These Digital twins 
need to be customized for specific tasks or operations. In the 
Digital twin model, the physical behavior is updated in the 
virtual system, and the data is used to forecast the cutting tool 
wear behavior. It assists in the decision-making process for 
giving speed, depth of cut, and feed rate to the workpiece.

The results show the time taken for the coincidence • 
of experimental results and predicted results strongly 
influenced by the frequency of the sensors, processors, 
and selection of algorithms.
In this article, an aluminium specimen is turned using a • 
lathe machine. Similarly, the DT model can be customized 
for general machine tools and processes.
The DT model can be extended to quality control, resource • 
planning, and design. The integration of processes. Further 
research can be conducted in this direction47-48.
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Annexure I

Comparison of tool wear and chip formation for real time with Digital Twin Model predictions using machine learning

Description Tool insert and chip formation physical model Digital Twin model

Titanium Nitride coated turning tool insert
(Layer thickness - 5µm)
Coating method – Physical Vapour 
deposition)

Material properties such as hardness, friction 
resistance, toughness, and wear resistance are 
given as input for the Digital twin model

Change in Nose Radius Wear of TiN tool 
insert after machining of Al 5052 work 
piece.

Change of Nose 
radius from 1.6mm to 
2.5 mm

Change of Nose radius 
from 1.6 mm to 3.2 mm

Flank wear 
Flank wear after machining at feed rate 
0.2 mm per rev, spindle speed of 750 rpm 
and depth of cut 1 mm

Actual flank wear 
after machining         
3 mm

Predicted flank wear 
5mm

Chip formation and metal removal rate at 
250 rpm, depth of cut 1 mm, feed rate 1 
mm per rev

Actual metal removal 
rate 2 cm3/min

Predicted metal removal 
rate 3.32 cm3/min

Chip formation at 250 rpm, feed rate 
0.5mm per rev, 0.5 depth of cut

Actual metal removal 
rate 0.5 cm3/min

Predicted metal removal 
rate 0.85 cm3/min

Chip formation at 750  rpm, feed rate 1 
mm per rev, and  0.5 depth of cut

Actual metal removal 
rate 3 cm3/min

Predicted metal removal 
rate 3.65 cm3/min


