
Defence Science Journal, Vol. 56, No. 1, January 2006, pp. 31-38
O 2006, DESIDOC

Software Quality Assurance-Challenges in Launch Vehicle Projects

Poofa Gopalan, S.S. Uma Sankari, D. Mohan Kumar, and R. Vikraman Nair
Vikram Sarabhai Space Centre, Thiruvananthapuram-695 022

ABSTRACT

Launch vehicle projects now depend on software, more than ever before, to ensure safety
and efficiency. Such critical software syfiems, which can lead to injury, destruction or loss of
vital equipment, human lives, and damage to environment, must be developed and verified with
high level of quality and reliability. An overview of current quality practices pursued in launch
vehicle projects is presented in this paper. These practices have played a vital role in the successful
launch vehicle missions of Indian Space Research Organisation. As complexity of software
increases, the activity that gets affected is nothing but, software quality assurance (SQA). The
SQA team is facing a lot of challenges in current practices. This paper brings out such challenges
in different phases of software life cycle. A set of key points to some techniques and tools, that
could contribute to meet the software quality 'assurance challenges in launch vehicle projects,
are also discussed.

Keywords: Software quality assurance, launch vehicle, testing, simulation, verification, validation,
software fault injection

1 . INTRODUCTION

Indian Space Research Organisation has a long
history of producing reliable launch vehicles and
achieving repeated success in vehicle lanch missions.
Key to the success of these missions is the quality
assurance practices employed to ensure robust,
fault-tolerant designs, to ensure a final product
that faithfblly embodies those designs, and to physically
verify that launch and environmental stresses will
indeed be well-tolerated by the systems.

1.1 Criticality of Software

Space industry around the world has witnessed
a number of software-related mission failures. In
1993, the first flight of polar satellite launch vehicle
(PSLV) ended in a failure during the transition

from the second stage to the third stage due to
control system error exceeding the full-scale value,
which resulted in a software overflow. In 1996,
Ariane501 mission failed due to an unprotected
conversion from a 64 bit floating to a 16 bit signed
integer value'. The piece of software used for the
conversion was a reused component of the previous
flight, which was not adequately tested for the
present mission conditions.

The next major mission failure due to software
error occurred in mars pathfinder in 1997. It experienced
an unexpected system reset, which resulted due to
a priority inversion bug while simultaneously executing
different processes. In 1998, two other missions to
the Mars were also failed due to software-related
reasons. Mars climate orbiter burnt up due to a
navigation problem, which occurred because of the

Received 04 October 2005

3 1

DEF SCI J, VOL. 56, NO. 1, JANUARY 2006

difference in unit of engine thrust used in the ground
control system software and onboard software.
The problem encountered in the Mars Polar Lander
was the unexpected setting of a software variable
by the touchdown sensors, resulting in premature
shutdown of the descent engine.

These failures have taught the following lessons
to the quality assurance community2.

Although software reuse is a mean to reduce
the coding effort and costs, it has to be handled
with utmost care, because the software, which
works adequately in one context, can fail in
another context.

The redundant software package is exactly the
duplicate of the prime system. The redundant
system also fails to handle software design
errors.

Code optimisation may sometimes affect the
correctness of the software.

2 . CHALLENGES FOR SQA TEAM

The requirement for quality assurance in software-
intensive systems developed at the ISRO has increased
significantly over the last decade. The software
quality assurance team is facing a number of challenges
throughout the software development life cycle.
Since quality assurance activities cover both the
development phase, and the verification and validation
phase, the challenges in quality software realisation
are also spread over these two phases.

2.1 Development Phase Challenges

2.1.1 Identification of Software Functions

Navigation, guidance, and control (NGC) systems
in the launch vehicle play a predominant role in
achieving the objectives of a mission. The navigation,
guidance and control system requirements are realised
in hardware and software. Major challenge lies in
the apportionment of system requirements into hardware
and software functions. A joint team consisting of
hardware and software experts performs detailed
analysis of the system requirements and brings out
a set of software functions. Quality asurance tasks

in this phase ensure that all required studies are
considered for decision-making, and all recommendations
of the review board are implemented.

The navigation, guidance and control subsystem
realised in the avionics system of an ISRO launch
vehicle is the fault-tolerant subsystem. This is achieved
through both hardware and software. In a particular
mission, fault detection is realised in software by
monitoring health status of computing elements and
fault avoidance is done through hardware switchover
from faulty links or packages to healthy ones.

2.1.2 Choice of Right Algorithm

Once the software requirements of the navigation,
guidance, and control system are finalised, the next
challenge is in choosing the right navigation, guidance
and control algorithm fiom the available ones. Feasibility
studies are conducted in simulation testbeds to
evaluate the proposed algorithm. Reviews are conducted
for selection of the right algorithm. The flight-
proven algorithms are given priority.

In a mission software, algorithms like sensor-
error modelling in navigation software, closed-loop
guidance scheme in guidance software, control law
in control software, etc, are finalised based on a
number of simulations and trade-off studies. Ensuring
the exhaustiveness of the algorithm studies, impact
analysis, effectiveness of trade-off studies, incorporation
of all review recommendations, etc, are the major
quality assurance functions in this development
phase.

2.1.3 Requirements & Design

Domain-specific requirements and interfaces
must be checked to ensure the integrity of complex
software systems. Today, requirements analysis is
time-intensive and expensive because it is done
manually. Major commercial tools are neither powerful
nor customisable enough to check complicated interface
rules. There arises the challenge for an intuitive
approach for checking domain-specific requirements.

Proving the correctness of the developed
specifications wrt the requirements is one of the
most important and difficult tasks performed by
the verification and validation teams of ISRO.

GOPALAN, er al.: SOFTWARE QUALITY ASSURANCE-CHALENGES IN LAUNCH VEHICLE PROJECTS

REQUIREMENTS DESIGN CODING RELEASE

Figure 1. Cost of fixing bugs in different phases of the software development life cycle

With the validated requirements, the software
development cost can be reduced to a large
extent in terms of manpower and delays. Figure
1 shows a comparison of the cost of fixing bugs
in different phases of the software development
life cycle.

Detection of missing requirements is another
difficult and challenging problem to overcome.
These are not found in the specification, so these
are often overlooked by reviewers during verification.
The following schemes are generally adopted to
trace the missing requirements in launch vehicle
projects3 to:

Ensure that traceability is established between
mission requirements and software requirements.

Ensure that non-functional requirements such
as quality attributes, performance goals, constraints,
external interface requirements, have been
specified.

Represent requirements information in an alternate
way (like structured text or graphical format)
and establish to consistency between the two
representations.

Create a checklist of typical functional categories
and to check if requirements are present in all
the pertinent categories.

Examine similar and competing applications for
additional functionalities.

In navigation, guidance, and control software
projects, requirements and design-level challenges
are overcome through peer reviews by a team of
domain experts. IEEE Std 1028: 1997 defines technical
review as a systematic evaluation of a software
product by a team of qualified personnel that examines
the suitability of the software product for its intended
use and identifies discrepancies from specifications
and standards4. Technical reviews may also provide
recommendations of alternatives. In addition, availability
of design guidelines, pseudo language for design,
etc, help in overcoming design-level challenges in
operational missions.

2.1.4 Coding

In the coding phase, there are a number of
challenges. Foremost comes the choice of implementation
language. Low-level assembly language or a high-
level language like Ada is used, depending on the
mission and type of the navigation, guidance and
control system selected. Ada is selected as the
language for the forthcoming missions, by considering
a number of aspects like identified processors, tool
support, efficiency of language, usage by other
international space agencies, etc. The next task is
interfacing of modules in the software using appropriate
data structures. A quite complicated job is the

DEF SCI J, VOL. 56, NO. 1, JANUARY 2006

coordination of inter-task communications. Choice
of data type of arithmetic variables, use of error-
prone language constructs, etc, are also challenges
in this process.

Adherence to coding guidelines helps both
designers and quality assurance engineers to
combat the coding phase challenges easily. The
error-prone nature of the advanced language
features gets resolved using a standardised safe
subset of the language features. An Ada subset
for flight applications has been defined for this
purpose. Until recently, ISRO Software Engineering
Standard:92 (ISES:92) was being followed in
ISRO software projects. Vikram Sarabhai Space
Centre Software Engineering Standard was framed
in 2004 and is being adopted. This standard is
a tailored version of IEEE 12207 Std. It specifies
all required guidelines for software processes.

Software systems continue to suffer from
symptoms of aging, as these are adapted to volatile
and changing requirements. Software development

process should support software evolutions. Formal
methods have been advocated as a means to
improve software development with an emphasis
on software specification and verification. Currently,
even if small-localised changes are made to the
specification of a program, the entire program
needs to be verified again. This makes the cost
of verification of changes proportional to the
size of the program. Formal methods need to
embrace change and evolution to serve as practical
tools for software engineers.

In recent ISRO projects, formal methods are
being adapted to prove the correctness of
synchronisation logic, error-handling logic, and
timing properties of the onboard software. Design
methodologies like object-oriented approach, UML-
based design, etc, are also experimented in the
software projects. The challenges of inducting
these schemes in the software engineering process
and subsequent transition to related methods,
are also to be met in the forthcoming years.

Figure 2. Verification and validation in software development life cycle for onboard software

GOPALAN, et al.: SOFTWARE QUALITY ASSURANCE-CHALENGES IN LAUNCH VEHICLE PROJECTS

2.2 Verification & Validation Phase Challenges with automated source code analysis tools. The

Verification and validation activities followed
throughout the software development life cycle
are depicted in Fig. 2.

2.2.1 Code Inspection

Code inspection is the visual examination of
a software product to detect and identify software
anomalies, including errors and deviations from
standards and specifications. The software design
document (SDD) is taken as the reference for this
process. On completion of the inspection, a report
is prepared on the bugs found.

The observations recorded in code inspection
of a particular application software in a specific
mission are classified as shown in Table 1.

Table 1. Code inspection observations

Category of observations1 No. of observations1
recommendations recommendations

Wrong code 1

Missing code 2

Extra code 9

Requirements specification error 4

SDD error 0

Violation of guidelines 1

Document related 8

Suggestion for improvement 7

Total 32

Several challenges are being faced by the teams
performing code inspection6. A few are:

Total reliance on expertise of the tester

Subjection of code to human error

Number of person-hours is proportional to the
complexity of the code.

To cope up with the abovementioned threats,
the process of code inspection has been augmented

tool 'understand for Ada' is extensively used for
static analysis before initiating code inspection.
Tailor-made tools are also under development to
meet the challenges of future missions. These tools
are customised to incorporate user-defined rules1
guidelines.

2.2.2 Software Testing

Software testing is essential at the application
level as functional testing. It is necessary to be
carried out at the unit level. Unit testing is the
lowest level of testing performed during software
development, where individual units of software
are tested in isolation from other parts of a program7.

Presence of logically and computationally complex
software cannot be avoided in many ISRO software
projects. Complete testing coverage of such software
is a major task. Especially the subtle interactions
between multiple processes and different subsystems
are difficult to test. Standard software testing cannot
test all the combinations of pathslinput variables
in a program. New techniques are needed by the
verification and validation teams to verify the fault
tolerance of complex software systems.

The software fault injection (SFI) is a new
technique developed in the last decade. The SF1
input errors into the software at various locations
and verifies that the program responds in an acceptable
manner. This technique is used in the process of
unit testing performed by the verfication and validation
teams. Model-based testing is an emerging technology
that can be used to detect critical software errors.
This method uses state-space exploration to evaluate
a number of potential program behaviours. Activities
have already been initiated to implement this upcoming
technology in the future missions.

Solutions for online software failures are difficult
for the upcoming exploratory missions because
failures are hard to pinpoint and contingencies
may be too complex. Diagnostic techniques have
to be experimented to identify failures. Integration
of software-analysis tools and defect-tracking tools
has to be established to create a link between a
software feature and a failure. Then, by applying

DEF SCI J, VOL. 56, NO. 1, JANUARY 2006

machine learning to the results, predictors leading studies and integrated system testing help to ease
to software faults can be obtained. this task.

Analysis of the most severe anomalies that
occur during an operation is an important mean of
improving quality of the current and the future
softwares. Mining anomaly reports serve to reuse
knowledge regarding one system on the other similar
systems. Anomaly analysis can explicitly warn similar
vulnerabilities on the future systems. Such feed-
forward references need to be captured for inclusion
in inspections, reviews, and test cases of subsequent
similar systems. Thus, anomaly analysis can be a
valuable asset.

2.2.3 Simulation

Validating the system in near-flight environment
is done through simulations. Modelling of vehicle
characteristics in flight, like propulsion, aerodynamics,
atmospheric, wind, control power plant, etc, is a
great challenge in conducting simulation studies.
Choice of simulation schemes is another intricate
task. technical reviews aid in the formulation of
the simulation models. Test results of simulations
with actual hardware and software are compared
with the results from simulation studies. Experience
gained from previous missions plays a vital role in
realising the task of simulation.

Test cases are specified for each simulation
testbed to validate the system performance. These
test cases should be capable of covering anomalous
conditions and 3-sigma vehicle dispersions for the
stress testing of the flight softwareg. Arriving at a
decision about the actual number of test cases
needed for complete validation is a tricky task.
Complexity measures and code coverage metrics
are helpful here to come out with sufficient test
cases.

2.2.4 Effectiveness of Measures Adopted to
Overcome Challenges

It is through simulations that the effectiveness
of all the measures taken to overcome challenges
in the software development process gets validated.
Some of the challenges and the types of simulations
carried out to validate the measures adopted, are
given in Table 2.

Continuous success of launch vehicle missions
of ISRO demonstrates the effectiveness of software
quality assurance measures adopted. An elaborate
post-flight analysis is performed after every launch.
No software anomalies were observed in any mission
except for the failed PSLV-Dl mission. Moreover,

Redundancy management is an part the flight path was seen to be very close to the pre-
of a mission-critical software. A fault-tolerant design flight predicted trajectory.
is also mandatory in the navigation, guidance and
control system. Additionally, error-handling features
have to be incorporated in the onboard software

3 . CONCLUSION

to tackle the errors that may occur during the A brief description of some of the challenges
flight. Validating all these features through simulation in the software development process and the present
testbeds is a tedious task. In ISRO, failure-mode schemes to overcome these in ISRO launch vehicle

Table 2. n p e s of simulations for validation

Type of challenge Type of simulations for validation

Apportioning software & hardware hnctions Integrated closed-loop simulations with sensors/actuators in loop

NGC algorithm selection Mission simulation studies in closed-loop system simulations

Sofiware requiremats and design closed-loop system simulations under nominal, off-nominal, and stressed conditions

Robustness and fault tolerance Open-loop system simulations under identified test cases and failure modes

Open-loop performance of the embedded system Performance studies in open-loop simulations testbed

Closed-loop performance of the integrated system Performance simulations (nominal and off-nominal) in closed-loop system . .

simulations testbed

GOPALAN, et al.: SOFTWARE QUALITY ASSURANCE-CHALENGES IN LAUNCH VEHICLE PROJECTS

projects is attempted in this paper. Software evolution
is yet another challenge faced by the software
quality assurance team. Developing and verifying
safety-critical software for future ISRO missions,
like reusable launch vehicles (RLVs), mission to
moon (Chandrayaan), etc, is a big challenge for
the software community. Software development
teams of ISRO have already initiated efforts to
tackle the challenges in the upcoming launch vehicle
projects.

REFERENCES

1. Jones, Michael. Software engineering: Are we
getting better at it? Mission Data Systems Division.
ESA Directorate of Operations, Germany. ESA
Bulletin, February 2005.

2. Lowry, Michael R. Software construction and
analysis tools for future space missions.
Computational Sciences Division, NASA Ames
Research Centre, 200 1.

3. Wiegers, Karl E. Peer reviews in software-a
practical guide. Addison-Wesley Information
Technology Series, 2002.

4. Radice, Ronald A. Software inspections. Tata
McGraw Hill Publishing Co Ltd, 2003.

5. Mens, Tom. Challenges in software evolution.
ECRIM-ESF Workshop ChaSE 2005.

6. Duncan, Brent. Cleanscape director, stopping
bugs before they kill your software organisations.
200 1.

7. Gopalan, Poofa & Uma Sankari, S.S. Software
testing-a roadmap for Hi-REL software. I n
Proceedings of the National Conference on
New Horizons in Computing -FICOM 05, February
2005.

8. Lutz, Robert R. & Mikulski, Ines Carman. Empirical
analysis of safety-critical anomalies during
opearations. IEEE Trans. Software Engg., March
2004,

9. Strickland, Edward A. An object-oriented design
of a launch vehicle simulator-case study-2000.
Analex corporation, Colorado.

Contributors

Ms Poofa Gopalan completed her graduation in Electronics and Communication
Engineering in 2002, and postgraduation in Computer Science and Information
Technology in 2004, both from the Manonmaniam Sundaranar University. She
joined the Quality Assurance and Reliability for Software and Mission Group at
the Vikram Sarabhai Space Centre (VSSC) in 2004. Since then, she has been
involved in independent software inspections and testing of embedded software
for launch vehicle missions.

Ms S.S. Uma Sankar i obtained her BE (Computer Science) from the Madurai
Kamaraj University in 1997, and postgraduation in Computer and Information
Science from the Cochin University of Science and Technology in 2002. She joined
the Quality Assurance and Reliability for Software and Mission Group at the VSSC
in 2002. Since then, she has been involved in independent inspections and testing
of simulation and checkout software for launch vehicle missions.

DEF SCI J, VOL. 56, NO. 1 , JANUARY 2006

Mr D. Mohan Kumar obtained his postgraduation in Mathematics from the Kerala
University in 1981, and joined VSSC in the same year. He worked in system
programming and mission simulations, and is currently involved in qualit-y assurance
of flight software.

Dr R. Vikraman Nair did his BE (Electronics and Communication Engg) from
the Kerala University in 197 1, received PhD in Information Technology from the
University of Paris (France) in 1980. Since 1971, he has been involved in launch
vehicle integration, design and development of checkout systems for flight operations,
and quality assurance of mission software at the VSSC. Currently, he is heading
the Quality Assurance and Reliability for Software and Mission Group at the
VSSC.

