
Defence Science Journal, Vol. 56, No. 1, January 2006, pp. 13-1 9
O 2006, DESIDOC

Ensuring Software Quality-Experiences of Testing
Tejas Airdata Software

Kavitha Rajalakshrni, Y.V. Jeppu, and K. Karunakar
Aeronautical Development Agency, Bangalore-560 017

ABSTRACT

Two major safety-critical elements of the onboard software for the Tejas digital flight control
computer software are the control laws and the airdata algorithm. The airdata algorithm computes
essential parameters like static and dynamic pressures, altitude, speed, angle of attack, etc from
the airdata sensor input. These parameters are used by the control laws to stabilise the aircraft
and to provide the required uniform handling qualities over the complete flight envelope. The
algorithm is provided by the Control Law Design Team and coded by the Software Design Group
of Software House, ADA, Bangalore, in Ada language. The Independent Verification and Validation
Group is responsible for ensuring that the software is bug-free and certifiable. A non-real time
(NRT) test methodology has been developed in-house to stress test the onboard software. This
paper gives an overview of the methodology used to carry out the NRT test of the airdata
algorithm and some of the testing experiences.

Keywords: Software quality, software testing, best practices, software verification and validation, safety-
critical code, Tejas, light combat aircraft, quality assurance, digital flight control computer
software, airdata algorithm, non-real time test methodology

1. INTRODUCTION passed preliminary unit-level and integration-level

The non-real time (NRT) test methodology
developed at the Aeronautical Development Agency,
Bangalore, for testing safety-critical software' in
1998 has matured over the years2". A randomised
way of generating test cases has been developed
to remove some of the drawbacks of manually-

tests have been trapped. Some defects have even
passed through system- level tests at the Ironbird
Facility. This paper consolidates the Software Testing
Group's experience in ensuring software quality
using NRT test methodology. A few interesting
catastrophic defects have been analysed in this paper.

generated test cases4. The method has been used The airdata algorithm is briefly presented to
to test various builds of the digital flight control familiarise about the system under test. A description
computer (DFCC) software. The Software Testing of the NRT test methodology is provided for
Group at the Aeronautical Development Agency completeness. A few category 1 (catastrophic) defects
(ADA), Bangalore has gained vast experience in have been presented and the nature of the defects
testing of the software using NRT test methodology has been discussed providing an insight into the
over the years. The software defects, which have power of NRT test methodology in trapping these

Received 04 October 2005

13

DEF SCI J, VOL. 56, NO. 1, JANUARY 2006

defects. The causes of the defects and the ways
these could have been avoided or trapped earlier,
are also discussed. Finally, the best practices gleaned
from the test activity are listed here.

2 . AIRDATA ALGORITHM

Modern day aircraft with fly-by-wire flight control
systems require information regarding altitude, speed,
angle of attack, and sideslip to ensure stability and
good handling during the entire flight envelopes.
These parameters were measured by pressure probes
and conventional instruments in earlier aircraft.
Today, the same sensor output are digitised and used
with sophisticated algorithm to provide a redundant
source of information required for feedback in the
safety-critical control laws.

The light combat aircraft, Tejas has three pressure
probes, a temperature probe, and two angle of
attack vanes to measure the required parameters.
The pressures were converted to electrical signals
and transmitted to the four-channel digital flight
control computer (DFCC) by RS422 links. Vane
and probe de-icing heaters were also monitored for
their health. Failure of heaters could cause icing of
the probes and vanes, making their measurements

invalid. Since the sensor failures could cause mistrack,
so the faulty sensors were voted out. Multiple
failures could cause certain events to be set in the
control law to facilitate reversionary backup control
laws to be brought into action. The airdata algorithm
output are also sent for display on the head-up-
display and on the get-U-home panel for information
to the pilot. This information is not safety-critical
and a single working sensor can provide the required
information. Figure 1 shows the schematic of the
airdata system used in the Tejas aircraft.

The airdata algorithm was designed by the
National Control Law Design Team (NCT), and
was coded by the Software House, in Ada language.
The Software Design Group of ADA provides a
functionality document, a detailed block diagram,
and a functional code for the test case and expected
result generation. The Independent Verification and
Validation (IV&V) Group and the Software Design
Group together tested the safety-critical code using
the NRT test methodology.

3 . NON-REAL TIME TESTING

The NRT test methodology tests the 4-channel
DFCC code in a single-strand mode on a target

Figure 1. Schematic of airdata system

14

w TAS

b

ANGLE OF ATTACK
(COMPUTATIONS

AND FAILURE
DETECTION)

CAS

TOTAL TEMP.
(COMPUTATIONS

AND FAILURE
DETECTION)

PRESSURE

AOA
b

ALTlTUDE
b

MACH
b

TOTAL PRESSURE.
STATIC PRESSURE

CAOA-LP

CAOA-RP

(COMPUTATIONS
AND FAILURE
DETECTION)

RAJALAKSHMI, et al.: ENSURING SOFTWARE QUALITY-EXPERIENCES OF TESTING TEJAS AIRDATA SOFTWARE

hardware board. The target hardware board is a
single-board computer with the same processor as
the 4-channel DFCC. The single-strand code is
compiled after clipping and stubbing with the same
options as the final software build. The executable
is run on the single-board computer and the output
compared with the design code. A defect in the
software is certain if the error between the two
is greater than a specified threshold (0.02 %).

4 . SOFTWARE DEFECTS

Various builds of the DFCC codes have been
tested since 1998. Several software defects (category
1) have been detected during the tests. Errors (category
1) can cause catastrophic failures of the safety-
critical code. These defects have been isolated by
debugging and testing the safety-critical code. The
Software House has rectified the safety-critical
code and cleared the software for the flight. A few
of these defects are discussed here. The lessons
learned in software quality assurance are given as
a moral of the test story.

4.1 Index Exceedance

The airdata algorithm has several look-up tables
to compute the various parameters. In the total
temperature measurement component, there is a
table to compute the correction factor based on
the Mach number. If the Mach number is >1.0 and
1 2.0, then the correction has to be applied. The
correction factor is provided as a look-up table wrt
Mach number.

This interpolation algorithm design defect should
have been trapped at the unit-level testing itself.
However, this was not done because s f the inadequacy
of the unit-level test cases to check the boundary
values. Another important issue was, during testing
phase, the compiler option, 'suppress run-time checks'
was set. So, even if the boundary checks were
performed and if the error was within the tolerance
bounds specified for the test, then the bug in the
safety-critical code would not have been noticed.

Test Moral

Always check for (i) the exact boundary values
of the variables, (ii) greater than the boundary
value of the variable, and (iii) less than the boundary
value of the variable during unit-level testing. Stress
testing software is necessary during functional and
integration-level tests. Dynamic input like high amplitude
sine waves used in the NRT test methodology
could cause a system failure and trap the defect.
During the testing phase, the run-time checks need
not be suppressed as otherwise problems like this
may go unnoticed.

* Wrong indexing is a very common mistake made very

often-look out for this. Bugs can hide anywhere, but

these are always present behind the kitchen sink!

4.2 Incorrect Indexing

The total temperature computation block has
two correction factors. One correction is for the
de-icing heater error (DHE) and the other for the

During NRT test methodology stress testing self-heating error (SHE). Both the correction factors

Mach number was varied from -1.0 to 3.0 as a are provided as look-up tables DHE-TAB and

sine waveform and the output monitored. It was SHE-TAB wrt a variable Z. In the algorithm in
found that with the increase in Mach number from Ada the index was for the
2.0 and above, the execution terminated with range- DHE look-up table. As the Z values used for SHE

constraint error. Examination of the safetv-critical and DHE were the the index for
code indicated that for a Mach number value of
2.0, the computed array index exceeded the defined
size of the array.

It should be noted that the 4-channel DFCC
code is normally compiled with the options to suppress
the run-time check. In this case, the execution
would not terminate and would continue with the
some junk value assumed for the variable.

DHE was used for SHE also. However, there was
a condition of heater failure where DHE index
was not computed at all but the SHE correction
was required.

During NRT tests, a varying Z value with
random toggling of the heater flag was used in the
test case. This caused a mismatch between the
designer- provided model code and the Ada safety-

DEF SCI J, VOL. 56, NO. 1, JANUARY 2006

critical code. Debugging the code brought out the
following software design defect:

As the Z index was computed during the DHE
computation and used for the SHE interpolation,
during heater failure, the index was not computed
and SHE computation was erroneous.

Test Moral

An independent model code, as a reference
for the expected result, is very essential to benchmark
a safety-critical code. Random toggling of events1
flags gives a good way of shaking down a piece
of code. Randomness in test signals mimics the
natural manner in which the flags are set. Special
care should be taken when designing software,
especially when an advantage is foreseen in cutting
down code and optimising. The solution may not
be an ideal one in terms of functionality.

* Stress test with random signals-this is a very cheap and

efficient way of testing a code.

4.3 Inaccuracies in Table Compression

The look-up table of the algorithm takes up too
much memory space. An optimisation was carried
out by packing three numbers together. The Software
Design Group of ADA provided an algorithm for
this. During NRT testing, it was found that the
errors between the packed table data and the tables
in the functionality document were more than expected.
An analysis of the data-packing algorithm brought
out the fact that the Software House had used FIX
(extract only the integer value) instead of ROUND
(round off to the nearest integer) to compute the
packed table. This error, though small, caused an
increase in errors in the computed parameters due
to the presence of a multiplication factor.

Test Moral

As a tester of the system (not just the software),
it pays to check algorithm design also. NRT test
methodology provides a digital platform, where such
small errors can be trapped. This cannot be done
with the actual hardware like AID converters present,
as their noise would mask the test accuracies.

* Broaden the test scope without compromising test schedules.

4.4 Missing Requirements

During flight, it was found that the airdata
parameters were a function of the aircraft
undercarriage operation. A detailed post-flight
analysis was carried out and the algorithm modified
to cater for this. This change was reflected in the
functionality document released for coding. However,
the final code released for testing did not have this
correction. The effect of the change was small but
necessary. System- Ievel testing cleared the software
for flight.

NRT testing revealed the defect in the software.
This was due to the dynamic nature of the testing
and the very tight error bands involved in the testing.

Test Moral

Changes made to the design should be highlighted
and mentioned separately. The Software Design
Group of ADA should take special care to see
that the design modifications are understood
and coded. A meeting with the Coding team and
Independent Varification and Validation (IV&V)
Group highlighting the changes would have prepared
both for the additional testing.

The unit-level test cases also used similar code
design and were perhaps made by the same group.
Independent check by a separate group is essential
to check the software. In places where there is
manpower shortage, software coder from another
group could be used to check the software by
interchanging their work. System-level tests are
not meant for stress-testing software. These are
useful for demonstration of system performance.
It is very essential that system design personnel be
involved in testing. This synergy leads to better
software quality!

* Involve the system designers and software designers in

test activity. The combination works very well.

4.5 Cut-paste Errors

The Software House reported errors in the
altitude (a derived parameter) during its software
integration tests (SIT), which were very high. The
explanation given by them was that the errors were

RAJALAKSHMI, et al . : ENSURING SOFTWARE QUALITY-EXPERIENCES OF TESTING TEJAS AIRDATA SOFTWARE

due to the approximations in the look-up table due 4.6 Uninitialised Variable
to packing.-~he Software Design ~ r o J ~ checked
this with the maximum errors in the tables due to
packing and for various flight conditions. It was
found that errors due to packing were much smaller
than what was encountered during software integration
tests (SIT). Meanwhile, another group, which was
looking up at the compiled object code, reported
an error but was unable to trace the source of the
errors.

NRT testing of the software with large amplitude
signals, for stress testing the code and tapping of
intermediate variables, could isolate the error to a
specific function. A code walkthrough of the function
revealed that a two-dimensional interpolation routine
was sending the same variable for the X and Y
variables instead of sending two separate variables.
This is seen in the code example given below. As
the other variable was not being used, the optimising
compiler had removed that portion of the code as
the dead code. This was the error noticed in the
object code analysis.

Test Moral

The causes for the defect in the software
were attributed to the cut-paste technique used
while writing code, and the inadequate unit-level
testing.

It is often seen during testing that the errors
exist in a visible variable but the cause lies somewhere
else. Stress testing is very essential for any safety-
critical code. Tapping of intermediate variables
gives an excellent view into the working of the
software and it is very easy to debug the code.
The price paid for tapping out the additional parameters
is the slowing down of the test activity. However,
automatic testing and logging of the results and
errors can overcome this deficit in testing. As
experienced, if the test cases are partitioned to
test specific blocks, and if all the input to the block
and output of the block under test are tapped, it
pays rich dividends in terms of time saved in debugging
and isolation of the problems.

* If the output is not what was expected, it is most likely

to be because of a bug.

Initialisation part of the code is the most difficult
to test. There are many variables and many values
these can take. An uninitialised variable is detected
by observing the first frame of data. In case of
filters and integrator, an uninitialised variable will
show its effect in the subsequent frames. Random
tests with initial conditions randomly selected, can
check for such situations. The following code shows
the initialisation phase and the main code segments.
This error was captured as an error visible only
in the first frame. The code was later corrected
by adding the code segment below.

Test Moral

A set of test cases can be generated for testing
only the initialisation part. The test cases generated
randomly can be executed for a few frames (say
10 major cycles) to test the initialisation part
automatically. Any error in the first few frames is
definitely due to an error in the initialisation.

* There is always an error in the zeroth frame!

5; BEST PRACTICES

The experiences gained in the test activity are
summarised as best practices in the requirements
phase, software coding phase, and the testing phase.

5.1 Requirements Phase

A systematic approach to requirements capture
is required. The practice followed some Tejas
is that the Software Design Group of ADA gives
the requirements in the form of a functionality
document. It has been observed that the Software
House usually misinterprets the requirements. A
simulink block diagram and model is provided by
the Software Design Group of ADA to the Software
House. Problems have been attributed to the
Software House not understanding the simulink
blocks. Following steps may be taken during the
requirements phase:

An interaction between the Software Design
Group and the Software House is a must for
proper requirements capture.

DEF SCI J, VOL. 56, NO. 1, JANUARY 2006

Automated requirements management tools can 6. CONCLUSION
help remove some of the misunderstanding by
giving a text-alone requirement. The simulink
blocks can be integrated with the requirements
for better understanding.

It is seen that Software House makes changes
in the safety-critical code for optirnising performance.
These changes should be ratified with the Software
Design Group for their effect on functionality.
Working of these two groups in isolation is
harmful as defects are trapped very late in the
project.

5.2 Coding Phase

Non-real time (NRT) testing has provided a
rich experience in ensuring software quality. The
concept of a single-strand testing, the digital
mode of testing with tight error tolerance bands,
and stress testing of the safety-critical code in an
end-to-end manner with tapped out intermediate
variables, has trapped a number of safety-critical
(category-1) errors. A few of these are mentioned
with the lesson learnt in the process.

The test morals provide a few best practices
for testing and ensuring quality of safety-critical
software. These are:

Automatic code generators could reduce some Common software coding errors will always be
of the errors found in the safety-critical software. present. These may be looked for in particular.

A separate group should carry out extensive
unit-level tests, preferably using some of the
automated tools for checking dead code.

5.3 Testing Phase

The success of NRT test methodology can be ,

mainly attributed to interaction between the
Independent Verification and Validation Group
and the Software Design Group.

There is, however, minimal interaction with the
Software House. Involvement of the Software
House in the testing could sort out certain
misunderstanding.

Test case should be generated to test the system
in an end-to-end manner.

Stress testing is essential for any safety-critical
software.

Testing software is not a routine affair. Testers
play a very important role in the software
development phase. They should be trained in
the latest technologies available.

Management should consider testing as essential
and not a hindrance to the project schedule.
Proper management of project schedules, with
adequate time frames provided for testing, can
produce high quality certifiable software.

Stress test with random signals is a very cheap
and efficient way of testing safety-criticcal code.

Be very specific about the scope of the test.
It is futile to go on testing the code. But, try
and broaden the test scope without compromising
test schedules.

Start the test activity very early. Involve the
system designers and software designers in the
test activity from the very beginning.

If the output is not what was being expected,
it isvery likely to be because of a bug. There
could be other explanations but in 99 per cent
of the cases, it will be an error-look for it.

There is always an error in the zeroth frame.
Initialisation errors are very common. Random
test cases are very effective in trapping such
errors.

A well-trained test team is an asset to the
organisation involved in safety-critical software
development. The future of software development
is formal methods, which purport to do away with
software testing completely. But it is essential to
remember-to err is human.

* Testing software is inevitable for ensuring quality in any

safety-critical software.

RAJALAKSHMI, et al.: ENSURING SOFTWARE QUALITY-EXPERIENCES OF TESTING TEJAS AIRDATA SOFTWARE

ACKNOWLEDGEMENT 3. Jeppu, Y.V.; Karunakar, K. & Subramanyam,

The authors are grateful to the Programme
Director (Combat Aircraft) and the Director,
Aeronautical Development Agency (ADA), Bangalore,
for their support and permission to publish this
work.

REFERENCES

1. Jeppu, Y.V.; Harichoudary, C.H. & Misra, B.B.
Testing of real time control system: A cost
effective approach. In SAAT 2000, Advances
in Aerospace Technologies, Hyderabad, India.

2. Jeppu, Y.V.; Karunakar, K. & Subramanyam,
P.S. Flight clearance of safety-critical software
using non-real time testing. In ATIO, 2002.
AIAA Paper No. AIAA-2002-582 1.

P.S. Testing safety critical Ada code using non-
real time testing. In Reliable software technologies,
ADA-Europe 2003, edited by Jean-Pierre Rosen
and A. Strohmeier. Lecture Notes in Computer
Science, 2655. pp. 382-93.

4. Giri, Sukant K.; Mishra, Atit; Jeppu Y.V. &
Karunakar, K. A randomised test approach to
testing safety critical Ada code. In Reliable
software technologies, Ada-Europe-2004, edited
by Albert Liamosi and Alfred Strohmeier. Lecture
Notes in Computer Science, 3063. pp. 190-99.

5. Collinson, R.P.G. Introduction to avionics.
Microwave Technology Series-1 1. Chapman &
Hall, 1996.

Contributor

Ms K. Kavitha Rajalakshmi has done her BE (Electronics and Communication
Engg) and ME (Applied Electronics) from the Government College of Technology,
Coimbatore. She is working at the Aeronautical Development Agency (ADA),
Bangalore in Independent Validation and Verification Department since 1998. Her
main responsibility is verification and validation of real-time embedded system
software of safetylmission-critical domains like airdata parameter computation
software, redundancy management software, flight test panel, crash data recorder
of LCA, etc in which she has used different methodologies in software testing.
She has also performed independent validation and verification activities for Agni
missile developed by RCI, Hyderabad.

