A New Approach in Realisation of DGS Microstrip Patch Antennas With Fractal Geometry

R.V. Hara Prasad*, D. Vakula† and M. Chakravarthy‡

*DRDO-Defence Laboratory, Jodhpur – 342 011, India
†National Institute of Technology, Warangal – 506 004, India
‡DRDO-Defence Electronics Research Laboratory, Hyderabad – 500 005, India
*E-mail: hararvh@gmail.com

ABSTRACT

A new approach in realization of Defected Ground Structure Microstrip Patch antennas with Fractal Slots cut in the ground plane has been presented. The presented approach resulted in miniaturization of radiating patches and avoidance of multiple resonances which are prime considerations in antennas for Wi-Fi applications. A rectangular Microstrip patch is taken as a basic radiating patch. In the ground plane, square and circular slots following Sierpinski Carpet Fractal Geometry are cut resulting in Defected Ground Structure (DGS) Microstrip Patch antenna. The antenna is designed to operate at 2.4 GHz and the performance characteristics have been simulated using HFSS software. The prototype DGS Microstrip patch antenna with square fractal slots is fabricated and tested. The measured results are in good agreement with the simulation studies. The technique has also resulted in size reduction of radiating patch compared to the standard microstrip patch antenna operating at the same frequency.

Keywords: Defected Ground Structure (DGS); Fractal; Sierpinski carpet; Square slots; Circular slots; Microstrip patch antenna

NOMENCLATURE

\( W, L \): Dimensional parameters of patch antenna
\( h \): Height of substrate
\( c, f_r \): Speed of light in free space, Resonant frequency
\( VSWR \): Voltage standing wave ratio
\( CPW \): Compact coplanar waveguide
\( L_{eff} \): Effective length of the patch

1. INTRODUCTION

There is an ever-increasing demand for miniaturized patch antennas for wireless communication applications in portable devices. A slot in proper shape cut in the ground plane of Microstrip patch antennas lowers the resonant frequency of the antenna and thus leads to size reduction. A wide variety of slot shapes such as Spiral heads, arrow head slot, interdigital DGS etc. are used in the realization of Defected Ground Structures1. A Defected Ground Structure (DGS) has been implemented for resonating frequency shift of an antenna by disturbing the current distribution with miniaturization up to 50% and other related studies are also reported2-4. A circular ring microstrip antenna with a defected ground having four circular rings with impedance bandwidth of about 1.33 GHz in the X-band with a significant gain is reported5. A multiband semi-circle fractal antenna with U-shaped Slot DGS is reported6 to achieve multi-band antenna performance. A Multiband Behavior of Wideband Sierpinski Fractal Bow-Tie Antenna is also proposed for wide band application7. A compact coplanar waveguide (CPW) monopole antenna comprising a fractal radiating patch embedded with folded T-shaped element (FTSE) operating over a frequency range of 2.94 -11.17 GHz with a fractional bandwidth of 117 percent for VSWR≤ 2 is reported8. An Inverted-L (IL) – shaped radiating element and a parasitic element in the ground plane are reported9 to generate three resonant modes for triple band WLAN applications at 2.3/3.5/5.5 GHz WiMAX and 5.2/5.8 GHz. A novel compact multiband Broadside Coupled Split Ring Resonator (BC-SRR) loaded fractal antenna with Perturbed Sierpinski carpet fractal geometry for 4G and other wireless systems is reported10.

In this paper, a new method of realization of Defected Ground Structures by introducing slots following Fractal geometry11 in the ground plane of the microstrip patch antenna is presented. Two configurations viz. square and circular slots cut in the standard ground plane following the Sierpinski carpet of 1\(^{\text{st}}\), 2\(^{\text{nd}}\), and 3\(^{\text{rd}}\) order fractal geometry are discussed. Simulation of Defected Ground Structure microstrip patch antenna in both these configurations operating at 2.4 GHz have been carried out using HFSS software. The third order fractal slot Defected Ground Structure microstrip patch antenna has been fabricated on RT Duroid (\( \varepsilon_r =2.2 \)) and measured results are presented.

2. ANTENNA DESIGN

2.1 Radiating Patch

A Rectangular microstrip patch antenna with a Radiating
Patch and a Ground plane is shown in Fig. 1. The antenna dimensional parameters length (L), width (W), substrate height (h), and dielectric constant (ε_r) are responsible for tuning the frequencies. The antenna is fed with an inset feed by considering Defected Ground Structure configuration. The following design equations are used for the computation of dimensions of the rectangular microstrip patch antenna:

**Effective dielectric constant:**

\[ \varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2}(1 + \frac{12h}{w})(1 + \frac{12h}{w})^{0.5} \]  
\[ (1) \]

where, ‘w’ is width of patch and ‘h’ is height of substrate.

**Fringing factor:**

\[ \Delta L = \frac{(\varepsilon_{\text{eff}} + 0.3)(\frac{w}{h} + 0.264)}{(\varepsilon_{\text{eff}} - 0.258)(\frac{w}{h} + 0.8)} \]  
\[ (2) \]

where, ‘w’ is width of patch, ‘h’ is height of substrate

**Calculation of Length:**

\[ L = L_{\text{eff}} - 2\Delta L \]  
\[ (3) \]

\[ L_{\text{eff}} = \frac{c}{2f_r \sqrt{\varepsilon_{\text{eff}}}} \]  
\[ (4) \]

where, ‘L’ is length of patch, ‘ΔL’ is extension in length due to fringing.

**Calculation of width:**

\[ W = \frac{c}{2f_r \sqrt{\frac{\varepsilon_r + 1}{2}}} \]  
\[ (5) \]

Where, ‘c’ is the speed of light in free space, \( f_r \) is the resonant frequency.

**Calculation of ground plane dimension:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dimension (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch Length (L)</td>
<td>4.119</td>
</tr>
<tr>
<td>Patch Width (W)</td>
<td>4.915</td>
</tr>
<tr>
<td>Inset Depth</td>
<td>1.263</td>
</tr>
<tr>
<td>Ground Plane Length (L_s)</td>
<td>9.228</td>
</tr>
<tr>
<td>Ground Plane Width (L_s)</td>
<td>9.228</td>
</tr>
</tbody>
</table>

**Figure 1. Microstrip patch antenna.**

**Figure 2. DGS with square fractal slots.**
where, 'h' is the height of substrate. 'L' is length of patch. 'W' is width of patch. The calculated dimensions of the basic radiating patch antenna resonating at 2.4 GHz are given in Table 1.

2.2 Defected Ground Structure

The standard ground plane of the microstrip fractal patch antenna of size (Ls x Ls) is defected by cutting slots in the ground plane. The Defected Ground Structure has been applied to the designed antenna. The Defected Ground Structure starts with applying slots cut in the ground plane as per Sierpinski Carpet Fractal Geometry. The 1<sup>st</sup> iteration has been obtained by removing a Square Slot followed by iteration done by removing eight squares with scaling factor of one third. Same procedure is applied for subsequent iterations with the same scaling factor. A typical scheme of fractal slots for 1<sup>st</sup>, 2<sup>nd</sup>, and 3<sup>rd</sup> order square slots is indicated in Fig. 2.

In the case of circular slots fractal configuration, the maximum size of the circle which can be inscribed inside a
unit square cell of Sierpinski Carpet Geometry has been taken in the 1st order, and thereafter the same geometry in scale-down version is followed in higher orders. The Defected Ground Structure with 1st, 2nd, and 3rd order Fractal circular slots are shown in Fig. 3. The selection retains the fractal properties of the antenna, and the design is generic and modular for the realization of higher-order antennas following the same fractal geometry.

The DGS fractal antenna is simulated using HFSS 15 tool. With application of the Sierpinski fractal slots to the ground plane, reduction in size of radiating patch is obtained in comparison to a standard patch antenna at the frequency of operation of 2.4 GHz.

3. SIMULATION STUDIES AND DISCUSSIONS

Simulation studies using HFSS tool for both square and circular slot DGS configurations have been done. The comparison plots of gain and return loss plots of Distorted Ground Structure fractal slot antennas for both the configurations to that of standard rectangular microstrip patch antenna are presented in Fig. 4 - Fig. 5.

From the return loss plots, it is evident that the antenna without DGS resonates at 2.4 GHz and also at further harmonics. Microstrip patch antenna with fractal Defected Ground Structures resonates only at required frequency of 2.4

Figure 5. Gain and return loss comparison plots of standard patch and distorted ground structure with sierpinski fractal circular slots. (a) Gain plot at $\Theta = 0^\circ$ (b) Gain plot at $\Theta = 90^\circ$ (c) Return loss plot.

Figure 6. Current density distribution plots: (a) 3rd order DGS square fractal slot microstrip patch antenna, and (b) Basic microstrip patch antenna.
Table 2. Microstrip patch antenna with DGS of square fractal slots

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Patch dimensions (cm)</th>
<th>Area (cm²)</th>
<th>Size reduction</th>
<th>Resonant freq. (GHz)</th>
<th>Return loss @ Resonant frequency</th>
<th>Peak Gain (dB)</th>
<th>3 dB beam width for phi = 0°</th>
<th>3 dB beam width for phi = 90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>First order DGS</td>
<td>Length: 3.447 Width: 4.113</td>
<td>14.18</td>
<td>29.97 %</td>
<td>2.398</td>
<td>14.72</td>
<td>8.64</td>
<td>80° approx.</td>
<td>65° approx.</td>
</tr>
<tr>
<td>Second order DGS</td>
<td>Length: 3.374 Width: 4.026</td>
<td>13.58</td>
<td>32.90 %</td>
<td>2.4095</td>
<td>26.45</td>
<td>8.71</td>
<td>75° approx.</td>
<td>65° approx.</td>
</tr>
<tr>
<td>Third order DGS</td>
<td>Length: 3.987 Width: 3.341</td>
<td>13.32</td>
<td>34.20 %</td>
<td>2.4053</td>
<td>24.74</td>
<td>8.69</td>
<td>75° approx.</td>
<td>65° approx.</td>
</tr>
</tbody>
</table>

Table 3. Microstrip patch antenna with DGS of circular fractal slots

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Patch dimensions (cm)</th>
<th>Area (cm²)</th>
<th>Size reduction</th>
<th>Resonant freq. (GHz)</th>
<th>Return loss @ Resonant frequency</th>
<th>Peak Gain (dB)</th>
<th>3 dB beam width for phi = 0°</th>
<th>3 dB beam width for phi = 90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic patch</td>
<td>Length: 4.119 Width: 4.915</td>
<td>20.25</td>
<td>---</td>
<td>2.4043</td>
<td>27.11</td>
<td>7.96</td>
<td>74° approx.</td>
<td>70° approx</td>
</tr>
<tr>
<td>First order DGS</td>
<td>Length: 3.291 Width: 3.927</td>
<td>12.92</td>
<td>36.16 %</td>
<td>2.3843</td>
<td>22.41</td>
<td>8.49</td>
<td>78° approx.</td>
<td>66° approx</td>
</tr>
<tr>
<td>Second order DGS</td>
<td>Length: 3.217 Width: 3.838</td>
<td>12.34</td>
<td>39.01 %</td>
<td>2.4376</td>
<td>15.56</td>
<td>8.6</td>
<td>78° approx.</td>
<td>64° approx</td>
</tr>
</tbody>
</table>

GHz, and all the higher harmonic frequencies are suppressed due to the disturbing current distribution at harmonics, so that the antenna resonates only in fundamental mode. A comparison of the surface-current density distribution plots of the basic rectangular microstrip patch antenna and the 3rd order DGS Square Fractal Slot microstrip patch antenna is shown in Fig. 6.

The reduction in size of the radiating patch is obtained with incorporation of Sierpinski carpet fractal Defected Ground Structure slot up to an extent of 40% relative to the basic microstrip patch antenna and the reduction is more in case of circular slots compared to the square slots. The performance comparison of DGS microstrip patch Antennas to that of the basic rectangular microstrip patch are indicated in Tables 2 & 3 for square & circular DGS Fractal slot configurations respectively.

4. FABRICATED ANTENNA AND MEASURED RESULTS

Patch Antenna with Defected Ground Structure of square fractal slots in 3rd order has been realized on RT Duroid material ($\varepsilon_r = 2.2$, substrate height = 1/16”) and tested. The photograph of the fabricated antenna is given in Fig. 7.

The measured return loss plot of the fabricated proto-type antenna is presented in Fig 8. The return loss plot reveals that the antenna resonates at the designed frequency of 2.4 GHz. The measured radiation patterns of the fabricated antenna in both vertical and horizontal polarizations are presented in Fig. 9, and the radiation patterns of the antenna are in good agreement with the simulation results.

The antenna has a typical 3 dB beamwidth of 70 deg., and the measured gain of the antenna at the resonant frequency...
of 2.4 GHz is about 8 dB. As per the radiation patterns, it is clear that the DGS fractal slot microstrip patch antenna retains its pattern purity as that of a patch antenna which is the main feature for wireless applications.

The comparison of fabricated DGS microstrip patch antenna of 3rd order Sierpinski Fractal square slots performance characteristics against other typical DGS microstrip antennas reported in the literature is indicated in Table 4.

The comparison reveals that the proposed approach has resulted in the reduction of antenna size without compromising the gain and back radiation features, and there are no multiple resonances in the realized antenna.

5. CONCLUSIONS
Microstrip patch Antennas with Defected Ground Structure of Sierpinski Carpet Fractal Slots in square and circular shapes have been discussed in the paper. The fabricated prototype antenna’s measured results are in close agreement with the simulation values. The proposed approach of Fractal DGS Microstrip patch antennas is attractive in achieving antenna miniaturization without compromising on Gain and back radiation problems. There are no multiple resonances in these antennas and are suitable for wireless applications without getting affected by unwanted interferences from other unintended frequencies.

Table 4. Comparison with reported DGS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Resonant frequency</th>
<th>Size reduction</th>
<th>Gain</th>
<th>Observations</th>
</tr>
</thead>
</table>
| H. Elftouhete. 2 | 3 GHz | 50 % | 2 dB | • Low Gain  
• High back radiation. |
| Alper, C. etc. 4 | 0.9 GHz | | 2.5 dB | • Multi-Band operation,  
• Low Gain  
• High back radiation |
| | 1.8 GHz | % of size reduction not reported | 1.4 dB | |
| | 2.4 GHz | | 3.8 dB | |
| I. B. Issa etc. 7 | 2.48-3.35 GHz | | 3.8 dB | • Multi-Band operation  
• Low Gain |
| | 5.91 GHz | % of size reduction not reported | Max. | |
| | 6.76-8.33 GHz | | | |
| | 13.73-16.1 GHz | | | |
| Realized 3rd order DGS microstrip patch antenna with Sierpinski square fractal slots | 2.4 GHz | 34 % | 8 dB | • No gain reduction  
• No back radiation. |
REFERENCES

doi:10.2528/PIERB08031401

doi:10.1109/LMWC.2006.873594

doi:10.1109/LMWC.2002.805941

doi:10.2528/PIERC14092302

doi:10.2528/PIERC13061504


doi:10.1109/ECWT.2005.1617767

doi:10.1109/LAWP.2013.2256465

doi:10.1049/el.2013.4313

doi:10.1002/mop.30149

doi: 10.1002/esp.3290080415


CONTRIBUTORS

Mr R.V. Hara Prasad obtained his M.E. (ECE with Spl. Microwave & Radar Engineering) degrees from Osmania University, Hyderabad. Under his guidance, ground based EW systems for Army; airborne EW systems for Tri-services and passive seekers for missile application have been executed. He assumed the charge of Director, Defence Laboratory, Jodhpur on 1st July 2022.

In the present work, he has worked out configuration of Defected Ground Structure Microstrip Patch Antennas with Fractal Slots cut in the ground plane and carried out simulation, prototype antenna fabrication and measurements. He has drafted the manuscript.

Dr D. Vakula obtained her PhD degree in Fault Diagnostics of Antenna Arrays from the National Institute of Technology, Warangal, India. She is working as professor at the National Institute of Technology and her areas of interest include phase array antennas, ultra wideband antennas, multiband antennas, fault diagnostics, neural networks, and metamaterials.

In the present work, she has reviewed the simulation results and test results and provided overall guidance in evolving the novel approach.

Dr M. Chakravarthy obtained his PhD (ECE) from Andhra University, Visakhapatnam. He is working as Additional Director at Defence Electronics Research Laboratory, Hyderabad. His areas of interest are in broadband HF/VHF/UHF/MW/MMW Antennas & Arrays and computational electromagnetics.

In the present work, he has reviewed the design methodology and prototype antenna evaluation results.