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ABSTRACT

The present study aims to establish a Genetic Algorithm (GA) methodology to optimise the missile gliding 
trajectory. The trajectory optimisation was carried out by discretising the angle of attack (AOA), subsequent 
transformation of the optimal control problem to a nonlinear programming problem (NLP), and resolving the optimal 
control problem to attain a maximised gliding range. GA is employed for resolving optimal control problem. Taguchi 
design of experiments was proposed contrary to the full factorial method to ascertain the GA parameters. The 
experiments were designed as per Taguchi’s L27 orthogonal array. The systematic reasoning ability of the Taguchi 
method is exploited to obtain better selection, crossover, and mutation operations, and consequently, enhance GA 
performance. An analysis of variance (ANOVA) is performed to evaluate the influencing factors in the results. 
Crossover function and population size are observed as impacting parameters in trajectory optimisation, accompanied 
by selection, crossover fraction, mutation rate, and number of generations. An Artificial Neural Network (ANN) 
approach was enforced to anticipate the significance of GA parameters. Based on Taguchi design of experiments, 
analysis of variance, and artificial neural network methods the optimal parameters of GA were selected. It is observed 
that the maximum gliding distance is achieved after GA parameter tuning. It is noticed from the simulation results 
that the missile gliding range is enhanced in comparison to earlier ones. The simulation results also show the 
efficiency of the proposed procedure through different test cases.

Keywords:  Missile gliding trajectory optimisation; Genetic algorithm; Taguchi method; Analysis of variance; 
Artificial neural network

1.  INTRODUCTION
Optimisation of a missile trajectory is a challenging task 

and plays a pivotal role in the area of defense. The missile’s 
range could be enhanced while it travels through the optimised 
trajectory. Several factors were considered while performing 
trajectory optimisation. The factors involved are total flight time, 
AOA, path angle, velocity, and altitude. Defined constraints 
and boundary conditions must be satisfied. Optimisation of 
trajectory gets complicated owing to the preceding aspects. As 
a consequence, the difficulty of finding the optimal solution 
increases, and tougher for traditional methods to resolve the 
problem1-3.

Researchers have proposed various methodologies to 
resolve trajectory optimisation challenges, which are classified 
as direct and indirect methods3-12. Though an accurate solution 
could be achieved using indirect methods by rigorous derivation; 
it is perceptive to primary guesses of castrates13-14. Therefore, 
the approach cannot be employed in troublesome situations. In 
contrast, direct methods find solutions by parameterisation and 
discretion while transforming conventional optimal control 

problems into parameter optimisation problems. As a result, the 
complexity of programming is reduced, which accomplishes 
the direct method widely used. The direct method is beneficial 
to obtain an approximate optimal solution with a higher 
probability15-16.

Trajectory optimisation of aerospace vehicles using 
evolutionary algorithms is a current state-of-the-art research 
problem. GA is one of the well-known evolutionary algorithms 
that have gained increasing importance in recent years17-24. This 
could be attributed to the capability of solving both discrete 
and continuous optimisation problems, the independence 
of functional derivatives, and avoidance of getting caught 
in local optima25. Moreover, GA is well exercised in flight 
trajectory optimisation26-41. Suzuki26, et al. addressed the 
reentry trajectory design problem using GA, whereas a hybrid 
GA with collation method is employed to solve the Earth-
Mars orbit transfer problem27. The Trajectory optimisation 
problem of a spacecraft is addressed by employing multiple 
shooting-based NSGA-III 28. Li29, et al. demonstrated that the 
climb flight path optimisation problem of aircraft could be 
effectively solved by quantum GA. Kumar30, et al. adopted GA 
and optimised hypersonic boost-glide vehicle trajectory. Sun31, 
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et al. implemented GA based method in solving the trajectory 
optimisation problem. GuoQuiang32, et al. surveyed various 
algorithms for flight trajectory optimisation. 

yokoyama33, et al. employed GA combined with the 
gradient method in solving the optimisation problem of a 
flight trajectory. A flight trajectory was optimised using GA 
for combined vertical and lateral navigation34. Visser35, et 
al. proposed a method to configure trajectories for averting 
unattainable in the optimisation of environmental trajectory. 
GA has also been employed for the trajectory optimisation of 
a rocket.36 Seddaoui37, et al. reported a novel optimised space 
robot trajectory by employing GA. Liu38, et al. presented a 
GA-based methodology for trajectory optimisation of digital 
twin robots. Dancila39, et al. proposed new flight trajectory 
optimisation methods for cost minimisation relying on GA. A 
multi-objective trajectory optimisation technique relied on GA 
was reported by Wang40, et al. for achieving an efficient and 
stable solution for the robot manipulators task. Rahman41, et 
al. optimised an energy-efficient path using GA for unmanned 
aerial vehicles (UAVs) - Internet of Things (IoT) collaborative 
system. Based on the literature survey; GA has been selected 
for the current study.

At times, optimal results are scanty owing to the selection 
of improper algorithm parameters. The selection of optimal 
parameters is beneficial for achieving results with less 
randomness. Moreover, the algorithm parameters could be 
suitably utilised to enhance search efficiency. However, it is 
difficult to identify suitable parameters for a given problem42. 
yuan-bin43, et al. studied the influence of optimal parameter 
selection on the optimisation behavior of the firefly algorithm 
relying on a few benchmark functions. Ant colony optimisation 
algorithm parameters were optimised by Ramli44, et al. for 
better performance in T-way IOR testing. 

Xue45, et al. optimised the parameters of the bat algorithm 
utilising an orthogonal array design. yang46, et al. reviewed 
intelligent algorithms with their crucial parameters and analysed 
parameter optimisation techniques. Huang47, et al. surveyed 
the automatic tuning techniques of intelligent algorithm 
parameters for performance optimisation. The optimisation 
performance of GA could be enhanced by setting appropriate 
parameters like population size, number of generations, 
selection, crossover function, crossover fraction, mutation rate, 
and so on48. It is found in the literature that the Taguchi method 
helped to decrease the interference generated by randomness 
and ascertain GA parameters49-51. The advantage of the Taguchi 
method is proper parameter selection in GA without performing 
complete parameter experiments due to the orthogonal array 
table. Additionally, it helps to reduce the number of iterations 
and achieve an optimal solution with less randomness48. 
ANOVA analysis is a broadly used statistical approach that 
finds the contribution of individual algorithm parameters 
toward problem optimisation and confirms the reliability of the 
Taguchi method. Moreover, ANN possesses the capability to 
learn the complex and non-linear relationship between input 
and output data. ANN could be able to anticipate hidden data 
and deduce hidden relationships. Therefore, a methodology 
relying on Taguchi design of experiments, ANOVA, and ANN 
was proposed to select suitable GA parameters for optimisation 

of glide phase missile trajectory.
Present research conveys a missile gliding trajectory 

optimisation problem. Initially, the angle of attack (AOA) is 
discretised, the optimal control problem is transformed into 
a nonlinear programming problem (NLP), and eventually, 
the problem is resolved to attain maximum gliding range. 
This paper also proposes the optimal parameter setting of 
GA relying on the Taguchi design of experiments, ANOVA, 
and ANN approach. The salient contribution of the present 
study includes performance enhancement of GA by setting 
appropriate parameters like population size, number of 
generations, selection, crossover function, crossover fraction, 
and mutation rate. It is better than a random selection of GA 
parameters. Moreover, it helps in reducing disturbance caused 
by randomness, reducing the number of iterations, and achieving 
an optimal solution with less randomness. Based on the above 
studies, the GA parameters were determined and employed to 
optimise the missile’s gliding trajectory. The remainder of the 
present article is organised as follows: Section 2 describes the 
trajectory optimisation characteristics analysis, and Section 3 
represents experimental results and discussion. Conclusions 
are drawn in Section 4.

2.  TRAJECTORY OPTIMISATION 
CHARACTERISTICS ANALYSIS
The effects of aerodynamics and the earth’s gravitational 

force are considered during the gliding stage of a missile. 
However, the effect of the earth’s curvature and rotation is 
ignored. This could be due to the modest range addressed in 
the current study52. The schematic figure with the free body 
diagram is presented in fig. 1, and the equations of motion in 
the missile gliding stage are presented below53-54.

Figure 1. Schematic figure with the free body diagram.

       

                                                                                            (1) 

 

 
 
 
 

  8 
 

 
 

                                                                                     (9) 
 

 
 
 

 
 
where 

 

                            (1)

where, mo-missile mass; g-gravitational acceleration; q-dynamic 
pressure; V-velocity; θ-path angle; s-reference area; h-altitude; 
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R-gliding range; CL- coefficient of lift and CD- coefficient of 
drag

The objective of current research is to maximize the 
missile glide range while fulfilling constraints and boundaries. 
The missile trajectory was optimised, acknowledging all the 
control response and aerodynamics off-nominal situations. 
Therefore, it is essential to maintain AOA and altitude within 
the maximum allowable limits for better control. The missile’s 
glide trajectory is optimised under conditions of free end and 
free time. The CD and CL follow the aerodynamics fitment 
formulae and are realised via linear interpolation regarding 
AOA (α), altitude (h), and Mach number (Ma) as follows: 52

CD=fD(h,Ma,α)                                                                (2)
CL = fL (h,Ma,α)                                                              (3)

where, fD is the linear interpolation function for drag and fL is 
the linear interpolation function for Lift.

2.1  Constraints and Boundary Conditions 
The missile structure and control system constrain it 

during flight. The terminal constraints must be considered 
during trajectory optimisation. The purpose of optimisation is 
gliding range (R) maximisation of missile.

Max F = R (τf )                                                                (4)
-10o≤ α ≤10o                                                                   (5)
h(τf) = hf                                                                          (6)

where, τf is terminal time and hf is the altitude at the terminal 
time (τf )

Due to the convergence property of GA, an optimal 
solution could be achieved with a defined possibility. A 
tolerance limit is introduced for altitude (h) of missile.

hf –Δh ≤ h(τf) ≤ hf +Δh                                                    (7)

When aircraft terminal altitude h(τf) = 0, the limit of 
tolerance Δh =100 m.

2.2 Design Variables Selection
During missile flight aerodynamic control is a crucial 

factor that is mainly affected by AOA55-57. The missile range 
could be improved by designing AOA (Eqn. 2-3). It should not 
be too high or too low, which causes large aerodynamic drag 
and miss distance at the predicted impact point, respectively.1 
The rate at which AOA change should be stable, bounded and 
simple to realise in practical engineering requirements. The 
flight time is free in the gliding stage and needs to be optimised. 
Hence, τf and α are the control variables.

The time variable (τ0 to τf) is divided in N equal subintervals 
such as τ0 <τ1<τ2<...........<τN-2<τN-1<τN =τf.

In every subinterval τ Є τi, τi+1., (i = 0, 1,.., N-1), spline 
interpolation is utilised for anticipating the AOA α(τ).

α (τ) = interp1(τi, τi+1., αi, αi+1., τ, ‘spline’)
where, αi and αi+1 are the AOA values at τi and τi+1, 
respectively. 

AOA should be restored by N+1 unknown parameters α0, 
α1, α2,..,αN-2, αN-1, αN by 1D spline interpolation. Additionally, 
as terminal time (τf) is free, the parameter vector p = (α0, α1, 
α2,..,αN-2, αN-1, αN, tf) is taken as design variable.

The motion equations were simulated using MATlAB 
r2016a and HP computer model-z6G4. The Indian Standard 

Atmosphere (IS196) is used in the course of simulation. The 
control variable is p = (α0, α1, α2,..,αN-2, αN-1, αN, tf). Real-coded 
GA is employed for optimising the objective function to 
achieve optimal result.

2.3  Genetic Algorithm
Genetic algorithm is a widely used approach that imitates 

the basic idea of biological evolution. The main GA parameters 
are population size, number of generations, selection, 
crossover function, crossover fraction, and mutation rate. GA 
is advantageous when compared to traditional optimisation 
algorithms in terms of its ability to deal with complex problems 
and its parallelism, i.e., being easily adaptable and modifiable 
for different problems. crossover and mutation operators 
make the population diverse and thus possess high immunity 
against trapping in local optima. The offspring generated act 
like independent agents, thereby exploring search space in 
multiple directions simultaneously. It is a good choice for 
multi-objective and wide-ranging optimisation problems.58-60

2.4  Application of GA
The control variable p = (α0, α1, α2,…,αN-2, αN-1, αN, 

tf ) needs to be optimised. The population is comprised 
of m chromosomes selected at random for exploring in 
the N+2 dimensional search space of each chromosome.  
pi =  (αi0, αi1, αi2,…,αiN-2, αiN-1, αiN, tif) is the ith chromosomes,  
i = 1, 2, 3,… m. 

3. RESULTS AND DISCUSSION
3.1  Taguchi Design of Experiments and Analysis of 

Variance (ANOVA)
Taguchi method is frequently exploited in statistical 

analysis, and an orthogonal array is a good approach to work 
with a huge number of parameters49. The Taguchi method helps 
in analysing various parameters without conducting a huge 
number of experiments. It helps in finding key parameters 
that have a significant effect on performance characteristics, 
while parameters with a negligible effect could be ignored. 
This technique ensures that all levels of each factor are equally 
investigated61-62.

Random selection of GA parameters results in diverse 
optimal results, and solutions may still vary with the same 
parameter setting. The selection of optimal GA parameters 
and achieving optimal results with less randomness using the 
Taguchi method is the main objective. The steps involved in 
Taguchi design of experiments are as follows:
Step 1: Setting the fitness function as per eqn. (1).
Step 2: Identifying control factors for GA as shown in  

 Table 1.
Step 3:  The L27 orthogonal Table 2 in the Taguchi  

 design of experiments is selected relying on control  
 factors and their level to envisage the optimum GA  
 parameter tuning.

Step 4:  To take account of disturbance characteristics, every  
 parameter group of the L27 orthogonal array   
 (Table 2) for individual experiment runs five times  
 and results are recorded as fi, i = 1, 2,.., 5. The  
 signal-to-noise ratio (S/N) ‘larger-the-Better (lTB)’  
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Table 2. Taguchi approach for experimental design using L27 orthogonal array

Design of 
Experiments A B C D E F 1 2 3 4 5 Mean of fi (km) S/N

1 1 1 1 1 1 1 f1 f2 f3 f4 f5 315.8704 49.9902
2 1 1 1 1 2 2 f1 f2 f3 f4 f5 315.4730 49.9791
3 1 1 1 1 3 3 f1 f2 f3 f4 f5 321.2378 50.1360
4 1 2 2 2 1 1 f1 f2 f3 f4 f5 313.9230 49.9354
5 1 2 2 2 2 2 f1 f2 f3 f4 f5 315.2041 49.9706
6 1 2 2 2 3 3 f1 f2 f3 f4 f5 320.5583 50.1175
7 1 3 3 3 1 1 f1 f2 f3 f4 f5 316.6317 50.0092
8 1 3 3 3 2 2 f1 f2 f3 f4 f5 320.8921 50.1269
9 1 3 3 3 3 3 f1 f2 f3 f4 f5 323.0809 50.1859
10 2 1 2 3 1 2 f1 f2 f3 f4 f5 318.3811 50.0588
11 2 1 2 3 2 3 f1 f2 f3 f4 f5 320.5365 50.1169
12 2 1 2 3 3 1 f1 f2 f3 f4 f5 323.3369 50.1929
13 2 2 3 1 1 2 f1 f2 f3 f4 f5 318.2952 50.0552
14 2 2 3 1 2 3 f1 f2 f3 f4 f5 320.4889 50.1162
15 2 2 3 1 3 1 f1 f2 f3 f4 f5 323.6611 50.2018
16 2 3 1 2 1 2 f1 f2 f3 f4 f5 318.0899 50.0496
17 2 3 1 2 2 3 f1 f2 f3 f4 f5 320.0701 50.1046
18 2 3 1 2 3 1 f1 f2 f3 f4 f5 322.9927 50.1838
19 3 1 3 2 1 3 f1 f2 f3 f4 f5 320.5996 50.1191
20 3 1 3 2 2 1 f1 f2 f3 f4 f5 322.1891 50.1622
21 3 1 3 2 3 2 f1 f2 f3 f4 f5 357.9203 50.2209
22 3 2 1 3 1 3 f1 f2 f3 f4 f5 320.8260 50.1250
23 3 2 1 3 2 1 f1 f2 f3 f4 f5 322.0090 50.1571
24 3 2 1 3 3 2 f1 f2 f3 f4 f5 324.7577 50.2312
25 3 3 2 1 1 3 f1 f2 f3 f4 f5 319.7567 50.0956
26 3 3 2 1 2 1 f1 f2 f3 f4 f5 320.9639 50.1289
27 3 3 2 1 3 2 f1 f2 f3 f4 f5 322.5723 50.1725

Table 3.  Signal-to-noise ratios of genetic algorithm parameter 
levels

Parameter
Level

1 2 3

A 50.05009 50.11998 50.15694

B 50.10846 50.10111 50.11744

C 50.10629 50.08768 50.11744

D 50.09728 50.09597 50.13377

E 50.04868 50.09583 50.18250

f 50.10683 50.09609 50.12409

Table 1. Genetic algorithm parameter level setting

Parameter Level
1 2 3

A (population size) 100 150 200
B (number of generations) 100 150 200
C (selection) Roulette Wheel Tournament Rank 
D (crossover fraction) 0.6 0.7 0.8
E (crossover function) Single-Point Two-Point Uniform
f (mutation rate) 0.01 0.03 0.05

is considered a measure of robustness. S/N evaluates five 
individual results to present the quality characteristics, 
which are represented as:
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(8)

where, n = 5.
The S/N of individual parameter is measured as per  

Eqn. (9). In the L27 orthogonal array table, for parameter A, 
the S/N values of levels 1, 2, and 3 are S/NA1, S/NA2, and S/NA3, 
respectively.
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where, S/Ni is the signal-to-noise ratio of ith run.
Based on the literature survey and availability of 

computation facility the GA parameters were selected and 
noted in Table 1, which portrays six GA parameters and their 
respective levels. To determine optimal GA parameters, 36 or 
729 experiments need to be carried out. However, Taguchi 
design is utilised to conduct 27 experiments using the L27 
orthogonal array table. Table 2 shows the mean of fitness values 
(fi) varies in the range between 313.9230 and 357.9203 km. The 
largest S/N value is the optimal level of GA parameters, and the 
S/N ratios achieved are tabulated in Table 3. It is noticed that 
level 3 is the optimum level of all GA parameters. According to 
Table 1, the optimal GA parameters are rank selection, uniform 
crossover, population size (200), number of generations (200), 
crossover fraction (0.8), and mutation rate (0.05).

Analysis of variance (ANOVA) is carried out to establish 
the prominent control parameters in a precise manner by 
comparing the significance of GA parameters. Table 4 reveals 
the output of the ANOVA. It includes numerous statistics such 
as errors, degree of freedom (Df), control factors, means 
squares (MS), the sum of squares (SS), p-value, fischer’s f 
distribution (f-value), and contribution percentage of control 
factors. Where f-value is the two variances ratio and is called 
the f-test. Variances are the measure of scattering of data 
from the mean value. The importance of each control factor 
in an ANOVA is evaluated using f values. These tables are 
calculated with a 95% level of confidence. It is observed that 
the crossover function (85.65) and population size (54.73) 
possess larger f-values and have a significant effect on GA 
performance.

p-value assists in elucidating the significance of results 
in a statistical test for acceptance or rejection of the null 
hypothesis. When the p-value for the control factor is > 0.05, 
it is considered a non-significant factor. Therefore, number 
of generation (p-value = 0.318) and mutation rate (p-value 
= 0.051) are not significant parameters. However, crossover 
function and population size are significant parameters. The 
percentage contribution shows a measure of control parameters’ 

Table 4. Analysis of variance table for L27 orthogonal array experiments

Parameter DF Seq. SS Adj. SS Adj. MS F-value p-value % contribution
A 2 0.053005 0.053005 0.026502 54.73 0.000 32.09
B 2 0.001206 0.001206 0.000603 1.25 0.318 0.73
C 2 0.009358 0.009358 0.004679 9.66 0.002 5.66
D 2 0.008277 0.008277 0.004138 8.55 0.004 5.01
E 2 0.082954 0.082954 0.041477 85.65 0.000 50.22
f 2 0.003592 0.003592 0.001796 3.71 0.051 2.17
Residual error 14 0.006779
Total 26 0.165172

Seq. SS: Sequential sum of squares, Adj. SS: Adjusted sum of square, Adj. MS: Adjusted mean square.

Figure 2. S/N response graph.
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effect on GA performance. The contribution of population size, 
number of generations, selection, crossover fraction, crossover 
function, and mutation rate for maximising gliding range 
is 32.09 %, 0.73 %, 5.66 %, 5.01 %, 50.22 %, and 2.17 %, 
respectively. The error percentage (4.10 %) is considerably 
small.

Visual summaries of the GA parameter’s effect on 
optimisation performance and relationships between the 
factors and S/N are graphically shown in figure 2. The dot 
illustrates the importance of individual control factors towards 
optimisation performance and S/N resonate quality of level. 
Lines in fig. 2 that connect between levels could clearly show 
the impact of each control factor. It is noticed that factor E 
possesses the highest variance indicating crossover function is 
a prime factor for determining GA performance.

3.1.1 The Anticipated Optimum S/N
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where 

 
S/NAi, S/NBj, S/NCk, S/NDl, S/NEm, and S/NFo are the signal-

to-noise ratio value for optimal level parameters A, B, c, D, e, 
and f, respectively.

3.1.2 Verification
The S/N value obtained is 51.2518 when optimal GA 

parameters are utilised and is approximately equal to the 
anticipated S/N value. Experimenting 5 times using GA optimal 
parameters fitness values are 362.7155, 365.1041, 360.6219, 
365.2845, and 367.9889 km. The average fitness value of 
364.3430 km is relatively near to the optimum expected glide 
range of 364.8670 km and the standard deviation is 2.5001, 
also trivial. Selected optimal parameters of GA using Taguchi 
design could able to decrease the randomness in fitness values 
and increase potency in searchability. 

3.2  Artificial Neural Network
Artificial Neural Network (ANN) approach is an 

extremely dedicated computational technique possessing 
the potential to explore the relation between process input 
and output responses63-64. ANN consists of neurons that are 
arranged in input, hidden, and output layers. The information 
is received from input layer neurons, hidden layer estimates 
the relationship between variables and calculates the assigned 
weight of each variable as hidden layer neurons are fully 
linked to each neuron in both the input and output layer. 
finally, the predicted results are produced by the output layer. 

MATlAB neural network toolbox is employed for the study. 
figure 3 shows the ANN architecture with both input and 
output layers having 27 neurons and a hidden layer possessing 
45 neurons. The output responses and signal-to-noise ratio 
values achieved from the Taguchi design of experiments were 
verified using ANN. Data for training, testing, and validation 
was separated in the ratio 70:15:15. The Lavenberg-Marquardt 
backpropagation algorithm was selected for ANN as the 
training function. The backpropagation algorithm learns input-
output relations during the training process. In the training 
process inputs are propagated to the hidden layer, sensitivities 
are backpropagated to minimize error and finally, the weights 
are updated. To develop a nonlinear relation between input 
and output, a hyperbolic tangent sigmoid function (tansig) was 
chosen as the activation function for all the layers.

ANN model was utilised to predict the S/N ratio based 
on experimental results obtained using the Taguchi method 

Figure 3. ANN architecture.

Table 5. ANN predicted S/N values

Parameter
Level

1 2 3
A 50.06976 50.04152 50.14125
B 49.94822 50.11747 50.17193
C 50.04375 50.03685 50.17193
D 49.96653 50.09210 50.19389
E 50.01286 50.05865 50.18102
f 50.02314 50.09493 50.13446

Figure 4. Validation performance of the neural network.
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Figure 5. Gradient epoch of neural network performance. Figure  6. Error histogram of neural network.

Figure 7. Neural network linear regression analysis graphs.

and ANOVA analysis (Table 5). It is also observed from the 
ANN model that level third is the optimum level of all GA 
parameters. The results obtained from the Taguchi method and 

ANOVA analyses are in good agreement with ANN predicted 
results. figure 4 displays the performance graph of the ANN 
approach, showing variations in errors of training, validation, 
and testing for several epochs. The circle present in fig. 4 
infers the ultimate performance validation. The mean squared 
error (MSE) is found to be 0.19786 at the 21st epoch which is 
very small. 

figure 5 shows the gradient epoch of neural network 
performance, showing variation in Levenberg’s damping 
aspect, performance gradient, and validation analysis. It is 
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Figure 8.  Flowchart of GA-Taguchi design of experiments-
ANOVA-ANN method for gl iding trajectory 
optimisation.

noticed that the mu factor was 0.00000001 and the gradient 
value was decreased at the 27th epoch to 0.02947. Moreover, 
the training of network was terminated at the 27th epoch taking 
account of 6 more validation analyses following the ultimate 
performance validation. The error histogram achieved in the 
ANN approach is displayed in fig. 6. It is observed that the 
errors are distributed around zero in an acceptable range. 
figure 7 shows the regression graphs for train, validation, test, 
and all data obtained from the ANN approach. The correlation 
coefficients (r) are found to be 1, 0.99821, 0.99737, and 

0.99792 in regression analysis for training, test, validation and 
all datasets, respectively. 

The obtained R values show a good correlation between 
experimental and ANN-predicted values. The result indicates a 
substantial positive interaction among inputs and outputs. It is 
also observed that the ANN approach provides precise responses 
corresponding to experimental results. figure 8 displays a flow 
chart of the GA-Taguchi design of the experiments-ANOVA-
ANN method for gliding trajectory optimisation.

3.3  Gliding Trajectory Optimisation
Initial conditions for simulation: dimension of population 

n = 10; trajectory inclination angle θ0 = 10o; altitude h0 = 23 to 
30 km; velocity V = 1300 to 1900 m/s; reference area s = 0.302 
m2; mass of missile m = 274 kg.

Gliding trajectory optimisation was conducted using GA 
with tuned parameters. Using available data, simulations are 
carried out and solution curves for maximum gliding range 
are portrayed in fig. 9(a-k). State terminal constraints were 
satisfied for all the variables by adequate accuracy. There are 
graphs of range sequence, gliding trajectory, velocity sequence, 
altitude versus time, AOA versus time, flight path angle versus 
time, altitude versus velocity, glide range versus velocity, flight 
path angle versus velocity, flight path angle versus range, and 
altitude versus flight path angle in fig. 9. It is noticed that 
GA with optimised parameters met all the flight and terminal 
constraints. figure 9(a) shows the range sequence and fig. 9(b) 
shows the optimised gliding trajectory. It is illustrated in fig. 
9(a) and fig. 9(b) that the optimal range obtained with GA is 
367.9889 km. The initial height is 29.236 km which reaches the 
ground in the gliding phase. Additionally, while approaching 
from the middle of trajectory towards end, the altitude raised 
rapidly. This could be attributed to the available resource that 
can help increase the flight range of missiles. The flying time of 
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Figure 9. (a) range sequence, (b) gliding trajectory, (c) velocity sequence,  and curves of (d) altitude versus time, (e) angle of attack 
versus time, (f) flight path angle versus time, (g) altitude versus velocity, and (h) range versus velocity.
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Figure 9. (i) Flight path angle versus velocity, (j) Flight path angle versus range, and (k) Altitude versus flight path angle.

(i) (j)

(k)

(a) (b)

(c) (d)
Figure 10. Comparison curves of (a) Range sequence, (b) Gliding trajectory, (c) Velocity sequence, and (d) Convergence graph.
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the missile is found to be 342.7s. Smooth trajectory is observed 
during the entire missile flight indicating the correct phase 
flying of missile.

figure 9(c) presents the velocity sequence of the gliding 
trajectory that starts from an initial velocity of 1900 m/s and 
reached the ground with a velocity of 310 m/s as a result of 
increasing potential energy. figure 9(e) shows time histories 
of AOA that varied throughout the gliding stage. It is also 
observed from fig. 9(e) that the control parameter (AOA) 
is within the constrained boundary -10o to +10o. ensuring 
acceptable aerodynamic behavior. AOA increased significantly 
at the end of the flight which promotes extending the gliding 
range through effective utilisation of existing missile kinetic 
energy. The results are in agreement with the physical aspect 
of the missile. The proposed optimisation procedure in this 
work offered a satisfactory solution to the gliding trajectory 
optimisation problem. The range of the missile could be 
increased by optimising the gliding trajectory. It is observed 
from the altitude versus velocity (fig. 9(g)) and range versus 
velocity (fig. 9(h)) profiles that final trajectory conditions are 
contented by good certainty. flight path angles endure to be 
smaller in proportion that is a usual characteristic of gliding 
projectiles (fig. 9(i-k)). 

3.4  Comparative Study
Initially, gliding trajectory was optimised employing 

GA with tournament selection, two-point crossover and 
other parameters like population size, number of generations, 
crossover fraction and mutation rate are 200, 200, 0.8, and 
0.01, respectively. Results obtained were compared with the 
optimised results achieved using GA with tuned parameters. 

Comparison curves of range sequence, velocity sequence, 
gliding trajectory, and convergence graphs were portrayed in 
fig. 10 (a-d). It is observed that the obtained optimal range 
(367.9889 km) is increased by 10.02 % when compared 
to the earlier trajectory of 334.4702 km. Additionally, an 
increase in flying time (342.7s) is also observed compared 
to the earlier experiment (306.8 s). The convergence graphs 
of GA with random parameters and optimised parameters 
are displayed in fig. 10(d). Convergence graphs indicate the 
decrease in standard deviation in range with several iterations 
until convergence. GA with optimised parameters converged 
faster at the 38th iteration when compared to GA with random 
parameters at the 49th iteration.

3.5 Nominal Trajectories
Various scenarios are used to check GA with tuned 

parameters and the experimental results obtained were recorded 
in Table 6. It is observed that a decrease in initial altitude from 

Table 6. Test scenarios and results under various cases

Case 1 2 3 4

Initial altitude 
(km) 29.236 27.110 25.345 23.724

Initial velocity 
(m/s) 1900 1710 1545 1325

Simulation results

Gliding 
distance (km) 367.9889 304.6486 250.2835 193.6259

flying time (s) 342.7 310.2 263.8 238.5

Figure 11. (a) Range sequence, (b) Gliding trajectory, (c) Velocity sequence, and (d) Altitude-time curves of various test scenarios.
(c) (d)

(a) (b)
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29.236 km to 23.724 km and initial velocity from 1900 m/s to 
1325 m/s resulted in a decrease in gliding range from 367.9889 
km to 193.6259 km and flying time from 342.7s to 238.5s. 
figure 11 (a-d) illustrates the results accomplished from various 
test scenarios. It is observed from the experimental results that 
terminal constraints are well-contented in all cases and flight 
states could successively emerge to the defined values.

3.6  Performance Analysis
The GA-Taguchi design of experiments-ANOVA-

ANN method for trajectory optimisation is computationally 
inexpensive. The performance of the proposed method was 
evaluated by performing 5 different experiments of 4 test case 
scenarios and noting the computation time in Table 7. The 
computation time of test case scenarios was compared and 
observed that scenario 1 has high complexity with an average 
computation time of 73489 s. However, scenario 4 with an 
average computation time of 41885 s has the least complexity. 
The experimental results show that with a decrease in initial 
velocity and altitude computational complexity decreases 
along with the missile’s gliding range.

3.7  Model Uncertainty
four different test scenarios varying missile mass 

and coefficient of drag (CD) are utilised to study the model 
uncertainty and results are tabulated in Table 8. It is observed 
that when missile mass increased from 274 kg to 294 kg with 
nominal CD the gliding distance reduced from 367.9889 km to 

Figure 12. (a) Gliding trajectory, (b) Range sequence, (c) Altitude versus time graphs, and (d) Velocity sequence of various test cases 
with varying missile mass and coefficient of drag.

(c) (d)

(a) (b)

Table 7. The computation time of different test case scenarios

Test case scenarios 1 2 3 4

Experimental runs Computation time (s)

1 76829 55786 51562 45322

2 73876 56215 52554 40115

3 70684 55345 49176 39926

4 72658 54853 50784 42311

5 73398 57011 51274 41751

Average 73489 55842 51070 41885

Table 8.  Test cases and results under different scenarios with 
varying missile mass and drag coefficient.

Case 5 6 7 8

Missile 
mass (kg) 274 294 274 274

Drag 
coefficient 
(CD)

Nominal Nominal

10 % 
increase in 
nominal 
value

10 % 
decrease 
in nominal 
value

Results

Gliding 
range (km) 367.9889 364.6310 341.9177 402.0607

flying 
time (s) 342.7 335.2 319.5 369.1
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364.6310 km with flight time reduced from 342.7 s to 335.2 
s. The increase in CD by 10 % while keeping the missile mass 
constant at 274 kg resulted in a decrease in both gliding range, 
341.9177 km, and flying time, 319.5 s. However, the decrease 
in CD by 10 % while keeping the missile mass constant at 
274 kg resulted in increased gliding range, 402.0607 km, and 
flying time, 369.1 s. The experimental outputs from different 
test cases are portrayed in figure 12(a-d). The experimental 
outputs affirm that the constraints in every test case are well-
contented.

3.8  Performance Analysis
Performance evaluation of the proposed methodology was 

analysed by carrying out five different experimental runs of 
four different test case scenarios (5 to 8) and computation time 
was tabulated in Table 9. The computational time obtained was 
compared and found that the complexity is higher in scenario 
8 with an average computation time of 73929 s and scenario 7 
has the least complexity with an average computation time of 
64028 s. It is observed that computational time decreases with 
an increase in CD which resulted in a decrease in the gliding 
distance of the missile and flying time. The same has been 
observed with an increase in missile mass.

experiments-ANOVA-ANN approach for gliding trajectory 
optimisation. Suitable parameter selection of optimisation 
algorithms should be an essential part of optimisation studies. 
The parameter configuration selection should be made 
corresponding to the present optimisation problem because the 
same parameter configuration may not be appropriate for other 
optimisation problems. The present research will be extended 
for the spherical earth model in the future.
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