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AbsTrAcT

Missile guidance, owing to highly complex and non-linear relative movement between the missile and its target, 
is a challenging problem. This is further aggravated in case of a maneuvering target which changes its own flight 
path while attempting to escape the incoming missile. In this study, to achieve computationally superior and accurate 
missile guidance, deep learning is employed to propose a self-tuning technique for a Fractional-Order Proportional 
Integral Derivative (FOPID) controller of a radar-guided missile chasing an intelligently maneuvering target. A 
multi-layer two-dimensional architecture is proposed for a deep neural network that combines the prediction feature 
of recurrent neural networks and estimation feature of feed-forward artificial neural networks. The proposed deep 
learning based missile guidance scheme is non-intrusive, data-based, and model-free wherein the parameters are 
optimized on-the-run while predicting the target’s maneuvering tactics to correct for processing time and loop delays 
of the system. Using deep learning for online optimisation with minimal computational burden is the core feature 
of the proposed technique. Dual-core parallel simulations of missile-target dynamics and the control system were 
performed to demonstrate superiority of the proposed scheme in feasibility, adaptability, and the ability to effectively 
minimize the miss-distance in comparison with traditional and neural offline-tuned PID and FOPID based techniques. 
Compared to state-of-the-art offline-tuned neural control, the miss-distance was reduced by 68.42 % for randomly 
maneuvering targets. Furthermore, a minimum miss-distance of 0.97 m was achieved for intelligently maneuvering 
targets for which the state-of-the-art method failed to hit the target. Overall, the proposed technique offers a novel 
approach for addressing the challenges of missile guidance in a computationally efficient and effective manner.
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NoMeNclATure
VM  : Missile velocity
VT  : Target velocity
Vr  : Relative target velocity w.r.t the missile along line- 
   of-sight (LOS)
Vθ  : Relative target velocity w.r.t the missile in the 
   direction perpendicular to LOS
aM  : Latex

1.  INTroDucTIoN
The problem of guidance control is as old as the prehistoric 

concept of arrows and spears. In context of the modern 
developments, the control of guided missile is a complex 
problem as it involves an unmanned aerial vehicle with highly 
nonlinear dynamics, intelligently and accurately guiding itself 
towards a moving and possibly maneuvering target. The fast 
moving missile is fired in the approximate direction of a moving 
target while the goal of controller is to generate guidance 
system steering commands to provide lateral acceleration to 
the vehicle body to manipulate its flight path to hit the target 
with minimum miss-distance. The control of guided missile is 
a challenging problem owing to the highly complex and non-

linear relative movement between the missile and its target 
which is further aggravated if the target employs maneuvering 
tactics to change its own flight path to escape an incoming 
missile. This paper proposes a deep-learning based flexible, 
adaptive, and predictive guidance architecture for radar-guided 
surface-to-air cruise missile chasing a maneuvering target.

The missile attempts to accurately hit the target. However, 
that is rarely possible as there is always a miss-distance 
between the target and the point where the missile bursts1.
The goal of missile control is to minimize the miss-distance 
to avoid hitting the wrong target and ensure that maximum 
damage is inflicted on the intended target. Several techniques 
have been proposed to improve the miss-distance performance 
of guided missiles. Coupling between altitude control and 
coordinator stable tracking was proposed2. A predictive 
control strategy for linearised models of the missile was also 
proposed3. In addition, an observer-based method for adaptive 
nonlinear guidance while considering target uncertainties was 
proposed4. Nonlinear adaptive guidance control methods have 
also been proposed with compensation for both control loop 
dynamics and target acceleration5-6. An integrated control and 
guidance system using sliding mode algorithm was suggested 
using adaptive fuzzy-neural network7. An analytic method for 
solving the distribution of miss distance has been proposed, 
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in which the system is presumed to use a bang-bang control 
strategy8. However, the control of guided missile still remains 
challenging especially in case of an intelligently maneuvering 
target due to the highly nonlinear dynamics and stochastic 
nature of the problem.

Deep learning (DL) has emerged as a leading candidate for 
enabling scalable and data-driven neural network architectures 
to deal with highly nonlinear dynamics. Many DL based 
control techniques have been used to deal with the problem of 
missile guidance and control9-11. The work of yaghi and Onder12 
is a significant contribution towards this area. The authors 
have shown with the help of simulations that fractional order 
proportional integral derivative (FOPID) based control scheme 
is superior to the traditional PID controller for radar-guided 
missile. They have used offline neural tuning for parameter 
optimization of the FOPID controller with further fine tuning 
by using H2/H∞ optimization method. However, as shown in 
this paper, the method proposed by yaghi and Onder12 has 
limited performance if the target moves in a direction that is 
significantly different from the one for which the system has 
been initially optimized or if the target employs maneuvering 
tactics to escape the incoming missile.

This study proposes a DL based adaptive predictive 
guidance (DLAPG) technique as a non-intrusive, online, on-
the-run optimization algorithm for adaptive optimization of 
controller variables by using a multi-layered, two-dimensional 
deep neural network (DNN). DNNs have immense potential 
for auto-tuning controller variables.13 Utilizing the DNN 
characteristics of latent inference, adaptive learning, and time-
series forecasting, this study’s algorithm design outperforms 
existing strategies. A FOPID controller is integrated into the 
proportional navigation (PN) system of the guided missile. 
Genetic algorithm (GA) is used to generate the training 
data. The suggested method is universal and may be utilized 
for online self-tuning of any controller variables. However, 
to compare with the work of yaghi and Onder12, it has been 
applied to FOPID. The main contributions of this work are:

The first integration of deep learning architecture with • 
genetic algorithm for self-tuning of an FOPID controller
Implementation of an innovative deep learning architecture • 
that integrates prediction feature of Recurrent Neural 
Network (RNN) and estimation property of feed-forward 
Artificial Neural Network (ANN)
Model-free, optimized, data-based, adaptive and predictive • 
control of radar-guided missile is achieved wherein the 
controller parameters are intelligently updated according 
to the maneuvering tactics of the intended target with 
minimization of miss-distance as the physically realizable 
objective function
The algorithm is able to predict the target’s maneuvering • 
tactics in terms of change in its flight direction with 
prediction horizon equal to the algorithm run-time and 
other system delays of intrinsic nature to compensate 
for the target’s maneuvering movements that take place 
during the time-lag in real-life conditions
As an online optimization technique, although significant • 
computational resources are required during training, 
it imposes minimal computational burden during 

deployment. Hence, it is suitable for time-sensitive 
applications like missile guidance.

Therefore, the current work integrates state-of-art artificial 
intelligence and automatic control algorithms to achieve an 
intelligent and adaptive self-tuning system for radar-guided 
missile.

2. MIssIle DyNAMIcs
2.1  Proportional Navigation system

As shown in Fig. 1, the missile dynamics are governed by 
the following Eqns:
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where, Vr is the target velocity with respect to the missile along 
line-of-sight (LOS), Vθ is the target velocity w.r.t the missile in 
the direction perpendicular to LOS, and R is the LOS vector. 
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is the angle between R and horizontal reference. VM and VT  are 
missile and target velocities, respectively. PN guidance law in 
its simple form defines a lateral acceleration guidance command 
(latex) such that the rate of rotation of missile velocity vector is 
proportional to the rate of rotation of the LOS:
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where, N is the navigation constant. In its more advanced form, 
PN law is called as Pure Proportional Navigation (PNN) given 
by:
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where, aM is the latex. From (3) and (4) we get,
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Figure 1. Geometry of missile-target engagement

yaghi & Onder12 used the same PNN guidance law. 
However, Eqn. (4) is valid only under the assumption that 
the latex is applied perpendicular to the missile velocity. 
Although this direction is the most natural direction of the 
lift force generated by airframe and lifting surfaces of the 
vehicle to manipulate its flight path; however, it is not realistic 
as it ignores the limitations posed by the angle-of-attack 
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(AOA) which is never zero. AOA is quite high, especially for 
maneuverable missile-target systems. Therefore, this work 
uses True Proportional Navigation (TPN) in which latex is 
applied proportional and perpendicular to the closing velocity 
(Vc) between the missile and the target (which is the direction 
of LOS). Thus,
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where, 
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 is the effective navigation ratio. Another 
advantage of TPN over PNN is that VM is not readily available 
unless an inertial navigation unit is embedded in the missile 
system, but Vc can be found directly from the seeker’s doppler 
data.

Eqn. (6) can be considered as a simple proportional 
controller. The current study and the work of yaghi and Onder12 
implement a FOPID controller in place of the proportional 
controller due to its various advantages as discussed in  
Section 3.

2.2  system Modeling
The simulation model used in this work represents a tail-

controlled radar-guided cruise missile with Mach 2-4 speed, 
3,050 m (10,000 ft) to 18,290 m (60,000 ft) altitude and −20◦ 

to +20◦ AOA. 
A nonlinear model of airframe rigid body dynamics are 

considered as shown in Fig. 2. The change in atmospheric 
environment with changing altitude is modeled by atmosphere 
subsystem according to International Standard Atmosphere 
(ISA)14 described by the following equations:
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where h and L are missile altitude (m) and lapse rate 

(k/m) respectively. T and T0 represent the absolute temperature 
at altitude h and at mean sea level, ρ and ρ0 represent air density 
(kg/m3) at h and at mean sea level, P and P0 represent the air 
pressure at h and at mean sea level respectively. b, R, and g are 
speed of sound at h, characteristic gas constant (J/kg/k), and 
acceleration due to gravity (m/s2) respectively. Aerodynamics 
subsystem models the equations defining missile trajectory 
based on calculation of all forces and moments acting on the 
vehicle body [12] as follows:

 1 

 2 

 3 

 4 

 5 

 6 

 

 7 

 8 

 9 

 10 

 11 

 15 

 16 

 17 

 18 

 19 

 20 

 

 21 

  

 23 

 

 

 

          (11)

 1 

 2 

 3 

 4 

 5 

 6 

 

 7 

 8 

 9 

 10 

 11 

 15 

 16 

 17 

 18 

 19 

 20 

 

 21 

  

 23 

 

 

 

         (12)

 1 

 2 

 3 

 4 

 5 

 6 

 

 7 

 8 

 9 

 10 

 11 

 15 

 16 

 17 

 18 

 19 

 20 

 

 21 

  

 23 

 

 

 

          (13)

 1 

 2 

 3 

 4 

 5 

 6 

 

 7 

 8 

 9 

 10 

 11 

 15 

 16 

 17 

 18 

 19 

 20 

 

 21 

  

 23 

 

 

 

          (14)
where, Ax and Az are the horizontal and vertical components of 
missile acceleration, respectively. q and m represent the rate of 
rotation of missile body and total missile mass, respectively. 
I represents the missile inertia, vx and vz are the horizontal 
and vertical components of missile velocity, respectively. M 
represents the pitch moment of the missile. The forces acting 
on the two axes are given by the following Eqns:
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where, Sref  is the reference cross-sectional area of the missile, 
Dref  is the diameter of the missile’s reference circular body, 
VM is the missile speed, Cx and Cz are constants that depend on 
speed and AOA.

Figure 2. system model.
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Autopilot subsystem models a three-loop controller15 which 
governs normal acceleration. Sensor subsystem containing rate 
gyro and accelerometer along with the fin actuator subsystem 
provide the coupling between the autopilot system and airframe. 
A homing guidance system16 is modeled consisting of seeker/
tracker subsystem which drives the gimbals and estimates 
the sightline rate; and guidance subsystem which implements 
the TPN guidance. Compensation for radome aberrations is 
considered in seeker/tracker modeling. To ensure comparison 
with the work of yaghi and Onder12, we reproduced their test 
system without modifying any missile specifications, which 
were taken from previous papers16-18 as shown in Fig. 2.

3.  ProPoseD scHeMe
3.1  FoPID

FOPID controllers are described by fractional-order 
integro-differential equations20 as follows:
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where, λ and µ are positive real. Applying Laplace transform 
on (18) gives:

 1 

 2 

 3 

 4 

 5 

 6 

 

 7 

 8 

 9 

 10 

 11 

 15 

 16 

 17 

 18 

 19 

 20 

 

 21 

  

 23 

 

 

 

   (19)
Thus, the FOPID controller is a generalized integer-

order PID controller with added flexibility, robustness and 
better adjustment capability21-22. A FOPID controller has two 
extra parameters compared to a PID controller which provide 
extra degrees of freedom to the system dynamics and makes 
it less sensitive23. In general, FOPID controller is known to 
outperform PID controller24-25. The superiority of FOPID-
based guidance law over the proportional navigation and 
proportional–integral–differential navigation guidance laws 
has also been established26.

Various approaches have been offered in the literature 
to simplify the realization of real order fractal elements that 

include the approximations given by Oustaloup27, khoichi28, 
AbdelAty29, and El-khazali30. yaghi and Onder12 used 
Oustaloup’s approximation which is popular for customizable 
bandwidth. However, the current study implements El-khazali’s 
integro-differential approximation using a biquadratic algorithm 
owing to the latter’s straightforward realization of fractal 
elements which depends only on the order of differentiation 
or integration. Further, El-khazali’s approximation gives a 
better frequency response with center frequency as flat phase 
response under narrower bandwidth compared to Oustaloup’s 
approximation, with improved steady-state response under 
higher orders of approximation.31 El-khazali’s approximation 
also has smaller parameter values requiring less expensive 
circuit design in hardware implementation.

we implemented cascaded multiple 2nd-order biquadratic 
transfer functions as follows:
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where, ωi is the center frequency of ith biquadratic module. 

 1 

 2 

 3 

 4 

 5 

 6 

 

 7 

 8 

 9 

 10 

 11 

 15 

 16 

 17 

 18 

 19 

 20 

 

 21 

  

 23 

 

 

 

is the corresponding geometric mean. 
Supposing ω1 to be the first section’s first center frequency, 
a constant-phase element is obtained by calculating the 
subsequent frequencies using the recursive formulation as 
follows:
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where, ωx is the maximum real solution for the polynomial 
shown as follows:
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Figure 3. DNN architecture and FoPID control scheme.
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where, η = tan(aπ/4). Thus, a biquadratic module is represented 
by:
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where,
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3.2  DNN for self-Tuning of controller Parameters

This section deals with the problem of online self-
tuning of the five parameters (Kp, Ki, Kd, λ, µ) of the FOPID 
controller using a deep learning approach. The missile-target 
system under consideration is highly non-linear and stochastic. 
Therefore, fixed offline tuning of controller parameters cannot 
be expected to perform well as shown in section 4. Furthermore, 
a maneuvering target can manipulate its flight path by changing 
the direction of motion to escape the incoming missile. 
Therefore, the missile controller parameters must be tuned 
using an intelligent and adaptive approach in accordance with 
the target’s current direction of motion and anticipated future 
direction as well.

3.2.1 Generation of Training Data 
The simplest method for generating training data is to vary 

the five controller parameters and compute miss-distance. The 
training data thus obtained reflects miss-distance for various 
combinations of controller parameters, enabling a neural 
network to estimate miss-distance for different parameter 
values. Augmenting the training data can enhance network 
accuracy. However, the data generated via this method would 
be dispersed across a range of miss-distance values, with only 
few data points representing optimal values. To concentrate 
training data around optimal values where miss-distance 
approaches zero, we propose using genetic algorithm (GA). As 
an evolutionary optimization technique, GA generates input-
output pairs where most correspond to near-zero miss-distance 
for different controller parameter values.

Thus, GA is used to generate the training data. Owing 
to the offline nature of the data generation process, it is not 

subjected to any time constraints or computational limitations. 
All possible target flight directions are considered with an 
increment of 1◦ with minimization of the miss-distance as the 
physically realizable objective function. Multiple numerical 
experiments were performed for different values of the 
increment. The value of 1◦ was selected based on the observation 
that further reduction in the interval value beyond 1◦ produced 
only marginal improvements in the training performance at 
the cost of training time. Hence, GA is executed 360 times 
by executing the Simulink model of the system while saving 
the miss-distance, relative target flight direction, and FOPID 
controller variables produced during each iteration to generate 
training data. In each iteration of GA, a large number of input-
output pairs are generated and all of them, not just the final 
optimal values, are stored. Owing to the evolutionary nature 
of GA, the number of data points generated in each run varies 
according to multiple factors including the miss-distance 
tolerance. In this study, we set a threshold of tolerance of  
0.1 m.

The Matlab code for the GA executes the Simulink model 
and outputs the miss-distance corresponding to different 
combinations of the controller parameters and target flight 
directions, which evolve in the direction of optimal values. The 
pseudo-code for this process is mentioned.

3.2.2 Neural Network Architecture
To reduce the miss-distance, the DNN uses the training 

data to estimate the missile-target system dynamics and 
adaptively changes the controller settings according to the 
target’s maneuvering tactics. However, owing to the time gap 
between the initial sensing of variables and the compilation 
of controller settings, the parameter tuning procedure is 
susceptible to errors. The delay is caused by the processing 
times of (a) the neural network itself, (b) control loop dynamics, 
and (c) sensors and other electronic components. The controller 
parameters determined at time t are actually tuned for the target 
flight direction and other system variables at a previous time 
t−Td, where Td represents the time lag. The current direction of 
motion of the target may vary from what it was at time t − Td.

To address this issue, the proposed architecture of DNN, 
as shown in Fig. 3, has two dimensions: space (estimation), and 
time (prediction). The space dimension models the nonlinear 
relationship of the target direction, controller variables, and 
miss-distance. It is built on a deep feedforward neural network 

Pseudo-code.
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with three hidden layers of 50, 30, and 20 neurons, and supposes 
the following dynamics:
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where, Dm is the final miss-distance when the missile closes 
upon the target and fNL is estimated by the space dimension as a 
highly nonlinear function. ϕ is the target direction. 
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From Eqn. 26, where, gNL is vector function of highly 
nonlinear nature. As shown in Fig. 3, Dm ≈ 0 and the real-
time forecasted ϕ are fed to the space dimension with FOPID 
controller parameters as outputs for corresponding target 
direction and zero miss-distance.

Thus, gNL on-the-run updates the controller variables 
by implementing a simple feedforward neural network with 
minimal computational burden. The weights and biases of 
this dimension are tuned offline by applying backpropagation 
learning based on Levenberg-Marquardt algorithm on the 
training data as follows:
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where, 
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 represents the weight connecting layer l’s ith 
neuron with jth neuron of layer l−1 and v represents lth layer’s 
ith neuron’s bias. η and k represent the learning rate and the 
iteration instant, respectively. The objective function J is 
optimised as follows:
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To make up for the overall delay caused by system 

processing, the time or prediction dimension forecasts the 
target’s flight path relative to the missile. It accomplishes 
this by extracting patterns from the target’s flight trajectory 
and using those patterns to anticipate future directions with 
the total system delay equal to the prediction horizon. This 
dimension has multiple RNN layers based on the LSTM 
network32 featuring online learning capability using accurate 
time-series forecasting. we updated the LSTM network by 
including peephole connections that produce nonlinear and 
precisely timed spikes without sacrificing performance and 
while maintaining stability33. There are three sublayers for 
each network, which are:
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where, ct and ht are the cell state and the prediction at time t, 
respectively. The network output is as follows:
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A sigmoid function is used by the input gate in (33) to 

choose fresh values to be saved in the cell state. In (35), the 
cell state undergoes change by multiplication of the previous 
state by a forget gate that only allows the necessary data to 
be sent forward. The information supplied by the input gate 
is then processed using a tanh layer. The data supplied by 
the input gate is then processed using another tanh layer. The 
updated cell state comes across another tanh layer in equation 
(36) to guarantee that the values fall in [-1,1] range. Finally, 
multiplication by the output gate provides the final forecasts.

A 200 layer network was used that outputs the forecasted 
values of ϕt+P based on the sequence of past 200 values of ϕ 
as inputs to correct for P instants by running it P times while 
updating the network states at each iteration. P is the prediction 
horizon of the network, which is set approximately equal to the 
run-time of the space dimension.

The online backpropagation through time (BPTT) 
procedure was applied for updating the network states to 
prevent vanishing gradients. The gradient is calculated after 
the RNN outputs the prediction h(k) as follows:
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where, E represents the prediction error and W is the parameter 
to be optimized. If (37) is considered as a series of functions, 
then it converges to zero if the series of its partial sums tends 
to zero:
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The error gradient for time step t is defined as:
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For prediction, the RNN output is supplied to a fully 

connected dense regression layer as:
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where, 
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 and bdense represent the respective weights 
and bias terms. Algorithm 1 shows the step-wise process of data 
generation and neural network training in the first dimension. 
Algorithm 2 explains time-series prediction and estimation of 
optimised FOPID variables in the second dimension.

4.  PerForMANce ANAlysIs
Owing to the involvement of missile systems, hardware 

implementation of the entire system couldn’t be realized. 
However, the proposed algorithm was implemented in real-
time on a suitable hardware (Intel Xeon Processor 3.70 
GHz, 3696 Mhz, 8 Cores, 16 Logical Processors, 64 GB 
RAM) while considering simulated missile-target dynamics. 
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difference in the miss-distance values can be attributed to the 
differences in FOPID approximation techniques, PN guidance 
law modifications, and system modeling approaches used in 
the two papers. DLAPG is applied for the same ϕ = 180◦ and 
a comparable miss-distance value of Dm = 0.47 m is achieved 
which is slightly more than what is achieved by NC algorithm. 
This can be attributed to the fact that the NC algorithm is 
exclusively tuned for ϕ = 180◦ prior to implementation whereas 
the DLAPG algorithm is an online-self tuning technique which 
is not pre-tuned for any particular value of ϕ. However, when 
the two techniques are compared for ϕ values drastically 
different from 180◦ or for the case of maneuvering target, the 
DLAPG technique shows higher performance and robustness 
as discussed below.

In Fig. 4(a), T and M stand for target and missile, 
respectively, shows the comparison for ϕ = 90◦ which is 
drastically different from ϕ = 180◦. with DLAPG, the missile is 
able to hit the target with a miss-distance value of 0.86 m while 
as with NC, the missile misses the target. 

The performance of the proposed technique is further 
evaluated for randomly and intelligently maneuvering targets. 
A randomly maneuvering target changes its course or speed 
in a random or unpredictable manner to avoid being hit by 
the missile. This type of target is typically used in training 
exercises or simulations, as it is easy to program and does not 
require advanced decision-making capabilities. However, an 
intelligently maneuvering target employs more sophisticated 
evasion tactics and decision-making algorithms to avoid being 
hit by the missile. Thus, an intelligently maneuvering target is 
likely to be more difficult to hit than a randomly maneuvering 
target, as it is better able to anticipate and respond to the 
missile’s movements; therefore, it is often used in more 
advanced missile defense training scenarios.

Figure 4(b) shows a randomly maneuvering target which 
is hit by the missile with miss-distance equal to 1.2 m for 
DLAPG and 3.8 m for NC. Figure 4(c) shows an intelligently 

Figure 5.  Adaptively changing FoPID parameters for the cases 
of randomly and intelligently maneuvering target.

Figure 4.  Target and missile trajectories: (a) Non-maneuvering 
target, (b) randomly maneuvering target, and (c) 
Intelligently maneuvering target.

(a)

(b)

(c)

Parallel dual-core simulations were performed to evaluate 
the impact of system processing latency and its correction 
via prediction. Core-1 of the processor mimics the dynamics 
of the missile-target environment, while Core-2 executes the 
DLAPG algorithm and shares the input (Vc,θ,ϕ) and output (am 
command) data with Core-1. Core-2’s prediction horizon is 
equivalent to Core-1’s simulation processing duration.

In this study, the horizontal and vertical components of 
the initial range between the target and the missile are 4500 
m and 535 m, respectively. yaghi and Onder12 used the H2/H∞ 
neural control (NC) technique where the controller parameters 
are tuned offline and achieved a minimum miss-distance of 
0.262 m for ϕ = 180◦. The same technique is reproduced in 
this paper with miss-distance value of 0.269 m. The slight 
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Figure 8. Incidence angle, mach number, and fin demand for different types of targets.

Figure 6. Gimbal angle vs look angle stability for the cases of intelligently and randomly maneuvering targets.

Figure 7. Normal acceleration command, az, vs acceleration demand, zd, for maneuvering targets.

maneuvering target which turns upwards initially so that 
missile too orients towards upward direction, and then the 
target moves downwards to deceive the incoming missile and 
escape it. This upward-downward movement is continued until 
the missile escapes the target. The missile with DLAPG is able 
to hit this target with miss-distance equal to 0.97 m while as 
the missile with NC misses the target. Many other random 
experiments were performed and it was observed that the 
DLAPG algorithm ensures that the missile always hits the target 
with Dm ≤ 1.5 m even if it is maneuvering to escape the missile. 
The offline-tuned NC was found to show high performance 
for non-maneuvering targets with ϕ = 180◦ ±30◦ and few other 
random target directions. However, for maneuvering targets 

and targets moving in directions drastically different from ϕ 
= 180, the NC technique either misses the target or achieves a 
higher miss-distance value compared to DLAPG. These results 
clearly demonstrate the superiority of DLAPG over NC and by 
extension other techniques like PID controller optimized using 
particle swarm optimization (PSO) and ziegler-Nichols (zN) 
techniques that are compared with NC by Murad and yaghi12. 
Figure 5 shows the adaptively changing FOPID controller 
parameters in accordance with the maneuvering tactics of 
randomly maneuvering and intelligently maneuvering targets 
respectively. In case of random maneuver, the target erratically 
changes the direction in a zig-zag pattern, leading to significant 
fluctuations in the parameter values. Figure 6 shows the 
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stability of gimbal angle and its conformity with true look 
angle for both the cases. It is shown in Fig. 7 that the normal 
acceleration (az) produced is in accordance with the demanded 
acceleration (azd). Figure 8 shows that the DLAPG equipped 
missile does not lose performance or violate bounds in terms of 
critical system parameters like incidence angle, mach number, 
and fin actuator demand.

5.  coNclusIoN
The main outcome of this study is the development of a 

deep learning based, partially physics-informed, model-free, 
and adaptive predictive guidance for radar-guided missile. The 
study also establishes the use of deep learning to predict the 
maneuvering tactics of the target to compensate for the system 
processing delays of intrinsic nature during which the target 
could potentially modify its flight path direction. Adaptability 
of controller variables is an additional advantageous aspect of 
the research, since the parameters are continually adjusted on-
the-fly in response to the changing flight trajectory of the desired 
target. The superior performance of the proposed technique in 
terms of minimization of miss-distance and adaptability over 
other methods is demonstrated. 
In future, additional parameters such as target speed, multiple 
targets, etc., could be included. In addition to miss-distance, 
other metrices such as impact angle constraints, which play 
a significant role in the mission success, must be evaluated in 
future to ensure onboard feasibility of the proposed technique. 
Furthermore, multiple missiles for multiple targets can be 
used intelligently and coherently if the control algorithm is 
implemented in the launching station with a communication 
link with the missiles. Moreover, supercomputers can be 
used to generate more training data by considering multiple 
parameters or data from actual missiles in action can be used 
to further enhance this technique. This technique can also be 
potentially considered for different time-sensitive applications 
requiring online optimization, such as robotic path planning, 
autonomous driving, drone control, and gamming.
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