
41

Defence Science Journal, Vol. 73, No. 1, January 2023, pp. 41-50, DOI : 10.14429/dsj.73.18449
 2023, DESIDOC

Received : 22 August 2022, Revised : 16 December 2022
Accepted : 16 January 2023, Online published : 10 March 2023

Formal Modelling and Verification of the Clock Synchronisation Algorithm of FlexRay

Shimmi Asokan#,*, K.H. Kochaleema$ and G. Santhosh Kumar#

#Department of Computer Science, Cochin University of Science and Technology, Kochi - 682 022, India
$DRDO-Naval Physical and Oceanographic Laboratory (NPOL), Kochi - 682 004, India

*E-mail: shimmideepak@gmail.com

ABSTRACT

The hundreds of electronic control devices used in an automotive system can effectively communicate with
one another, thanks to an in-vehicle network (IVN) like FlexRay. Even though every node in the network will be
running on its local clock, a global notion of time is essential. The clock synchronisation algorithm accomplishes this
global time between the nodes in FlexRay. In this era of self-driving cars, the vehicle’s safety is paramount. For the
vehicle to operate safely and smoothly, timely communication of information is critical, and the clock synchronisation
algorithm plays a vital role in this. It is essential to formally test the clock synchronisation algorithm’s correctness.
This paper attempts to model and verify the clock synchronisation algorithm of FlexRay using formal methods,
which in turn enhance the reliability of safety-critical automotive systems. The clock synchronisation is modelled
as a network of six timed automata in the UPPAAL model checker. Three system models were developed, a model
for an ideal clock, another for a drifting clock, and a third model considering propagation delay. The precision
of the clocks is verified to be within the prescribed limits. Simulation studies are also conducted on the model to
ensure that the clock’s drift is always within the precision.

Keywords: Formal verification; FlexRay; Model checking; UPPAAL; Clock synchronisation

1.	 INTRODUCTION
High-end automobiles manufactured today are equipped

with several safety and performance features. Advanced driver
assistance system, adaptive cruise control, anti-lock braking
system, and engine control are a few to mention. Manufacturers
implement these features as independent electronic control units
(ECUs). Modern cars have hundreds of ECUs, and effective
communication between them is essential for the electronic
systems to provide functionalities. This communication is
established with IVN technologies like Local Interconnect
Network1, Controller Area Network (CAN)2, FlexRay3, Media
Oriented System Transport4, etc. FlexRay provides a bandwidth
of 10Mbps, which is better than other IVN5. FlexRay is reliable
compared to other protocols and is used for brake-by-wire,
steer-by-wire and shift-by-wire, which are safety-critical.

FlexRay was developed by the consortium consisting of
Freescale Semiconductor, Robert Bosch, NXP Semiconductors,
BMW, Volkswagen, Daimler and General Motors as its core
members3. FlexRay standards are currently a collection of
ISO standards, ISO 17458-1 to 17458-56. Several works on
FlexRay have been reported in the literature recently7-12. Various
researchers have modelled the FlexRay startup mechanism
and have formally verified its properties like reachability and
liveness13-15. Guo et al.16 modelled a framewuork for formally
modelling automotive systems that used FlexRay and verified

the features associated with sending and receiving frames. The
authors also developed a reusable framework for systems that
employ both CAN and FlexRay for communication17. The
authors described an abstraction for the same and evaluated
the validity of the abstraction and the performance of the
framework18. The authors considered three topologies for
implementing IVN systems and the timed properties were
checked for all three cases. To ensure the safety of high-end
cars, the ECUs should be synchronised to deliver messages
at the appropriate time for carrying out various activities.
Once the nodes begin running, the node’s clocks start to drift.
The clock synchronisation algorithm serves the purpose of
synchronising between the cluster nodes3. A couple of works
on the formal verification of a clock synchronisation algorithm
for CAN were reported by Navas, et al.19,20. Time-Triggered
CAN was modelled as a system of timed automata by Leen21-

22 et al. Steiner, et al. reported a fully automated proof of the
Time-Triggered Ethernet (TTE) clock synchronisation23.
They also modelled the compression function of TTE and
formally verified its correctness24. The approach for clock
synchronisation in CAN and TTE differs from the distributed
approach used in FlexRay.

Hanzlik25 assessed the performance and stability of the
FlexRay clock synchronisation algorithm through simulation
using the tool SIDERA. A cluster of 15 nodes was considered
for the analysis, and the performance of the algorithm was
determined for different clock drift rates. The clock drift rates
considered were stable clock drift rates, immediate clock drift

def. sci. j., Vol. 73, No. 1, january 2023

42

rate change, linear clock drift rate change and oscillating clock
drift rate change. An experimental evaluation of FlexRay clock
synchronisation using the deterministic replay of a bus traffic
approach was done by Armengaud26. These works are based
on simulation and do not use formal methods. Simulation
alone does not guarantee that the system is error-free. Formal
verification guarantees the clock synchronisation algorithm’s
correctness and thus makes it reliable for use in the automotive
industry for safety-critical functionalities.

The clock synchronisation algorithm of FlexRay is
modelled, simulated and verified using formal methods in
this paper. UPPAAL27-28 model checker is used. The paper’s
contributions can be summarised as (i) formal modelling of the
FlexRay clock synchronisation algorithm as a network of timed
automata in UPPAAL. Three system models were developed:
the first model mimics an ideal clock, the second simulates a
drifting clock, and the third model integrates the propagation
delay experienced when sending and receiving messages. (ii)
verification of the precision property, as well as the system’s
safety property of being free of deadlock. (iii) simulation of
the models, demonstrating that the clock’s precision is always
within the prescribed limits. The paper is organised as follows.
Section 2 describes how FlexRay performs synchronisation
of clocks. A summary of the UPPAAL model checker is also
provided. Our model of the FlexRay clock synchronisation
algorithm is detailed in section 3. The results and discussion in
section 4 elaborate on the simulation and verification results.
The conclusion of the work and some directions for future
study are presented in Section 5.

2.	 BACKGROUND
Multiple ECUs or nodes connected by a bus make up

a FlexRay cluster. FlexRay employs time division multiple
access (TDMA) for triggering transitions. The communication
cycle has a static segment, divided into static slots, and each
slot is assigned to a node. Every node in a network will be
running on its local clock, and the nodes should have a common
understanding of time. In a cluster, it should be ensured that all
the communication cycles are of equal length and begin at the

same point. Also, all the static slots should start at the same
point in the communication cycle. The clock synchronisation
algorithm ensures this, and the following subsections describe
the clock synchronisation process of FlexRay3.

2.1	 Clock Synchronisation in FlexRay
Cycles, macroticks and microticks are used to represent

time in FlexRay. With the use of the variables vCycleCounter,
vMacrotick and vMicrotick, a node’s time can be represented.
The basic unit of time is the microtick, whose source is the
oscillator clock tick. A macrotick is made up of an integral
number of microticks. An integral number of macroticks
constitutes a cycle and is represented using the variable
gMacroPerCycle. Each cycle and each node in a cluster will
use the same value for this parameter. At any one time, a
cluster’s nodes should all have the same cycle number. The
cycles are counted, and the variable vCycleCounter holds the
current cycle number of a node3.

There are two notions of time, global and local time. The
local perspective of the global time from a node is called its
global time. The clock time of the node obtained from the
node’s oscillator is its local time. The clock synchronisation
algorithm enables the node to adjust its local time to global
time. A distributed clock synchronisation mechanism is used
in FlexRay. The algorithm for clock synchronisation ensures
that the time difference between a cluster’s nodes consistently
remains within the precision. The time differences between two
node’s clocks are of two types, offset (phase) difference and
rate (frequency) difference. The macrotick generation process
(MTG) and the clock synchronisation process (CSP) are the
two stages of FlexRay’s clock synchronisation algorithm. The
cycle and macrotick counters are controlled by MTG, which
is also responsible for applying the rate and offset correction
values. CSP is responsible for the initialisation of time at the
start of the cycle, and it measures the deviation of the time
between the node’s clocks and stores the value in the deviation
table. From these deviation values, the offset and rate correction
values are also computed by the CSP process. The steps in the
clock synchronisation of FlexRay are depicted in Fig. 1.

Figure 1. Clock synchronisation of FlexRay.

Asokan, et al.: Formal Modelling and Verification of the Clock Synchronization Algorithm of FlexRay

43

2.1.1	 Initialisation
A significant step in calculating offset and rate correction

values is to measure the deviation values between the local
time of a node and the local time of every other node in the
cluster. The deviation values measured during every cycle are
stored in a data structure dev_table with N rows, where N is
the number of SYNC nodes in the cluster. This table consists
of an even part that stores the value measured during the even
cycle and an odd part that stores the value measured during the
odd cycle. During initialisation, the even part of dev_table is
reset during the even communication cycle, and in the odd
cycle, the odd part is reset.

2.1.2	 Measurement and Storage of Time
Every slot in the static segment consists of a static slot

action point (SAP). A transmitting node starts the frame
transmission only when this point is reached. A signal is
generated by the media access control (MAC) when its timer
reaches the SAP. When CSP receives this signal, it takes a
timestamp and saves it in a variable SAP.

The receiving node captures a timestamp as part of the
frame reception, serving as a secondary time reference point
(STRP). The primary time reference point (PTRP), the offset
and the deviation of the clock are computed as in Eqn. (1), Eqn.
(2) and Eqn. (3), respectively. The DecodingCorrection value
can be 18 to 143 microticks, and DelayCompensation can be 0
to 200 microticks as per the specification3.

PTRP STRP Offset= − 			 (1)

Offset DecodingCorrection DelayCompensation= + (2)

Deviation PTRP SAP= − (3)
The deviation value computed during a cycle will be

stored in the corresponding part of the dev_table. Every node
will have an array of measurement values after the static part.
The values in this array are used to compute the correction
value using the fault-tolerant midpoint algorithm (FTMPA)3.
2.1.3	 Calculation of Offset Correction Value

Offset correction ensures that the difference in real time
between the points in time reached by different clocks should
be as small as possible. The offset correction value is computed
as follows.

If the communication cycle is even, the deviation values •	
computed during the even cycle are used to compute the
offset correction value. Otherwise, the deviation values
computed during the odd cycle are used.
The corresponding deviation values are copied into an •	
array, the FTMPA is executed on the array’s contents, and
the correction term, vOffsetCorrection, is computed.
Check this value against the specified limits:•	

	 a.	 If ,vOffsetCorrection pOffsetCorrectionOut< − set

		 vOffsetCorrection pOffsetCorrectionOut= −
	 b.	 If ,vOffsetCorrection pOffsetCorrectionOut> set
		 vOffsetCorrection pOffsetCorrectionOut=

2.1.4	 Calculation of Rate Correction Value
Rate correction ensures that all cycles of all clocks have

the same length. The steps in calculating the rate correction

value are as follows.
The difference between the deviation values computed •	
during each slot is found and stored in an array.
The FTMPA is executed, and the correction term, •	
vRateCorrection, is computed.
Damping value, •	 pClusterDriftDamping is applied to
vRateCorrection
a.	 If vRateCorrection pClusterDriftDamping≥ set
 	 vRateCorrection vRateCorrection pClusterDriftDamping= −
b.	 If vRateCorrection pClusterDriftDamping≤ − set
 	 vRateCorrection vRateCorrection pClusterDriftDamping= +
c.	 Else 0vRateCorrection =
	
Check •	 vRateCorrection against the specified limits.
a.	 If ,vRateCorrection pRateCorrectionOut< − set
 vRateCorrection pRateCorrectionOut= −
b.	 If ,vRateCorrection pRateCorrectionOut> set
	 vRateCorrection pRateCorrectionOut=

2.2	 UPPAAL
UPPAAL model checker takes two inputs, the model of

the system to be verified and the properties the system has
to satisfy. The properties that the system must satisfy are
modelled using timed computation tree logic (TCTL), and
the system is represented as a collection of timed automata.
Rigorous verification of the property for all possible runs of the
system is performed. If it is satisfied for all possible runs, the
model checker produces as output “the property is satisfied”.
If the property is not satisfied for at least one run, it produces
as output “the property is not satisfied”, and a counterexample
is generated27-28. The limitation of using UPPAAL in verifying
clock synchronisation algorithms is that the value of a clock
variable cannot be read. Huang, X describes an integer clock
model and demonstrates it by verifying the correctness
properties of the Timing-sync Protocol for Sensor Networks29.

3.	 FORMAL MODELLING OF THE FLEXRAY
CLOCK SYNCHRONISATION ALGORITHM
Starting a FlexRay cluster requires the presence of at least

three cold-start nodes. In this work, a cluster consisting of four
nodes is considered for modelling. The state space explosion is
managed by restricting the nodes to four. The assumption is that
all the nodes initially have a synchronised clock. The model
developed comprises six automata, an Oscillator, Observer,
MAC, Node, CSP and MTG.

All the automata are instantiated for every node in the
network. Node(0) to Node(3) corresponds to the four nodes
in the network. Oscillator(0), Observer(0), CSP(0), MTG(0)
and MAC(0) are the instances of the various automata
that correspond to the Node(0). Three different models are
considered for simulation and verification. The first model
assumes that all nodes are always synchronised, while the
second considers that nodes 1, 2, and 3’s clocks drift over
time. In model 2, only the Oscillator and Observer automata
are remodelled. Models 1 and 2 do not experience any delays
while receiving the frame. The node automaton in the third

def. sci. j., Vol. 73, No. 1, january 2023

44

model is remodelled to incorporate the delay, which comprises
the decoding correction and delay compensation.

3.1	 Modelling the Clock in FlexRay
A node’s clock is modelled using Oscillator and Observer

automata.

3.1.1	 Oscillator Automaton
The Oscillator automaton shown in Fig. 2 is used to

model a node’s clock pulse generator. The automaton has only
a single state with an invariant t<=nsamp, where t is a clock
variable, and nsamp is used to simulate the frequency of the
node’s clock. When t>=nsamp, a self-transition occurs, and
the clock t is reset to 0. The transition generates a broadcast
synchronisation clk_tck[i]! which controls the clock of the
Observer(i) automaton. An instance of the Oscillator is created
for every node in the cluster, and thus the existence of a local
clock is modelled for each node.

The clocks in real-time may drift apart. The Oscillator
and Observer automata are modified, as shown in Fig. 4 and
Fig. 5, respectively, to model clock drifts. It is modelled such
that the Observer ignores every mth sample of the clock during
specific cycles and does not increment the vMicrotck value
during that pulse. The value of m for each node is stored in the
array skip[N]. These modified automata are used in Model 2
and Model 3.

Figure 2. Oscillator Automaton.

Figure 3. Observer automaton.

3.1.2	 Observer Automaton
The Observer automaton depicted in Fig. 3 simulates

the local time of a node’s clock. UPPAAL does not permit to
read the values of the clock variables. To implement the clock
synchronisation it is required to take the timestamp at several
instances. The variables vMicrotck[i] and vMacrotck[i] are the
microtick and the macrotick counters and are of type integer. The
value of vMicrotck[i] is read as the value of the clock for node
i when a timestamp is to be taken. The variable vMicrotck[i] is
incremented at every clock pulse when it receives a message
via clk_tck[i]?. The variable vMacrotck[i] is incremented at
every nth microtick, where n microticks constitute a macrotick.
Incrementing vMacrotck is implemented as a function in the
Observer automaton.

Figure 4. Oscillator for drifting clock.

3.2	 MAC Automaton
The MAC automaton in Fig. 6 models the communication

cycle of a node and controls the node’s turn to access the media
and send a frame. The shared media is implemented as a structure
with two fields: a frame field and a status field that shows
whether the bus is in use or not. A FlexRay communication
cycle is made up of a static segment, a dynamic segment, a
symbol window and network idle time (NIT)3. Most safety-
critical communication is done during the static segment,
and the MAC automaton models only this segment and NIT.
MAC(i) automaton interacts with the Node(i), CSP(i) and

MTG(i) automata. The MAC(i) automaton issues a cyclestart[i]!
signal, which triggers the MTG(i) for the node. It also sets the
values of firstcycle[i] and ecycle[i] to true, indicating cycle0.
The automaton then spends in the location Wait_for_Slot for a
time equal to slottime[i], and when this time expires, it is the
ith node’s turn to access the media. The automaton waits in the
location Wait_APO for gdAPO time before it issues the static
slot action point signal, ssap!. The ssap! synchronises MAC(i)
with the Node(i) and CSP(i) automata. MAC(i) then issues the
slot[i]! signal, which Node(i) receives to send a frame. When
the node’s static slot expires, MAC(i) resets the contents on the
bus by executing the resetBus() function. MAC(i) then waits
in the Channel_Released location for a time vStSeg[i] for the
static segment to complete. It then issues the sscompleted[i]!,

Asokan, et al.: Formal Modelling and Verification of the Clock Synchronization Algorithm of FlexRay

45

Figure 5. Observer for drifting clock.

Figure 6. MAC automaton.

which will be received by the MTG(i) automaton. MAC(i)
then generates the calc_offset[i]! to the CSP(i) to initiate the
offset calculation. The automaton then spends time vNIT in the
location NIT and then iterates back to the Start_Cycle location
to start the next communication cycle. On this path, it resets
the clock x to 0 and increments the cycleno[i]. It also negates
the ecycle[i] because an even cycle will be followed by an odd
cycle and vice versa. A FlexRay network permits a maximum
of 63 cycles, so the cycleno[i] ranges from 0 to 62, and when
the value is 63, the automaton resets to the Init location.

3.3	 Node Automaton
The Node automaton shown in Fig. 7 models the node’s

behaviour of sending and receiving frames. When Node(i)
receives the ssap? signal from MAC(i), it takes the timestamp
and stores it in sap[i]. Node(i) then waits in the Ready state for
either its slot to send a frame or till some other node accesses the
media and sends a frame. If it is node i’s turn to access the media,
Node(i) will receive a slot[i]? signal from the MAC automaton
and will transmit the frame. The node sends sendframe! signal
while it transmits the frame, which is received by all other
nodes in the cluster. The signal triggers the receivers to read
the contents of the bus and record the timestamp at which

def. sci. j., Vol. 73, No. 1, january 2023

46

they receive the frame. This timestamp, STRP, is recorded in
strp. The nodes that receive the frame execute the function
computePTRP(). The node then issues genptrp[i]! to indicate
that the computation of PTRP is completed and to synchronise
with the CSP automaton for computing the deviation values.

The Node automaton is modified to consider the decoding
delay and the propagation delay in Model 3. The receiver node
on receiving the sendframe? moves to a wait location. This
location has an invariant y<=offset + delta, and a transition
from this location occurs when the value of y is between
offset – delta and offset + delta. Thus, a delay is induced at the
receiver while receiving the frame.

3.4	 CSP Automaton
The CSP automaton depicted in Fig. 8 models the clock

synchronisation process (Fig. 1). It initialises the deviation
table when it receives the initDT? from the MTG automaton.
The initialize_Devtable() function resets a part of the dev_table
corresponding to the cycle. A timestamp is taken and is stored
in tsap when the automaton receives the ssap? from MAC(i).
It then computes the deviation when genptrp[i]? is received
from the Node(i) as . This value is stored
in the appropriate part of dev_table based on the cycle being
even or odd. The automaton waits for the calc_offset? signal

Figure 7. Node automaton.

Figure 8. CSP automaton.

Figure 9. MTG automaton.

Asokan, et al.: Formal Modelling and Verification of the Clock Synchronization Algorithm of FlexRay

47

from MAC(i) and then calculates the offset correction value.
It also calculates the rate correction value at the end of every
odd cycle.

3.5	 MTG Automaton
The main responsibility of the MTG process is to apply

the offset and rate correction values. The automaton receives a
cyclestart[i]? signal from MAC(i), indicating the start of the first
communication cycle. The rate correction is done only at the
beginning of an even cycle, except for the first cycle. The rate
correction value computed during the previous cycle determines
whether there are more or fewer microticks in the current cycle.
The automaton then initiates initializing dev_table by issuing
initDT! which will be received by CSP(i). It then waits for the
completion of the static segment and receives sscompleted[i]?
from MAC(i). A node has to wait for gdOffsetCorrectionStart
(gdOCS) time to perform offset correction. Offset correction is
performed by extending or shortening the NIT interval of the
communication cycle. Figure 9 depicts the MTG automaton.

5.	 RESULTS AND DISCUSSION
The model is simulated and verified using the 4.1.25-5

version of UPPAAL on an Intel Xeon octa-core with 64-bit OS
and 16 GB RAM. The values of vMicrotck from the Observer
automaton were read during the simulation run and were used
to compute vMacrotick and the precision.

The clock synchronisation of FlexRay modelled in this
paper considers a bandwidth of 10Mbps. Since a cluster
consisting of four nodes is considered, the static segment is
slotted into four slots, one for each node. The values for the
variables used in the model are computed assuming a clock
period of 0.0125µs and a macrotick (MT) duration of 1µs. One
sample of the clock pulse is considered as one microtick (µT),
and one macrotick consists of 80µT. The maximum value of
offset correction that is permitted, pOffsetCorrectionOut is

Table 1. Computed values of variables

Variable Value

gdSampleClockPeriod 0.0125µs

gdMacrotick 1µs (80µT)

gdAPO 80µT

slottime[i] 0,320,640,960µT

gMacroPerCycle 18MT

cyclelength[i] 1440µT for all the nodes

vNIT[i] 160 for all the nodes

vSS[i] 4MT (320µT) for all the nodes

vStSeg[i] 960, 640, 320, 0

gdOCS 80µT

pDecodCorrec 18µT

pDelayComp 0 – 5µT

pOffsetCorrcOut 50µT

pRateCorrOut 5µT

pClustDriftDamp 0

Figure 10. Simulation results of the three models.

computed as in equation 4. Where gOffsetCorrectionMax is
the maximum necessary offset correction value (0.15µs) for
the cluster globally, pdMicrotick is the node-specific duration
of 1µT (0.0125µs), and cClockDeviationMax is the maximum
clock frequency deviation. The cClockDeviationMax is a
protocol constant, and the value is 1500 ppm. The computation
of the maximum rate correction value, pRateCorrectionOut,
is done as in Eqn. 5. The number of microticks per cycle,
pMicroperCycle, is 1440. The values of the different variables
computed for the simulation and verification are listed in
Table 1. The range of values these variables can take for 10
Mbps is specified in the specification of FlexRay3.

def. sci. j., Vol. 73, No. 1, january 2023

48

Figure 11. Precision observed for the models during simulation.

()* 1

pOffsetCorrectionOut

gOffsetCorrectionMaxceil
pdMicrotick cClockDeviationMax

=

 
  −  (4)

()
2

1

pRateCorrectionOut

pMicroperCycle cClockDeviationMaxceil
cClockDeviationMax

=

 
  −  	 (5)

The results obtained from performing simulation on the
three models, synchronised clocks (Model 1), drifting clocks
(Model 2), and the model with a delay at the receiver’s end
(Model 3), are in Fig. 10 and the observations are listed
below.
•	 The duration of vNIT is reduced or extended based on the

offset correction value computed during the odd cycle.
•	 The cycle duration is modified at the beginning of the

even cycle considering the rate correction value computed

during the previous double cycle.
•	 In all the models, the precision is between 0 - 2 MT (see

Fig. 11), which is within the worst-case precision of a
FlexRay network.

The precision values computed as the maximum deviation
of the node’s clock from the clocks of all other nodes in the
cluster in terms of MT were verified in the UPPAAL model
checker. The model checker checks whether the property is
violated in any state in all the possible runs. If violated, the
output produced by UPPAAL is ‘property is not satisfied’;
otherwise, it gives the output as ‘property is satisfied’. The
best and the worst-case precision as specified by the FlexRay
specification is 0.15 µs (12 µT) and 6.675 µs (534 µT),
respectively. The properties verified and the model checker’s
output are listed below. The precision values were formally
verified to be within 0 – 6 MT for all the models using property
1 and property 2. The deadlock property, which states that in
all possible runs of the system, no state may exist, in which no
outbound transitions are triggered, is verified by property 3.

Properties Verified

Property 1: Precision is within the range 0-6MT.

Specification:

()()[] : [] 0 [] 6A forall i nodes prec i and prec i≥ ≤

Result: Property is satisfied.

Property 2: Precision does not go beyond the range 0-6MT.

Specification:

()(): [] 0 [] 6E exists i nodes prec i or prec i<> < >

Result: Property is not satisfied.

Property 3: System does not go into a deadlock state.

Specification:
[]A not deadlock

Result: Property is satisfied.

5.	 CONCLUSIONs
Formal modelling and verification of clock synchronisation

of FlexRay make it reliable for in-vehicle communication by
major automotive manufacturers. This paper developed a formal
model of the FlexRay clock synchronisation algorithm using
the UPPAAL model checker. The model developed consists
of a network of six timed automata, Oscillator, Observer,
MAC, Node, CSP and MTG. A cluster with four nodes was
considered, and simulation and verification were done on three
variants of the model, one with synchronised clocks, one with
drifting clocks and one in which the decoding and propagation
delays were modelled at the receiver node.

Asokan, et al.: Formal Modelling and Verification of the Clock Synchronization Algorithm of FlexRay

49

Simulation studies on all the models show that the clock
correction is done by modifying the duration of the NIT and
the cycle length. NIT is shortened or lengthened based on the
offset correction value, and the cycle length is increased or
decreased based on the rate correction value computed. Also,
the precision is found to agree with the worst-case precision
of 6 MT mentioned in the specification of FlexRay. It is also
formally verified by the model checker that the precision is
always within 0 MT and 6 MT. It is also verified that the system
is free from deadlock. The models proposed in this work can
also be applied to a dual-channel network by creating instances
of the MAC automaton for the two channels and modifying
the Node automaton to broadcast and receive frames on both
channels.

The model can be extended for event-triggered
communication by modifying the MAC automaton to
incorporate dynamic segment and symbol window. Modelling
the synchronisation of the nodes in multiple clusters, their
behaviour and the modelling of drift between the clusters will
be considered as future work.

REFERENCES
1.	 LIN Specification Package, Revision 2.0, LIN Consortium,

2003.
2.	 CAN Specification, Robert Bosch GmbH, Stuttgart,

Germany, 1991.
3.	 FlexRay communications system protocol specification

version 2.1., FlexRay Consortium, 2005.
4.	 MOST Specification Revision 2.3, MOST Cooperation,

Karlsruhe, Germany, 2008.
5.	 Prasad, M.; Dey, R.K.; Sardar, A. & Goswami, G. Ethernet

as an emerging trend in vehicle network technology—Part
I. Auto Tech. Rev., 2014, 3(12), 18-23.

	 doi: 10.1365/s40112-014-0805-5
6.	 International organisation for standardisation. Road

vehicles–FlexRay communications system–Part 1:
General information and use case definition. ISO I. 17458-
1–2013 Jan.

7.	 Piao, J.H.; Wu, Y.J. & Xu, Y.N. A security framework
for in-vehicle flexray bus network. Int. J. Modeling
Optimisation, 2022, 12(3).

	 doi: 10.1007/978-3-030-66042-0_6
8.	 Pang, F.; Huang, M.; Mi, Z. & Zhang, H. A way to

synchronize clocks with the FlexRay bus. J. Physics:
Conference Series, IOP Publishing, 2022, 2187(1),
012054.

	 doi: 10.1088/1742-6596/2187/1/012054
9.	 Peng, L.; Jia, L. & Zefeng, Y. FlexRay bus data fault

diagnosis based on Zynq. J. Physics: Conference Series,
IOP Publishing, 2021, 1907(1), 012029.

	 doi: 10.1088/1742-6596/1907/1/012029
10.	 Wang, Y.; Chen, M.; Ma, J.; Zhang, J. & Fu, J. Predictive

control of FlexRay vehicle-mounted network based
on neural network. J. Physics: Conference Series, IOP
Publishing, 2021, 1907(1), 012062.

	 doi: 10.1088/1742-6596/1907/1/012062
11.	 Xiong, W.; Ho, D.W. & Wen, S. A periodic iterative learning

scheme for finite-iteration tracking of discrete networks
based on FlexRay communication protocol. Information

Sciences, 2021, 548, 344-356.
	 doi: 10.1016/j.ins.2020.10.017
12.	 Stojanović, Branka; Hofer-Schmitz, Katharina; Nahrgang,

Kai; Vallant, Heribert & Derler, Christian. Formal
modeling: A step forward to cyber secure connected car
systems. Towards connected and autonomous vehicle
highways. Springer, Cham, 2021, 131-167.

	 doi: 10.1007/978-3-030-66042-0_6
13.	 Malinský, J. & Novák, J. Verification of flexray start-

up mechanism by timed automata. Metrology and
Measurement Systems, 2010, 17(3), 461-480.

	 doi: 10.2478/v10178-010-0039-z
14.	 Cranen, S. Model checking the FlexRay startup phase. In

International Workshop on Formal Methods for Industrial
Critical Systems, Springer, Berlin, Heidelberg, 27 August
2012, 131-145.

	 doi: 10.1007/978-3-642-32469-7_9
15.	 Shimmi, Asokan & Santhosh Kumar, G. Modelling and

verification of the FlexRay startup mechanism using
UPPAAL model checker. In 2018 8th International
Symposium on Embedded Computing and System Design
(ISED), IEEE, 2018, 13, 69-73.

	 doi: 10.1109/ISED.2018.8704029
16.	 Guo, X.; Lin, H.H.; Yatake, K. & Aoki, T. An UPPAAL

framework for model checking automotive systems with
FlexRay protocol. In International Workshop on Formal
Techniques for Safety-Critical Systems. Springer, Cham,
2013, October, 36-53.

	 doi: 10.1007/978-3-319-05416-2_4
17.	 Guo, X.; Lin, H.H.; Aoki, T. & Chiba, Y. December. A

reusable framework for modeling and verifying in-vehicle
networking systems in the presence of CAN and FlexRay.
In 2017 24th Asia-Pacific software engineering conference
(APSEC), IEEE, 2017, 140-149.

	 doi: 10.1109/APSEC.2017.20
18.	 Guo, X.; Aoki, T. & Lin, H.H. Model

checking of in-vehicle networking systems
with CAN and FlexRay. J. Syst. Software, 2020, 161,
110461.

	 doi: 10.1016/j.jss.2019.110461
19.	 Rodriguez-Navas, G.; Proenza, J. & Hansson, H. Using

UPPAAL to model and verify a clock synchronisation
protocol for the controller area network. In 2005 IEEE
Conference on Emerging Technologies and Factory
Automation, 2005, September, IEEE. 2(8).

	 doi: 10.1109/ETFA.2005.1612717
20.	 Rodriguez-Navas, G.; Proenza, J. & Hansson, H. An

UPPAAL model for formal verification of master/slave
clock synchronisation over the controller area network. In
Proc. of the 6th IEEE International Workshop on Factory
Communication Systems, Torino, Italy, IEEE Computer
Society Press, Los Alamitos, 2006 June.

	 doi: 10.1109/WFCS.2006.1704117
21.	 Leen, G. & Heffernan, D. Modeling and verification of

a time-triggered networking protocol. In International
Conference on Networking, International Conference
on Systems and International Conference on Mobile
Communications and Learning Technologies
(ICNICONSMCL’06), IEEE, 2006, April, 178-178.

	 doi: 10.1109/ICNICONSMCL.2006.150

def. sci. j., Vol. 73, No. 1, january 2023

50

22.	 Leen, G. & Heffernan, D. Formally verifying aspects
of time-triggered controller area network (Phases 1 \&
2a). Tech. report, PEI/CSRC report no. 20020603, main
library, University of Limerick, 2002.

23.	 Steiner, W. & Dutertre, B. Automated formal verification of
the TTEthernet synchronisation quality. In NASA Formal
Methods Symposium. Springer, Berlin, Heidelberg, April
2011, 375-390.

	 doi: 10.1007/978-3-642-20398-5_27
24.	 Steiner, W. & Dutertre, B. SMT-Based formal verification

of a TTEthernet synchronisation function. In International
Workshop on Formal Methods for Industrial Critical
Systems. Springer, Berlin, Heidelberg, September 2010,
148-163.

	 doi: 10.1007/978-3-642-15898-8_10
25.	 Hanzlik, A. A case study of clock synchronisation in

FlexRay. Research Report 31/2006 Technische Universitat
Wien, Institut fur Technische Informatik. 2006.

26.	 Armengaud, E. Experimental evaluation of the FlexRay
clock synchronisation service. Proc. 20. ITG/GI/
GMM Workshop Testmethoden und Zuverlssigkeit von
Schaltungen und Systemen, 2008. pp. 85-90.

27.	 Behrmann, G., David, A. & Larsen, K.G. A tutorial on
uppaal. Formal methods for the design of real-time
systems, 2004, 200-236.

	 doi: 10.1007/978-3-540-30080-9_7
28.	 David, A.; Larsen, K.G.; Legay, A.; Mikučionis, M. &

Poulsen, D.B. Uppaal SMC tutorial. Int. J. Software Tools
for Technology Transfer, 17(4), 2015, 397-415.

	 doi: 10.1007/s10009-014-0361-y
29.	H uang, X.; Singh, A. & Smolka, S.A. Using integer clocks

to verify clock-synchronisation protocols. Innovations
Syst. Software Engin., 7(2), 2011,119-130.

	 doi: 10.1007/s11334-011-0152-5

CONTRIBUTORS

Ms Shimmi Asokan received her M. Tech degree in Software
Engineering from Cochin University of Science & Technology
(CUSAT), Kochi, Kerala. She is currently a Research Scholar in
the Department of Computer Science at CUSAT. Her research
interests include modelling and verification of software systems
using formal methods.
In the present work, she is responsible for developing the
formal model of the clock synchronisation algorithm of FlexRay,
simulating the model and formally verifying the model.

Ms K.H. Kochaleema received her MTech in Software Engineering
from Cochin University of Science and Technology, Kochi,
Kerala. She is currently working as Scientist G at DRDO-
NPOL, Kochi. She is heading the Quality and Reliability
group of NPOL.
In the present work, she has contributed to developing the model
and the specification for verification. She has also provided
valuable ideas and feedback for completing the work.

Prof G. Santhosh Kumar obtained his Ph.D. and M. Tech in
Computer and Information Science from Cochin University of
Science & Technology (CUSAT), Kochi, Kerala. He is currently
a Professor in the Department of Computer Science, CUSAT.
His research interests include formal modelling, cyber-physical
systems, computer vision, data science and NLP.
In the present work, he has provided guidance and constructive
ideas for modelling and verifying the system. He has also
offered valuable direction and complete support to carry out
this study successfully.

