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ABSTRACT

The hundreds of electronic control devices used in an automotive system can effectively communicate with 
one another, thanks to an in-vehicle network (IVN) like FlexRay. Even though every node in the network will be 
running on its local clock, a global notion of time is essential. The clock synchronisation algorithm accomplishes this 
global time between the nodes in FlexRay. In this era of self-driving cars, the vehicle’s safety is paramount. For the 
vehicle to operate safely and smoothly, timely communication of information is critical, and the clock synchronisation 
algorithm plays a vital role in this. It is essential to formally test the clock synchronisation algorithm’s correctness. 
This paper attempts to model and verify the clock synchronisation algorithm of FlexRay using formal methods, 
which in turn enhance the reliability of safety-critical automotive systems. The clock synchronisation is modelled 
as a network of six timed automata in the UPPAAL model checker. Three system models were developed, a model 
for an ideal clock, another for a drifting clock, and a third model considering propagation delay. The precision 
of the clocks is verified to be within the prescribed limits. Simulation studies are also conducted on the model to 
ensure that the clock’s drift is always within the precision.
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1.	 INTRODUCTION
High-end automobiles manufactured today are equipped 

with several safety and performance features. Advanced driver 
assistance system, adaptive cruise control, anti-lock braking 
system, and engine control are a few to mention. Manufacturers 
implement these features as independent electronic control units 
(ECUs). Modern cars have hundreds of ECUs, and effective 
communication between them is essential for the electronic 
systems to provide functionalities. This communication is 
established with IVN technologies like Local Interconnect 
Network1, Controller Area Network (CAN)2, FlexRay3, Media 
Oriented System Transport4, etc. FlexRay provides a bandwidth 
of 10Mbps, which is better than other IVN5. FlexRay is reliable 
compared to other protocols and is used for brake-by-wire, 
steer-by-wire and shift-by-wire, which are safety-critical.

FlexRay was developed by the consortium consisting of 
Freescale Semiconductor, Robert Bosch, NXP Semiconductors, 
BMW, Volkswagen, Daimler and General Motors as its core 
members3. FlexRay standards are currently a collection of 
ISO standards, ISO 17458-1 to 17458-56. Several works on 
FlexRay have been reported in the literature recently7-12. Various 
researchers have modelled the FlexRay startup mechanism 
and have formally verified its properties like reachability and 
liveness13-15. Guo et al.16 modelled a framewuork for formally 
modelling automotive systems that used FlexRay and verified 

the features associated with sending and receiving frames. The 
authors also developed a reusable framework for systems that 
employ both CAN and FlexRay for communication17. The 
authors described an abstraction for the same and evaluated 
the validity of the abstraction and the performance of the 
framework18. The authors considered three topologies for 
implementing IVN systems and the timed properties were 
checked for all three cases. To ensure the safety of high-end 
cars, the ECUs should be synchronised to deliver messages 
at the appropriate time for carrying out various activities. 
Once the nodes begin running, the node’s clocks start to drift. 
The clock synchronisation algorithm serves the purpose of 
synchronising between the cluster nodes3. A couple of works 
on the formal verification of a clock synchronisation algorithm 
for CAN were reported by Navas, et al.19,20. Time-Triggered 
CAN was modelled as a system of timed automata by Leen21-

22 et al. Steiner, et al. reported a fully automated proof of the 
Time-Triggered Ethernet (TTE) clock synchronisation23. 
They also modelled the compression function of TTE and 
formally verified its correctness24. The approach for clock 
synchronisation in CAN and TTE differs from the distributed 
approach used in FlexRay.  

Hanzlik25 assessed the performance and stability of the 
FlexRay clock synchronisation algorithm through simulation 
using the tool SIDERA. A cluster of 15 nodes was considered 
for the analysis, and the performance of the algorithm was 
determined for different clock drift rates. The clock drift rates 
considered were stable clock drift rates, immediate clock drift 
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rate change, linear clock drift rate change and oscillating clock 
drift rate change. An experimental evaluation of FlexRay clock 
synchronisation using the deterministic replay of a bus traffic 
approach was done by Armengaud26. These works are based 
on simulation and do not use formal methods. Simulation 
alone does not guarantee that the system is error-free. Formal 
verification guarantees the clock synchronisation algorithm’s 
correctness and thus makes it reliable for use in the automotive 
industry for safety-critical functionalities. 

The clock synchronisation algorithm of FlexRay is 
modelled, simulated and verified using formal methods in 
this paper. UPPAAL27-28 model checker is used. The paper’s 
contributions can be summarised as (i) formal modelling of the 
FlexRay clock synchronisation algorithm as a network of timed 
automata in UPPAAL. Three system models were developed: 
the first model mimics an ideal clock, the second simulates a 
drifting clock, and the third model integrates the propagation 
delay experienced when sending and receiving messages. (ii) 
verification of the precision property, as well as the system’s 
safety property of being free of deadlock. (iii) simulation of 
the models, demonstrating that the clock’s precision is always 
within the prescribed limits. The paper is organised as follows. 
Section 2 describes how FlexRay performs synchronisation 
of clocks. A summary of the UPPAAL model checker is also 
provided. Our model of the FlexRay clock synchronisation 
algorithm is detailed in section 3. The results and discussion in 
section 4 elaborate on the simulation and verification results. 
The conclusion of the work and some directions for future 
study are presented in Section 5.

2.	 BACKGROUND
Multiple ECUs or nodes connected by a bus make up 

a FlexRay cluster. FlexRay employs time division multiple 
access (TDMA) for triggering transitions. The communication 
cycle has a static segment, divided into static slots, and each 
slot is assigned to a node. Every node in a network will be 
running on its local clock, and the nodes should have a common 
understanding of time. In a cluster, it should be ensured that all 
the communication cycles are of equal length and begin at the 

same point. Also, all the static slots should start at the same 
point in the communication cycle. The clock synchronisation 
algorithm ensures this, and the following subsections describe 
the clock synchronisation process of FlexRay3.

2.1	 Clock Synchronisation in FlexRay
Cycles, macroticks and microticks are used to represent 

time in FlexRay. With the use of the variables vCycleCounter, 
vMacrotick and vMicrotick, a node’s time can be represented. 
The basic unit of time is  the microtick, whose source is the 
oscillator clock tick. A macrotick is made up of an integral 
number of microticks. An integral number of macroticks 
constitutes a cycle and is represented using the variable 
gMacroPerCycle. Each cycle and each node in a cluster will 
use the same value for this parameter. At any one time, a 
cluster’s nodes should all have the same cycle number. The 
cycles are counted, and the variable vCycleCounter holds the 
current cycle number of a node3.

There are two notions of time, global and local time. The 
local perspective of the global time from a node is called its 
global time. The clock time of the node obtained from the 
node’s oscillator is its local time. The clock synchronisation 
algorithm enables the node to adjust its local time to global 
time. A distributed clock synchronisation mechanism is used 
in FlexRay. The algorithm for clock synchronisation ensures 
that the time difference between a cluster’s nodes consistently 
remains within the precision. The time differences between two 
node’s clocks are of two types, offset (phase) difference and 
rate (frequency) difference. The macrotick generation process 
(MTG) and the clock synchronisation process (CSP) are the 
two stages of FlexRay’s clock synchronisation algorithm. The 
cycle and macrotick counters are controlled by MTG, which 
is also responsible for applying the rate and offset correction 
values. CSP is responsible for the initialisation of time at the 
start of the cycle, and it measures the deviation of the time 
between the node’s clocks and stores the value in the deviation 
table. From these deviation values, the offset and rate correction 
values are also computed by the CSP process. The steps in the 
clock synchronisation of FlexRay are depicted in Fig. 1.

Figure 1. Clock synchronisation of FlexRay.
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2.1.1	 Initialisation
A significant step in calculating offset and rate correction 

values is to measure the deviation values between the local 
time of a node and the local time of every other node in the 
cluster. The deviation values measured during every cycle are 
stored in a data structure dev_table with N rows, where N is 
the number of SYNC nodes in the cluster. This table consists 
of an even part that stores the value measured during the even 
cycle and an odd part that stores the value measured during the 
odd cycle. During initialisation, the even part of dev_table is 
reset during the even communication cycle, and in the odd 
cycle, the odd part is reset.

2.1.2	 Measurement and Storage of Time
Every slot in the static segment consists of a static slot 

action point (SAP). A transmitting node starts the frame 
transmission only when this point is reached. A signal is 
generated by the media access control (MAC) when its timer 
reaches the SAP. When CSP receives this signal, it takes a 
timestamp and saves it in a variable SAP. 

The receiving node captures a timestamp as part of the 
frame reception, serving as a secondary time reference point 
(STRP). The primary time reference point (PTRP), the offset 
and the deviation of the clock are computed as in Eqn. (1), Eqn. 
(2) and Eqn. (3), respectively. The DecodingCorrection value 
can be 18 to 143 microticks, and DelayCompensation can be 0 
to 200 microticks as per the specification3.

PTRP STRP Offset= − 			           (1)

Offset DecodingCorrection DelayCompensation= +           (2)

Deviation PTRP SAP= −                                               (3)                                
The deviation value computed during a cycle will be 

stored in the corresponding part of the dev_table. Every node 
will have an array of measurement values after the static part. 
The values in this array are used to compute the correction 
value using the fault-tolerant midpoint algorithm (FTMPA)3.
2.1.3	 Calculation of Offset Correction Value

Offset correction ensures that the difference in real time 
between the points in time reached by different clocks should 
be as small as possible. The offset correction value is computed 
as follows.

If the communication cycle is even, the deviation values •	
computed during the even cycle are used to compute the 
offset correction value. Otherwise, the deviation values 
computed during the odd cycle are used.
The corresponding deviation values are copied into an •	
array, the FTMPA is executed on the array’s contents, and 
the correction term, vOffsetCorrection, is computed.
Check this value against the specified limits:•	

	 a.	 If ,vOffsetCorrection pOffsetCorrectionOut< − set 

		  vOffsetCorrection pOffsetCorrectionOut= −
	 b.	 If ,vOffsetCorrection pOffsetCorrectionOut> set 
		  vOffsetCorrection pOffsetCorrectionOut=

2.1.4	 Calculation of Rate Correction Value
Rate correction ensures that all cycles of all clocks have 

the same length. The steps in calculating the rate correction 

value are as follows.
The difference between the deviation values computed •	
during each slot is found and stored in an array. 
The FTMPA is executed, and the correction term, •	
vRateCorrection, is computed.
Damping value, •	 pClusterDriftDamping is applied to 
vRateCorrection
a.	 If vRateCorrection pClusterDriftDamping≥ set
   	 vRateCorrection vRateCorrection pClusterDriftDamping= −
b.	 If vRateCorrection pClusterDriftDamping≤ − set
  	 vRateCorrection vRateCorrection pClusterDriftDamping= +
c.	 Else 0vRateCorrection =
	
Check •	 vRateCorrection against the specified limits.
a.	 If ,vRateCorrection pRateCorrectionOut< − set 
     vRateCorrection pRateCorrectionOut= −
b.	 If ,vRateCorrection pRateCorrectionOut> set 
	 vRateCorrection pRateCorrectionOut=

2.2	 UPPAAL
UPPAAL model checker takes two inputs, the model of 

the system to be verified and the properties the system has 
to satisfy. The properties that the system must satisfy are 
modelled using timed computation tree logic (TCTL), and 
the system is represented as a collection of timed automata. 
Rigorous verification of the property for all possible runs of the 
system is performed. If it is satisfied for all possible runs, the 
model checker produces as output “the property is satisfied”. 
If the property is not satisfied for at least one run, it produces 
as output “the property is not satisfied”, and a counterexample 
is generated27-28. The limitation of using UPPAAL in verifying 
clock synchronisation algorithms is that the value of a clock 
variable cannot be read. Huang, X describes an integer clock 
model and demonstrates it by verifying the correctness 
properties of the Timing-sync Protocol for Sensor Networks29.

3.	 FORMAL MODELLING OF THE FLEXRAY 
CLOCK SYNCHRONISATION ALGORITHM
Starting a FlexRay cluster requires the presence of at least 

three cold-start nodes. In this work, a cluster consisting of four 
nodes is considered for modelling. The state space explosion is 
managed by restricting the nodes to four. The assumption is that 
all the nodes initially have a synchronised clock. The model 
developed comprises six automata, an  Oscillator, Observer, 
MAC, Node, CSP and MTG. 

All the automata are instantiated for every node in the 
network. Node(0)  to Node(3) corresponds to the four nodes 
in the network. Oscillator(0), Observer(0), CSP(0), MTG(0) 
and  MAC(0)  are the instances of the various automata 
that correspond to the  Node(0). Three different models are 
considered for simulation and verification. The first model 
assumes that all nodes are always synchronised, while the 
second considers that nodes 1, 2, and 3’s clocks drift over 
time. In model 2, only the Oscillator and Observer automata 
are remodelled. Models 1 and 2 do not experience any delays 
while receiving the frame. The node automaton in the third 
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model is remodelled to incorporate the delay, which comprises 
the decoding correction and delay compensation.

3.1	 Modelling the Clock in FlexRay
A node’s clock is modelled using Oscillator and Observer 

automata.

3.1.1	 Oscillator Automaton
The  Oscillator  automaton shown in Fig. 2 is used to 

model a node’s clock pulse generator. The automaton has only 
a single state with an invariant  t<=nsamp, where t is a clock 
variable, and nsamp is used to simulate the frequency of the 
node’s clock. When  t>=nsamp, a self-transition occurs, and 
the clock  t  is reset to 0. The transition generates a broadcast 
synchronisation clk_tck[i]! which controls the clock of the 
Observer(i) automaton. An instance of the Oscillator is created 
for every node in the cluster, and thus the existence of a local 
clock is modelled for each node. 

The clocks in real-time may drift apart. The Oscillator 
and Observer automata are modified, as shown in Fig. 4 and 
Fig.  5, respectively, to model clock drifts. It is modelled such 
that the Observer ignores every mth sample of the clock during 
specific cycles and does not increment the vMicrotck value 
during that pulse. The value of m for each node is stored in the 
array skip[N]. These modified automata are used in Model 2 
and Model 3.

Figure 2. Oscillator Automaton.

Figure 3. Observer automaton.

3.1.2	 Observer Automaton
The Observer automaton depicted in Fig. 3 simulates 

the local time of a node’s clock. UPPAAL does not permit to 
read the values of the clock variables. To implement the clock 
synchronisation it is required to take the timestamp at several 
instances. The variables vMicrotck[i] and vMacrotck[i] are the 
microtick and the macrotick counters and are of type integer. The 
value of vMicrotck[i] is read as the value of the clock for node 
i when a timestamp is to be taken. The variable vMicrotck[i] is 
incremented at every clock pulse when it receives a message 
via clk_tck[i]?. The variable vMacrotck[i] is incremented at 
every nth microtick, where n microticks constitute a macrotick. 
Incrementing vMacrotck is implemented as a function in the 
Observer automaton. 

Figure 4. Oscillator for drifting clock.

3.2	 MAC Automaton
The MAC automaton in Fig. 6 models the communication 

cycle of a node and controls the node’s turn to access the media 
and send a frame. The shared media is implemented as a structure 
with two fields: a frame field and a status field that shows 
whether the bus is in use or not. A FlexRay communication 
cycle is made up of a static segment, a dynamic segment, a 
symbol window and network idle time (NIT)3. Most safety-
critical communication is done during the static segment, 
and the MAC automaton models only this segment and NIT. 
MAC(i) automaton interacts with the Node(i), CSP(i) and 

MTG(i) automata. The MAC(i) automaton issues a cyclestart[i]! 
signal, which triggers the MTG(i) for the node. It also sets the 
values of firstcycle[i] and ecycle[i] to true, indicating cycle0. 
The automaton then spends in the location Wait_for_Slot for a 
time equal to slottime[i], and when this time expires, it is the 
ith node’s turn to access the media. The automaton waits in the 
location Wait_APO for gdAPO time before it issues the static 
slot action point signal, ssap!. The ssap! synchronises MAC(i) 
with the Node(i) and CSP(i) automata. MAC(i) then issues the 
slot[i]! signal, which Node(i) receives to send a frame. When 
the node’s static slot expires, MAC(i) resets the contents on the 
bus by executing the resetBus() function. MAC(i) then waits 
in the Channel_Released location for a time vStSeg[i] for the 
static segment to complete. It then issues the sscompleted[i]!, 
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Figure 5. Observer for drifting clock.

Figure 6. MAC automaton.

which will be received by the MTG(i) automaton. MAC(i) 
then generates the calc_offset[i]! to the CSP(i) to initiate the 
offset calculation. The automaton then spends time vNIT in the 
location NIT and then iterates back to the Start_Cycle location 
to start the next communication cycle. On this path, it resets 
the clock x to 0 and increments the cycleno[i]. It also negates 
the ecycle[i] because an even cycle will be followed by an odd 
cycle and vice versa. A FlexRay network permits a maximum 
of 63 cycles, so the cycleno[i] ranges from 0 to 62, and when 
the value is 63, the automaton resets to the Init location.

3.3	 Node Automaton
The Node automaton shown in Fig. 7 models the node’s 

behaviour of sending and receiving frames. When Node(i) 
receives the ssap? signal from MAC(i), it takes the timestamp 
and stores it in sap[i]. Node(i) then waits in the Ready state for 
either its slot to send a frame or till some other node accesses the 
media and sends a frame. If it is node i’s turn to access the media, 
Node(i) will receive a slot[i]? signal from the MAC automaton 
and will transmit the frame. The node sends sendframe! signal 
while it transmits the frame, which is received by all other 
nodes in the cluster. The signal triggers the receivers to read 
the contents of the bus and record the timestamp at which 
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they receive the frame. This timestamp, STRP, is recorded in 
strp. The nodes that receive the frame execute the function 
computePTRP(). The node then issues genptrp[i]! to indicate 
that the computation of PTRP is completed and to synchronise 
with the CSP automaton for computing the deviation values.

The Node automaton is modified to consider the decoding 
delay and the propagation delay in Model 3. The receiver node 
on receiving the sendframe? moves to a wait location. This 
location has an invariant y<=offset + delta, and a transition 
from this location occurs when the value of y is between 
offset – delta and offset + delta. Thus, a delay is induced at the 
receiver while receiving the frame. 

3.4	 CSP Automaton
The CSP automaton depicted in Fig. 8 models the clock 

synchronisation process (Fig. 1). It initialises the deviation 
table when it receives the initDT? from the MTG automaton. 
The initialize_Devtable() function resets a part of the dev_table 
corresponding to the cycle. A timestamp is taken and is stored 
in tsap when the automaton receives the ssap? from MAC(i). 
It then computes the deviation when genptrp[i]? is received 
from the Node(i) as . This value is stored 
in the appropriate part of dev_table based on the cycle being 
even or odd. The automaton waits for the calc_offset? signal 

Figure 7. Node automaton.

Figure 8. CSP automaton.

Figure 9.  MTG automaton.
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from MAC(i) and then calculates the offset correction value. 
It also calculates the rate correction value at the end of every 
odd cycle.

3.5	 MTG Automaton
The main responsibility of the MTG process is to apply 

the offset and rate correction values. The automaton receives a 
cyclestart[i]? signal from MAC(i), indicating the start of the first 
communication cycle. The rate correction is done only at the 
beginning of an even cycle, except for the first cycle. The rate 
correction value computed during the previous cycle determines 
whether there are more or fewer microticks in the current cycle. 
The automaton then initiates initializing dev_table by issuing 
initDT! which will be received by CSP(i). It then waits for the 
completion of the static segment and receives sscompleted[i]? 
from MAC(i). A node has to wait for gdOffsetCorrectionStart 
(gdOCS) time to perform offset correction. Offset correction is 
performed by extending or shortening the NIT interval of the 
communication cycle. Figure 9 depicts the MTG automaton.

5.	 RESULTS AND DISCUSSION
The model is simulated and verified using the 4.1.25-5 

version of UPPAAL on an Intel Xeon octa-core with 64-bit OS 
and 16 GB RAM. The values of vMicrotck from the Observer 
automaton were read during the simulation run and were used 
to compute vMacrotick and the precision. 

The clock synchronisation of FlexRay modelled in this 
paper considers a bandwidth of 10Mbps. Since a cluster 
consisting of four nodes is considered, the static segment is 
slotted into four slots, one for each node. The values for the 
variables used in the model are computed assuming a clock 
period of 0.0125µs and a macrotick (MT) duration of 1µs. One 
sample of the clock pulse is considered as one microtick (µT), 
and one macrotick consists of 80µT. The maximum value of 
offset correction that is permitted, pOffsetCorrectionOut is 

Table 1. Computed values of variables

Variable Value

gdSampleClockPeriod 0.0125µs

gdMacrotick 1µs (80µT)

gdAPO 80µT

slottime[i] 0,320,640,960µT

gMacroPerCycle 18MT

cyclelength[i] 1440µT for all the nodes

vNIT[i] 160 for all the nodes

vSS[i] 4MT (320µT) for all the nodes

vStSeg[i] 960, 640, 320, 0

gdOCS 80µT

pDecodCorrec 18µT

pDelayComp 0 – 5µT

pOffsetCorrcOut 50µT

pRateCorrOut 5µT

pClustDriftDamp 0

Figure 10. Simulation results of the three models.

computed as in equation 4. Where gOffsetCorrectionMax is 
the maximum necessary offset correction value (0.15µs) for 
the cluster globally, pdMicrotick is the node-specific duration 
of 1µT (0.0125µs), and cClockDeviationMax is the maximum 
clock frequency deviation. The cClockDeviationMax is a 
protocol constant, and the value is 1500 ppm. The computation 
of the maximum rate correction value, pRateCorrectionOut, 
is done as in Eqn. 5. The number of microticks per cycle, 
pMicroperCycle, is 1440. The values of the different variables 
computed for the simulation and verification are listed in  
Table 1. The range of values these variables can take for 10 
Mbps is specified in the specification of FlexRay3.
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Figure 11. Precision observed for the models during simulation.

( )* 1

pOffsetCorrectionOut

gOffsetCorrectionMaxceil
pdMicrotick cClockDeviationMax

=

 
  −                   (4)

( )
*2*

1

pRateCorrectionOut

pMicroperCycle cClockDeviationMaxceil
cClockDeviationMax

=

 
  −  	         (5)

The results obtained from performing simulation on the 
three models, synchronised clocks (Model 1), drifting clocks 
(Model 2), and the model with a delay at the receiver’s end 
(Model 3), are in Fig. 10 and the observations are listed 
below.
•	 The duration of vNIT is reduced or extended based on the 

offset correction value computed during the odd cycle. 
•	 The cycle duration is modified at the beginning of the 

even cycle considering the rate correction value computed 

during the previous double cycle.
•	 In all the models, the precision is between 0 - 2 MT (see 

Fig. 11), which is within the worst-case precision of a 
FlexRay network.

The precision values computed as the maximum deviation 
of the node’s clock from the clocks of all other nodes in the 
cluster in terms of MT were verified in the UPPAAL model 
checker. The model checker checks whether the property is 
violated in any state in all the possible runs. If violated, the 
output produced by UPPAAL is ‘property is not satisfied’; 
otherwise, it gives the output as ‘property is satisfied’. The 
best and the worst-case precision as specified by the FlexRay 
specification is 0.15 µs (12 µT) and 6.675 µs (534 µT), 
respectively. The properties verified and the model checker’s 
output are listed below. The precision values were formally 
verified to be within 0 – 6 MT for all the models using property 
1 and property 2. The deadlock property, which states that in 
all possible runs of the system, no state may exist, in which no 
outbound transitions are triggered, is verified by property 3.

Properties Verified

Property 1: Precision is within the range 0-6MT.

Specification:

( )( )[] : [ ] 0 [ ] 6A forall i nodes prec i and prec i≥ ≤  

Result: Property is satisfied.

Property 2: Precision does not go beyond the range 0-6MT.

Specification: 

( )( ): [ ] 0 [ ] 6E exists i nodes prec i or prec i<> < >

Result: Property is not satisfied.

Property 3: System does not go into a deadlock state.

Specification:
[]A not deadlock

Result: Property is satisfied.

5.	 CONCLUSIONs
Formal modelling and verification of clock synchronisation 

of FlexRay make it reliable for in-vehicle communication by 
major automotive manufacturers. This paper developed a formal 
model of the FlexRay clock synchronisation algorithm using 
the UPPAAL model checker. The model developed consists 
of a network of six timed automata,  Oscillator, Observer, 
MAC, Node, CSP and MTG. A cluster with four nodes was 
considered, and simulation and verification were done on three 
variants of the model, one with synchronised clocks, one with 
drifting clocks and one in which the decoding and propagation 
delays were modelled at the receiver node.
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Simulation studies on all the models show that the clock 
correction is done by modifying the duration of the NIT and 
the cycle length. NIT is shortened or lengthened based on the 
offset correction value, and the cycle length is increased or 
decreased based on the rate correction value computed. Also, 
the precision is found to agree with the worst-case precision 
of 6 MT mentioned in the specification of FlexRay. It is also 
formally verified by the model checker that the precision is 
always within 0 MT and 6 MT. It is also verified that the system 
is free from deadlock. The models proposed in this work can 
also be applied to a dual-channel network by creating instances 
of the MAC automaton for the two channels and modifying 
the Node automaton to broadcast and receive frames on both 
channels. 

The model can be extended for event-triggered 
communication by modifying the MAC automaton to 
incorporate dynamic segment and symbol window. Modelling 
the synchronisation of the nodes in multiple clusters, their 
behaviour and the modelling of drift between the clusters will 
be considered as future work.

REFERENCES
1.	 LIN Specification Package, Revision 2.0, LIN Consortium, 

2003.
2.	 CAN Specification, Robert Bosch GmbH, Stuttgart, 

Germany, 1991.
3.	 FlexRay communications system protocol specification 

version 2.1., FlexRay Consortium, 2005.
4.	 MOST Specification Revision 2.3, MOST Cooperation, 

Karlsruhe, Germany, 2008.
5.	 Prasad, M.; Dey, R.K.; Sardar, A. & Goswami, G. Ethernet 

as an emerging trend in vehicle network technology—Part 
I. Auto Tech. Rev., 2014, 3(12), 18-23. 

	 doi: 10.1365/s40112-014-0805-5
6.	 International organisation for standardisation. Road 

vehicles–FlexRay communications system–Part 1: 
General information and use case definition. ISO I. 17458-
1–2013 Jan.

7.	 Piao, J.H.; Wu, Y.J. & Xu, Y.N. A security framework 
for in-vehicle flexray bus network.  Int. J. Modeling 
Optimisation, 2022, 12(3). 

	 doi: 10.1007/978-3-030-66042-0_6
8.	 Pang, F.; Huang, M.; Mi, Z. & Zhang, H. A way to 

synchronize clocks with the FlexRay bus. J. Physics: 
Conference Series, IOP Publishing, 2022, 2187(1), 
012054. 

	 doi: 10.1088/1742-6596/2187/1/012054
9.	 Peng, L.; Jia, L. & Zefeng, Y. FlexRay bus data fault 

diagnosis based on Zynq. J. Physics: Conference Series, 
IOP Publishing, 2021, 1907(1), 012029. 

	 doi: 10.1088/1742-6596/1907/1/012029
10.	 Wang, Y.; Chen, M.; Ma, J.; Zhang, J. & Fu, J. Predictive 

control of FlexRay vehicle-mounted network based 
on neural network. J. Physics: Conference Series, IOP 
Publishing, 2021, 1907(1), 012062. 

	 doi: 10.1088/1742-6596/1907/1/012062
11.	 Xiong, W.; Ho, D.W. & Wen, S. A periodic iterative learning 

scheme for finite-iteration tracking of discrete networks 
based on FlexRay communication protocol. Information 

Sciences, 2021, 548, 344-356. 
	 doi: 10.1016/j.ins.2020.10.017
12.	 Stojanović, Branka; Hofer-Schmitz, Katharina; Nahrgang, 

Kai; Vallant, Heribert & Derler, Christian. Formal 
modeling: A step forward to cyber secure connected car 
systems.  Towards connected and autonomous vehicle 
highways. Springer, Cham, 2021, 131-167. 

	 doi: 10.1007/978-3-030-66042-0_6
13.	 Malinský, J. & Novák, J. Verification of flexray start-

up mechanism by timed automata. Metrology and 
Measurement Systems, 2010, 17(3), 461-480. 

	 doi: 10.2478/v10178-010-0039-z
14.	 Cranen, S. Model checking the FlexRay startup phase. In 

International Workshop on Formal Methods for Industrial 
Critical Systems, Springer, Berlin, Heidelberg, 27 August 
2012, 131-145. 

	 doi: 10.1007/978-3-642-32469-7_9
15.	 Shimmi, Asokan & Santhosh Kumar, G. Modelling and 

verification of the FlexRay startup mechanism using 
UPPAAL model checker. In 2018 8th International 
Symposium on Embedded Computing and System Design 
(ISED), IEEE, 2018, 13, 69-73. 

	 doi: 10.1109/ISED.2018.8704029
16.	 Guo, X.; Lin, H.H.; Yatake, K. & Aoki, T. An UPPAAL 

framework for model checking automotive systems with 
FlexRay protocol. In International Workshop on Formal 
Techniques for Safety-Critical Systems. Springer, Cham, 
2013, October, 36-53.

	 doi: 10.1007/978-3-319-05416-2_4
17.	 Guo, X.; Lin, H.H.; Aoki, T. & Chiba, Y. December. A 

reusable framework for modeling and verifying in-vehicle 
networking systems in the presence of CAN and FlexRay. 
In 2017 24th Asia-Pacific software engineering conference 
(APSEC), IEEE, 2017, 140-149. 

	 doi: 10.1109/APSEC.2017.20
18.	 Guo, X.; Aoki, T. & Lin, H.H. Model 

checking of in-vehicle networking systems 
with CAN and FlexRay. J. Syst. Software, 2020, 161, 
110461. 

	 doi: 10.1016/j.jss.2019.110461
19.	 Rodriguez-Navas, G.; Proenza, J. & Hansson, H. Using 

UPPAAL to model and verify a clock synchronisation 
protocol for the controller area network. In 2005 IEEE 
Conference on Emerging Technologies and Factory 
Automation, 2005, September, IEEE. 2(8). 

	 doi: 10.1109/ETFA.2005.1612717 
20.	 Rodriguez-Navas, G.; Proenza, J. & Hansson, H. An 

UPPAAL model for formal verification of master/slave 
clock synchronisation over the controller area network. In 
Proc. of the 6th IEEE International Workshop on Factory 
Communication Systems, Torino, Italy, IEEE Computer 
Society Press, Los Alamitos, 2006 June. 

	 doi: 10.1109/WFCS.2006.1704117
21.	 Leen, G. & Heffernan, D. Modeling and verification of 

a time-triggered networking protocol. In International 
Conference on Networking, International Conference 
on Systems and International Conference on Mobile 
Communications and Learning Technologies 
(ICNICONSMCL’06), IEEE, 2006, April, 178-178. 

	 doi: 10.1109/ICNICONSMCL.2006.150



def. sci. j., Vol. 73, No. 1, january 2023

50

22.	 Leen, G. & Heffernan, D. Formally verifying aspects 
of time-triggered controller area network (Phases 1 \& 
2a). Tech. report, PEI/CSRC report no. 20020603, main 
library, University of Limerick, 2002.

23.	 Steiner, W. & Dutertre, B. Automated formal verification of 
the TTEthernet synchronisation quality. In NASA Formal 
Methods Symposium. Springer, Berlin, Heidelberg, April 
2011, 375-390. 

	 doi: 10.1007/978-3-642-20398-5_27
24.	 Steiner, W. & Dutertre, B. SMT-Based formal verification 

of a TTEthernet synchronisation function. In International 
Workshop on Formal Methods for Industrial Critical 
Systems. Springer, Berlin, Heidelberg, September 2010, 
148-163. 

	 doi: 10.1007/978-3-642-15898-8_10
25.	 Hanzlik, A. A case study of clock synchronisation in 

FlexRay. Research Report 31/2006 Technische Universitat 
Wien, Institut fur Technische Informatik. 2006.

26.	 Armengaud, E. Experimental evaluation of the FlexRay 
clock synchronisation service. Proc. 20. ITG/GI/
GMM Workshop Testmethoden und Zuverlssigkeit von 
Schaltungen und Systemen, 2008. pp. 85-90.

27.	 Behrmann, G., David, A. & Larsen, K.G. A tutorial on 
uppaal. Formal methods for the design of real-time 
systems, 2004, 200-236. 

	 doi: 10.1007/978-3-540-30080-9_7
28.	 David, A.; Larsen, K.G.; Legay, A.; Mikučionis, M. & 

Poulsen, D.B. Uppaal SMC tutorial. Int. J. Software Tools 
for Technology Transfer, 17(4), 2015, 397-415. 

	 doi: 10.1007/s10009-014-0361-y
29.	H uang, X.; Singh, A. & Smolka, S.A. Using integer clocks 

to verify clock-synchronisation protocols. Innovations 
Syst. Software Engin., 7(2), 2011,119-130. 

	 doi: 10.1007/s11334-011-0152-5

CONTRIBUTORS

Ms Shimmi Asokan received her M. Tech degree in Software 
Engineering from Cochin University of Science & Technology 
(CUSAT), Kochi, Kerala. She is currently a Research Scholar in 
the Department of Computer Science at CUSAT. Her research 
interests include modelling and verification of software systems 
using formal methods. 
In the present work, she is responsible for developing the 
formal model of the clock synchronisation algorithm of FlexRay, 
simulating the model and formally verifying the model.

Ms K.H. Kochaleema received her MTech in Software Engineering 
from Cochin University of Science and Technology, Kochi, 
Kerala. She is currently working as Scientist G at DRDO-
NPOL, Kochi. She is heading the Quality and Reliability 
group of NPOL. 
In the present work, she has contributed to developing the model 
and the specification for verification. She has also provided 
valuable ideas and feedback for completing the work.

Prof G. Santhosh Kumar obtained his Ph.D. and M. Tech in 
Computer and Information Science from Cochin University of 
Science & Technology (CUSAT), Kochi, Kerala. He is currently 
a Professor in the Department of Computer Science, CUSAT. 
His research interests include formal modelling, cyber-physical 
systems, computer vision, data science and NLP. 
In the present work, he has provided guidance and constructive 
ideas for modelling and verifying the system. He has also 
offered valuable direction and complete support to carry out 
this study successfully.


